UNIVERSITY OF BIRMINGHAM University of Birmingham Research at Birmingham

The state of hypertension care in 44 low-income and middle-income countries

Geldsetzer, Pascal; Manne-Goehler, Jennifer; Marcus, Maja-Emilia; Ebert, Cara; Zhumadilov, Zhaxybay ; Wesseh, Chea Stanford; Tsabedze, Lindiwe; Supiyev , Adil ; Sturua, Lela; Bahendeka, Silver K; Sibai, Abla M.; Quesnel-Crooks, Sarah; Norov, Bolormaa; Mwangi, Joseph Kibachio; Mwalim, Omar; McClure, Roy Wong; Mayige, Mary T; Martins, Joao S; Lunet, Nuno ; Labadarios, Demetre

DOI: 10.1016/S0140-6736(19)30955-9

License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version Peer reviewed version

Citation for published version (Harvard):

Geldsetzer, P, Manne-Goehler, J, Marcus, M-E, Ebert, C, Zhumadilov, Z, Wesseh, CS, Tsabedze, L, Supiyev, A, Sturua, L, Bahendeka, SK, Sibai, AM, Quesnel-Crooks, S, Norov, B, Mwangi, JK, Mwalim, O, McClure, RW, Mayige, MT, Martins, JS, Lunet, N, Labadarios, D, Karki, KB, Kagaruki, GB, Jorgensen, JMA, Hwalla, NC, Houinato, D, Houehanou, C, Msaidie, M, Guwatudde, D, Singh Gurung, M, Gathecha, G, Dorobantu, M, Damasceno, A, Bovet, P, Bicaba, BW, Aryal, KK, Andall-Brereton, G, Agoudavi, K, Stokes, A, Davies, J, Bärnighausen, T, Atun, R, Vollmer, S & Jaacks, LM 2019, 'The state of hypertension care in 44 low-income and middle-income countries: a cross-sectional study of nationally representative individual-loyed data from 1.1 middle-income countries: a cross-sectional study of nationally representative individual-level data from 1.1 million adults', The Lancet, vol. 394, no. 10199, pp. 652-662. https://doi.org/10.1016/S0140-6736(19)30955-9

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

The state of hypertension care in 44 low- and middle-income countries: a cross-sectional study of individual-level nationally representative data from 1.1 million adults

4

Pascal Geldsetzer ScD¹, Jennifer Manne-Goehler MD^{1,2}, Maja-Emilia Marcus MA³, Cara Ebert 5 MSc³, Zhaxybay Zhumadilov PhD⁴, Chea S. Wesseh MA⁵, Lindiwe Tsabedze MPH⁶, Adil 6 Supiyev PhD⁷, Lela Sturua PhD⁸, Bahendeka K. Silver PhD⁹, Abla M. Sibai PhD¹⁰, Sarah 7 Quesnel-Crooks MSc¹¹, Bolormaa Norov MSc¹², Joseph K. Mwangi MD¹³, Omar Mwalim 8 MPH¹⁴, Roy Wong-McClure MD¹⁵, Mary T. Mayige MBChB¹⁶, Joao S. Martins PhD¹⁷, Nuno 9 Lunet PhD¹⁸, Demetre Labadarios MBChB¹⁹, Khem B. Karki MD²⁰, Gibson B. Kagaruki MSc¹⁶, 10 Jutta M.A. Jorgensen MD²¹, Nahla C. Hwalla PhD²², Dismand Houinato PhD²³, Corine 11 Houehanou PhD²³, Mohamed Msaidié MD²⁴, David Guwatudde PhD²⁵, Mongal S. Gurung 12 PhD²⁶, Gladwell Gathecha MSc¹³, Maria Dorobantu FESC²⁷, Albertino Damasceno PhD^{18,28,29}, 13 Pascal Boyet MD^{30,31}, Brice W. Bicaba MD³², Krishna K. Arval PhD³³, Glennis Andall-Brereton 14 PhD¹¹, Kokou Agoudavi MD³⁴, Andrew Stokes PhD³⁵, Justine I. Davies MD (res)^{36,37}, Till 15 Bärnighausen MD^{1,38,39,†,*}, Rifat Atun FRCP^{1,40,†}, Sebastian Vollmer PhD^{1,3,†}, Lindsay M. Jaacks 16 PhD^{1,41,†} 17

18

¹Department of Global Health and Population, Harvard T.H. Chan School of Public Health,

20 Boston, MA, USA;

21 ² Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School,

22 Boston, MA, USA;

- ³ Department of Economics and Centre for Modern Indian Studies, University of Goettingen,
- 24 Göttingen, Germany;
- ⁴ National Laboratory Astana, University Medical Center, Nazarbayev University, Astana,
- 26 Kazakhstan
- 27 ⁵ Liberia Ministry of Health, Monrovia, Liberia;
- ⁶ Swaziland Ministry of Health, Mbabane, Swaziland;
- ⁷ Laboratory of Epidemiology and Public Health, Center for Life Sciences, National Laboratory
- 30 Astana, Nazarbayev University, Astana, Kazakhstan;
- 31 ⁸Non-Communicable Disease Department, National Center for Disease Control and Public
- 32 Health, Tbilisi, Georgia;
- ⁹ Saint Francis Hospital, Nsambya, Kampala, Uganda;
- ¹⁰ Department of Epidemiology & Population Health, Faculty of Health Sciences, American
- 35 University of Beirut, Beirut, Lebanon
- 36 ¹¹ Non-Communicable Diseases, Caribbean Public Health Agency, Port of Spain, Trinidad and
- 37 Tobago;
- 38 ¹² National Center for Public Health, Ulaanbaatar, Mongolia;
- ¹³ Division of Non-Communicable Diseases, Kenya Ministry of Health, Nairobi, Kenya;
- 40 ¹⁴ Zanzibar Ministry of Health, Zanzibar;
- 41 ¹⁵ Epidemiology Office and Surveillance, Caja Costarricense de Seguro Social, San Jose, Costa
- 42 Rica;
- 43 ¹⁶ National Institute for Medical Research, Dar es Salaam, Tanzania;
- 44 ¹⁷ Faculty of Medicine and Health Sciences, National University of East Timor, Rua Jacinto
- 45 Candido, Dili, Timor-Leste;

- 46 ¹⁸ Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de
- 47 Medicina da Universidade do Porto, Porto, Portugal
- 48 ¹⁹ Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa;
- 49 ²⁰ Nepal Health Research Council (NHRC), Ramshah Path, Kathmandu, Nepal;
- 50 ²¹ D-Tree International, Boston, MA, USA
- ²² Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
- ²³ Laboratory of Epidemiology of Chronic and Neurological Diseases, Faculty of Health
- 53 Sciences, University of Abomey-Calavi, Cotonou, Benin;
- ²⁴ Ministry of Health, Solidarity, Social Cohesion and Gender, Government of the Union of
- 55 Comoros, Moroni, Union of Comoros;
- ²⁵ Department of Epidemiology and Biostatistics, School of Public Health, Makerere University,
- 57 Kampala, Uganda;
- ²⁶ Health Research and Epidemiology Unit, Ministry of Health, Thimphu, Bhutan;
- ²⁷ Cardiology Department, Emergency Hospital of Bucharest, Bucharest, Romania;
- 60 ²⁸ Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique
- 61 ²⁹ EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- ³⁰ Institute of Social and Preventive Medicine, Lausanne, Switzerland;
- 63 ³¹ Ministry of Health, Victoria, Republic of Seychelles;
- ⁶⁴ ³² Institut Africain de Santé publique (IASP), Ouagadougou, Burkina Faso;
- 65 ³³ DFID/NHSP3/MEOR, Abt Associates, Kathmandu, Nepal
- 66 ³⁴ Togo Ministry of Health, Lome, Togo;
- ³⁵Boston University Center for Global Health and Development, Boston, MA, USA;

³⁶ MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Pu	58	68	$58 - {}^{36}MRO$	C/Wits Rural	Public Healt	h and Health	Transitions	Research	Unit. School	of Pul	blic
---	----	----	-------------------	--------------	--------------	--------------	-------------	----------	--------------	--------	------

- 69 Health, University of Witwatersrand, Johannesburg, South Africa;
- ³⁷ Institute of Applied Health Research, University of Birmingham, Birmingham, UK;
- 71 ³⁸ Africa Health Research Institute, Somkhele, South Africa;
- ³⁹ Institute of Global Health, Heidelberg University, Heidelberg, Germany;
- ⁴⁰ Department of Global Health and Social Medicine, Harvard Medical School, Harvard
- 74 University, Boston, Massachusetts, United States of America
- ⁴¹ Public Health Foundation of India, New Delhi, Delhi NCR, India
- 76
- [†] Joint senior authors.
- 78 Word count: 3,497 words (Abstract: 427 words)
- 79

80 *** Corresponding author:**

- 81 Professor Till Bärnighausen
- 82 Institute of Global Health, Heidelberg University, 69120 Heidelberg, Germany
- 83 E-mail: <u>till.baernighausen@uni-heidelberg.de</u>
- 84 Phone: +49 6221 565344
- 85
- 86 Full professors: Zhaxybay Zhumadilov, Abla M. Sibai, Demetre Labadarios, Nahla C. Hwalla,
- 87 Dismand Houinato, David Guwatudde, Maria Dorobantu, Justine I. Davies, Till Bärnighausen,
- 88 Rifat Atun, Sebastian Vollmer

89 Abstract

90 **Background:** Evidence from nationally representative studies in low- and middle-income 91 countries (LMICs) on where patients are lost in the hypertension care continuum is sparse. This 92 information, however, is essential for the effective design and targeting of health services 93 interventions, and to assess progress in improving hypertension care. This study aimed to 94 determine the cascade of hypertension care in 44 LMICs – and its variation between countries 95 and population groups – by dividing the progression from need to successful treatment into 96 discrete stages and measuring the losses at each stage. 97 **Methods:** We pooled individual-level population-based data collected between 2005 and 2016 98 from 44 LMICs. Hypertension was defined as systolic blood pressure (BP) \geq 140 mmHg or 99 diastolic BP \geq 90 mmHg or reporting use of medication for hypertension. Among those with 100 hypertension, we calculated the proportion who had i) ever had their BP measured, ii) been 101 diagnosed, iii) been treated, and iv) achieved control. We disaggregated the hypertension care 102 cascade by age, sex, education, household wealth quintile, body mass index, smoking status, 103 country, and region. We used linear regression to predict – separately for each cascade step – a104 country's performance based on gross domestic product (GDP) per capita, allowing us to identify 105 countries whose performance fell outside of the 95% prediction interval. 106 Findings: 1,100,507 participants were included of whom 192,441 (17.5%) had hypertension. 107 73.6% (95% CI, 72.9 - 74.3) of those with hypertension ever had their BP measured, 39.2%108 (95% CI, 38.2 - 40.3) were diagnosed, 29.9% (95% CI, 28.6 - 31.3) received treatment, and 109 10.3% (95% CI, 9.6 – 11.0) achieved control. Countries in Latin America and the Caribbean 110 generally achieved the highest performance, while those in sub-Saharan Africa performed worst. 111 Bangladesh, Brazil, Costa Rica, Ecuador, Kyrgyzstan, and Peru performed significantly better on

112 all care cascade steps than predicted based on GDP per capita. Being a woman, older, more 113 educated, wealthier, and not a current smoker were all positively associated with reaching each 114 of the four steps of the care cascade. 115 **Interpretation:** This study provides critical evidence for the design and targeting of health 116 policies and service interventions for hypertension in LMICs by detailing at what step and for 117 whom there are gaps in the care process in each study country. In addition, we have identified 118 countries that perform better than expected based on their economic development in a diversity 119 of world regions, which can guide policy decisions. Given the high disease burden caused by 120 hypertension in LMICs, nationally representative hypertension care cascades as constructed in 121 this study could be used as an important tracer of effective universal health coverage.

122 **Funding:** Harvard McLennan Family Fund

123 **Research in context**

124 Evidence before this study: We searched MEDLINE from January 1966 until January 2019 for 125 studies with variations of the words 'hypertension', 'screened', 'aware', 'treated', and 126 'controlled' in the title or abstract. To date, the largest study of individual-level data to compare 127 hypertension awareness, treatment, and control between low- and middle-income countries 128 (LMICs) - and examine how these indicators vary among population groups within countries -129 was the Prospective Urban Rural Epidemiology (PURE) Study. However, the PURE study was 130 based on a convenience – rather than random – sample of communities, used data from 2003 to 131 2009, and included only 14 LMICs.

132 Added value of this study: This is the first study based on nationally representative samples of 133 adults in LMICs to determine where in the hypertension care process patients are lost, and how 134 this varies between and within countries. We make four key additions to the current evidence 135 base. First, we quantify for each of 44 LMICs the loss of individuals with hypertension at each 136 step of the hypertension care cascade, which can guide national policy makers in whether to 137 prioritise efforts to improve screening, diagnosis, initiation of treatment, or medication adherence 138 and care retention. Second, we examine how the hypertension care cascade varies within LMICs 139 between different population groups, providing important information on possible target groups 140 for relevant interventions. Third, by benchmarking countries' performance against their Gross 141 Domestic Product (GDP) per capita, this analysis identifies countries that performed better than 142 expected based on their wealth and thus likely hold valuable policy lessons for countries at a 143 similar level of economic development. Lastly, this study provides a benchmark of health system 144 performance for managing hypertension in LMICs against which future progress can be 145 compared.

146 Implications of all the available evidence: The proportion of adults with hypertension lost at 147 each step of the hypertension care cascade varied widely between countries, with male, younger, 148 less educated, less wealthy, and currently smoking adults generally being less likely to reach 149 each cascade step. While the proportion who achieved control was low in all four regions 150 examined, countries in Latin America and the Caribbean had, on average, the best care cascade 151 indicators whereas countries in sub-Saharan Africa tended to have the lowest performance. Well-152 designed and targeted interventions to improve hypertension care in LMICs are urgently needed. 153 More research is required to understand why some LMICs achieve substantially better 154 hypertension care cascade indicators than others and how the hypertension care cascade can be 155 improved most effectively in different settings.

156 **Introduction**

Hypertension is a major risk factor for several common non-communicable diseases (NCDs) in
low- and middle-income countries (LMICs), particularly stroke, heart disease, and chronic
kidney disease.¹ The prevalence of hypertension is increasing dramatically in LMICs.² In fact,
the world regions with the highest hypertension prevalence are now thought to be sub-Saharan
Africa, South Asia, and Central and Eastern Europe – all regions that are largely comprised of
LMICs.²

163

Evidence regarding where in the hypertension care continuum from screening to successful 164 165 treatment patients are lost to care, and how these patterns vary between and within countries, is 166 essential to designing effective health services interventions to improve hypertension control. In 167 addition, assessing the success of health systems in managing important – yet inexpensively treatable – NCD risk factors, like hypertension,³ would be a useful measure of health system 168 169 performance that could feasibly be tracked as part of national and international targets, such as the move towards universal health coverage.⁴ Specifically, as LMICs undergo the 170 171 epidemiological transition from acute communicable to chronic non-communicable diseases, 172 such a health system performance measure could help track countries' progress in shifting health 173 services away from mainly providing episodic care for acute conditions towards furnishing long-174 term, person-centred care for chronic conditions.

175

Estimates of health system performance for hypertension from population-based studies in
LMICs are sparse.⁵ This dearth of evidence – along with the projected rapid rise in the number of
people with hypertension in these settings⁶ – was the main reason for this collaboration's focus

on LMICs rather than high-income countries. In an effort to inform the design of health services
interventions and provide a cross-country comparison of health system performance for
managing hypertension, this study aimed to i) determine where patients in LMICs are lost to care
along the hypertension management continuum, and ii) how these patterns vary among countries
and population groups within countries.

184

185 Methods

186 Data sources:

187 We requested access to the most recent nationally representative World Health Organisation 188 (WHO) Stepwise Approach to Surveillance (STEPS) survey conducted since 2005 for all 189 countries that were, as per the World Bank, a LMIC at the time of the survey. This search led to 190 access to the individual-level data of 22 surveys (Figure S1). We preferred STEPS surveys 191 because they use the same standardised questionnaire, tend to sample a wide age range of adults, 192 and are the official method developed by the WHO for monitoring NCD risk factors at the population level.⁷ For LMICs for which we were unable to acquire an eligible STEPS survey, we 193 194 conducted a systematic search (Text S1), which led to the inclusion of an additional 22 survey 195 datasets (Figure S2). Detailed information on the sampling strategy of each survey is provided in 196 Text S2. Forty countries measured BP using a digital upper arm meter, two using a digital wrist 197 meter, and two using a manual mercury sphygmomanometer (Table S1). Thirty-five countries 198 measured BP three times, five two times, three two times with a third measurement if the first 199 two differed by a pre-defined margin, and one (the Seychelles) five times.

200

201 **Definition of hypertension:**

Hypertension was defined as systolic BP \geq 140mmHg or diastolic BP \geq 90mmHg or reporting use of medications for hypertension. For participants with three BP measurements, we used the mean of the last two measurements (last four for the Seychelles); for participants with only two measurements, we computed the mean of both available measurements.

We computed the percentage of all those with hypertension who had ever received a BP

206

208

207 **Constructing the hypertension care cascade:**

209 measurement ('ever measured' [step 1]), had been diagnosed with hypertension by a healthcare 210 provider ('diagnosed' [step 2]), were currently taking anti-hypertensive medication ('treated' [step 3]), and had a normal BP (systolic BP <140mmHg and a diastolic BP <90mmHg) plus 211 212 reported to have received relevant lifestyle advice and/or to be taking anti-hypertensive 213 medication ('controlled' [step 4]). In supplementary analyses, we show all results when defining 214 'treated' as having received relevant lifestyle advice or taking anti-hypertensive medication. 215 More detail on the computation of the care cascade is provided in Text S3. 216 217 **Statistical analysis:** 218 None of the analyses presented in this manuscript were pre-specified. Countries were categorised 219 according to the regional groupings of the WHO regional offices whereby the European and 220 Eastern Mediterranean Region as well as the South-East Asia and Western Pacific Region were 221 merged to avoid having only two countries with data in a region. All analyses accounted for the 222 complex survey design using sampling weights. Our primary analyses weighted each country proportional to its population size in 2015.⁸ In supplementary analyses, we show all results when 223 224 assigning the same weight to each country.

225

226	We plotted the proportion of participants with hypertension in a country who reached each step
227	of the care cascade against countries' Gross Domestic Product (GDP) per capita (in constant
228	2011 international dollars as estimated by the World Bank ⁹) in the year of data collection for the
229	survey to ascertain health system performance relative to a country's wealth. In addition, we
230	regressed – separately for each cascade step – the proportion of participants with hypertension
231	who reached the given step on sex, ten-year age group, education, household wealth quintile,
232	BMI group (BMI<18.5kg/m ² [underweight], 18.5≤BMI<25.0kg/m ² [normal weight],
233	25.0 ≤ BMI < 30.0 kgm ² [overweight], and BMI ≥ 30.0 kg/m ² [obese]), and a binary indicator for
234	current tobacco smoking. Specifically, we fitted uni- and multi-variable Poisson regressions with
235	a country-level fixed effect adjusting standard errors for clustering at the level of the primary
236	sampling unit. In 20 countries, household wealth quintile was computed based on a principal
237	component analysis of participants' answers to a suite of questions on key household dwelling
238	characteristics and household ownership of durable goods. Fourteen countries did not have these
239	data but did have data on household income, which we used instead to create household wealth
240	quintiles for these surveys. More detail is provided in Text S4. Household wealth, smoking, and
241	BMI data was not available for ten, six, and five countries, respectively (Table S4). These
242	countries were therefore removed from those regressions that included these variables as
243	independent variables. All analyses were complete case analyses.
244	

Ethics: 245

This study received a determination of "not human subjects research" by the institutional reviewboard of the Harvard T.H. Chan School of Public Health on 9 May 2018.

248

249 **Role of the funding source:**

The funder had no role in study design, data collection, data analysis, data interpretation, or writing of the report. PG and LMJ had full access to all the data in the study and had final responsibility for the decision to submit for publication.

253

254 **Results**

255 Sample characteristics:

256 The survey-level median response rate was 90.9% (interquartile range [IQR]: 81.5 – 95.6)

257 (Table 1). Among those interviewed, the percentage of participants with a missing outcome (BP

or response to the first cascade step) ranged from 0.0% in Belize, Romania, and the Seychelles to

259 30.2% in Mexico, whereby the survey-level median was 2.3% (IQR: 0.6 – 8.6). 1,100,507

260 participants with a non-missing outcome were included in the analysis. The survey-level median

age among these participants was 39.5 years (IQR: 34.8 – 44.5). 192,441 (17.5%) participants

had hypertension. Detailed sample characteristics are shown in **Table S2-4**.

263

264 The hypertension care cascade by country and region:

265 The prevalence of hypertension and undiagnosed hypertension by country and ten-year age

266 group is shown in **Table S5**. Among those with hypertension, 73.6% (95% CI, 72.9 – 74.3) ever

had their BP measured, 39.2% (95% CI, 38.2 – 40.3) had been diagnosed prior to the survey,

268 29.9% (95% CI, 28.6 - 31.3) were treated, and 10.3% (95% CI, 9.6 - 11.0) had achieved control

of their hypertension (Figure S3). 31.7% (95% CI, 30.6 - 32.7) of those with hypertension had

- 270 received relevant lifestyle or took anti-hypertensive medication (Figure S4). The estimates for
- each cascade step were similar when assigning an equal weight to each country (Figure S5-6).

- Figure S7-10 shows the care cascade disaggregated by ten-year age group. The hypertension
 care cascade for each country is shown in Figure S11-12.
- 274

275 Out of the four world regions examined, Latin America and the Caribbean had the best care 276 cascade indicators, while sub-Saharan Africa had the worst (Figure 1 and Table S6-7). Fewer 277 than five percent of those with hypertension had achieved control in ten of 16 countries (63%) in 278 sub-Saharan Africa, compared to three of eight (38%) in South-East Asia and the Western 279 Pacific, one of ten (10%) in Europe and the Eastern Mediterranean, and zero of 10 countries 280 (0%) in Latin America and the Caribbean (Table S8). Within regions, there was substantial 281 variation among countries with Costa Rica being the best-performing country for each cascade 282 step in Latin America and the Caribbean. Other high-performing countries – relative to other 283 countries in their region - were Bangladesh, Namibia, and Romania. The relative differences 284 between regions and countries were similar when defining treatment as receiving lifestyle advice 285 or taking anti-hypertensive medication (Figure S13), weighting countries equally (Figure S14-286 15), and disaggregating the care cascade in each region by ten-year age group (Figure S16-17). 287

207

288 The hypertension care cascade by Gross Domestic Product per capita:

GDP per capita was positively associated with a country's performance for each cascade step
(Figure 2). Countries that performed substantially better on all cascade steps than predicted
based on their GDP per capita in the year of the survey were Bangladesh, Brazil (excluding the
first step as the 95% prediction interval at Brazil's GDP per capita included perfect performance
for 'ever measured'), Costa Rica, Ecuador, Kyrgyzstan, and Peru ('ever measured' was not
assessed in Kyrgyzstan and Peru). Countries that performed significantly worse on all cascade

steps than expected based on GDP per capita were Albania ('ever measured' was not assessed),
Indonesia ('ever measured' was not assessed), Tanzania, Uganda, and South Africa. These
results were similar when defining treatment as receiving lifestyle advice or taking antihypertensive medications (Figure S18), and when examining hypertension care cascade
indicators by GDP per capita separately for each ten-year age group (Figure S19-22).

300

301 Individual-level predictors of cascade progression:

302 Being a woman, in an older age group, and in a higher household wealth quintile were all 303 associated with a higher probability of reaching each cascade step in both uni- and multi-variable 304 regressions (Table 2). In addition, except for the controlled step in the multi-variable regression, 305 being overweight or obese was associated with a higher probability of reaching each cascade step 306 in all regressions. Furthermore, we found that i) higher educational attainment was positively 307 associated with reaching each cascade step once adjusted for age and sex; ii) current smokers had 308 a lower probability of reaching each cascade step than those who did not currently smoke; and 309 iii) being obese was associated with a higher RR of reaching each cascade step (with the 310 exception of the controlled step in the multi-variable regression) than being overweight. The 311 positive associations with education were strongest in low-income countries and weakest in 312 upper middle-income countries (**Table S9**). By region, these positive associations with education 313 were generally strongest in sub-Saharan Africa, and did not exist - or were significant in the 314 negative direction in some regression models – in the Europe and Eastern Mediterranean region 315 (**Table S10**). All regression results were similar when assigning the same weight to each country 316 (Table S11-13).

317

Stratifying the percent of participants with hypertension who reached each cascade step by sex, age group, and education (**Figure 3**) demonstrates that i) the proportion achieving control was less than 20% in all age and education group combinations; ii) in each educational attainment category, less than half were diagnosed in age groups below 55 years; and iii) women had a higher probability of reaching each cascade step than men in virtually all age and education group combinations.

324

325 **Discussion**

326 Overall, the performance of health systems in LMICs for managing hypertension was poor, with 327 less than half of those with hypertension having been diagnosed, less than a third taking anti-328 hypertensive medications, and only one in ten achieving control. However, there was a large 329 degree of variation among regions and countries. Regionally, Latin America and the Caribbean 330 performed best and sub-Saharan Africa fared worst. Relative to GDP per capita, several 331 countries in Latin America and the Caribbean (Brazil, Costa Rica, Ecuador, and Peru) as well as 332 Bangladesh and Kyrgyzstan performed well. Together, these findings provide an important 333 benchmark of health system performance for managing hypertension in LMICs against which 334 future progress can be compared.

335

Within countries, we found that men were less likely to reach each step of the hypertension care cascade than women, which may be due to multiple factors, such as a focus of primary healthcare services on maternal and child health, gender norms concerning care-seeking, and healthcare facility opening hours. As hypertension care services are strengthened in LMICs, it will be crucial that health systems identify ways of engaging men in hypertension screening and

care to avoid further widening the existing gender gap in life expectancy.¹⁰ In addition, given our 341 342 finding that those who were smokers and with overweight or obesity did generally not have a 343 higher probability of completing the hypertension cascade, it will be important for hypertension 344 services in LMICs to more consistently reach and retain those at the highest CVD risk. Lastly, 345 we observed that individuals with lower education and household wealth were generally more 346 likely to be lost to care prior to completion of the cascade. This finding is especially concerning 347 given that those of a lower socioeconomic status are likely less able to access high-quality care for, and more likely to experience catastrophic healthcare expenditures from, CVD events.¹¹ 348 349 More optimistically, however, our findings also imply that well-designed investments in 350 improving hypertension care present an opportunity to reduce health inequalities between 351 socioeconomic groups in LMICs.

352

353 Relative to their GDP per capita, countries that performed particularly well in our analysis 354 included Costa Rica, Kyrgyzstan, and Bangladesh, implying that important lessons could be 355 learned from the approaches adopted by these health systems. We briefly outline three possible 356 reasons that may partially explain these countries' comparatively strong performance. First, they 357 have all established primary healthcare system structures at a highly local geographic level. 358 Costa Rica's EBAIS clinics each serve a population of 4,000 people and offer a full range of primary care and health promotion services.¹² Similarly, Kyrgyzstan has established family 359 group practices that provide comprehensive primary healthcare, with each practice serving a 360 village of at least 2,000 inhabitants.¹³ Bangladesh has invested since 2009 in the establishment of 361 362 approximately 14,000 community clinics, which are tasked with providing hypertension and diabetes screening.¹⁴ In addition, it has an extensive presence of informal providers, licensed and 363

unlicensed drug stores, and non-governmental organisations throughout the country,¹⁵ which are 364 365 likely also playing an important role in meeting the population's demand for NCD care at a local 366 level. Second, the health systems of Costa Rica and Kyrgyzstan have implemented structures that 367 allow for effective community outreach for NCDs. Each of Costa Rica's community clinics 368 include at least one community health worker (CHW) who measures BP during home visits and follows up at home with patients lost from care.^{16,17} In addition, CHWs in Costa Rica hold health 369 370 promotion sessions - including on CVD prevention - in community settings, which can help in 371 the generation of demand for care. Kyrgyzstan has established village health committees, which 372 consist of volunteers who were trained by primary healthcare staff to provide basic health promotion and care services, including for hypertension.¹³ While Bangladesh has several large-373 scale CHW programmes,¹⁸ these mostly do not yet focus on NCDs.¹⁸ However, moving forward, 374 375 the existence of these large-scale CHW programmes presents an important opportunity for the 376 country to further improve hypertension and NCD care. Third, anti-hypertensive medications are 377 generally both available and affordable in all three countries, which is not the norm in many LMICs.¹⁹ In Costa Rica, these medications are fully covered under the Costa Rican social 378 379 security fund and widely available at primary care facilities.¹⁷ In Kyrgyzstan, a 2015 survey found that key anti-hypertensive medications were widely available and generally affordable to 380 the local population.²⁰ Similarly, in Bangladesh, the PURE study found that calcium-channel 381 382 blockers and ß-blockers were available in 43 and 49 of 55 communities, respectively, and only 7% of sampled households were unable to afford at least one type of anti-hypertensive 383 medication.²¹ 384

385

386 While the hypertension care cascade is a useful measure of health system performance in 387 LMICs, there are important contextual factors beyond the health system that likely are 388 responsible for some of the differences in the success of hypertension management that we 389 observed between and within countries. Perhaps most importantly, the probability of reaching 390 each of the care cascade steps likely is affected by individuals' socioeconomic circumstances, 391 which in turn vary widely between and within countries. For instance, even if care is provided 392 free of charge, time lost from income-generating activities and transport costs can still pose a substantial obstacle to accessing care for those with little income and savings.²² Likewise, 393 394 individuals with a lower educational attainment may be less well-equipped to engage with 395 relevant health promotion messages and to actively negotiate an effective treatment plan with 396 healthcare providers. In addition to socioeconomic circumstances, epidemiological factors may 397 affect the hypertension care cascade. For instance, adults living in populations that are exposed 398 to a high risk of a fatal non-CVD event, such as through infectious diseases, may be less willing 399 to invest time, effort, and money into the prevention of CVD events. Similarly, even though 400 hypertension control can be achieved solely through medications, social and environmental 401 factors that affect BP – such as sodium content of the food supply,²³ air pollution,²⁴ conduciveness of the physical environment to physical activity,²³ and social norms to diet, excess 402 403 weight, and exercise – likely also have an impact on the probability that individuals achieve 404 hypertension control, especially among adults with low medication adherence. 405

This study has several limitations. First and foremost, while many surveys used the same WHO
STEPS questionnaire to enquire about hypertension care and employed a similar approach to
measuring BP, there were some differences in how questions were phrased and translated into

409 local languages, and in how BP was measured (e.g., the exact model of BP meter). This may 410 have affected our estimates and thus be responsible for some of the variation that we observed 411 between countries and regions. Of note, however, is that the core elements of the questions asked 412 about hypertension care were the same across surveys. Second, the age range sampled in each 413 survey varied between countries. We have minimized potential bias from this data constraint by 414 showing each figure that compares countries or regions separately for each ten-year age group 415 (see Figure S7-10, S16-17, and S19-22). Third, while - to our knowledge - this study includes 416 the largest set of LMICs of any study on this topic thus far, the 44 LMICs in this analysis (representing 67% of the population living in LMICs worldwide⁸) are not representative of all 417 418 LMICs globally. Specifically, it is possible that LMICs included in this analysis had better 419 hypertension care indicators because implementing a survey that was eligible for this study may 420 be a sign of a country's commitment to hypertension care. Fourth, the surveys were conducted at 421 different time points. Each country's performance should thus be interpreted as the performance 422 in the given survey year rather than as the country's current performance. To reduce bias from 423 secular trends when comparing countries against each other, we benchmarked performance 424 against each country's GDP per capita in the survey year (rather than current GDP per capita). 425 Fifth, even though the median percentage across countries of missing values for the variables 426 needed to ascertain the hypertension care cascade was only 2.3%, some countries had a 427 substantially higher proportion of participants with a missing outcome variable, which could 428 have resulted in selection bias. Sixth, due to data constraints, we used the same threshold in each 429 survey to define a BP that requires treatment. This approach, thus, ignored that guidelines in use 430 in some countries at the time of the survey may have defined eligibility for anti-hypertensive 431 medications differently, such as based on a global CVD risk or target-organ damage. Lastly,

because we did not include a previous hypertension diagnosis in our definition of hypertension,
we may have falsely excluded some participants with hypertension from our care cascade
analysis. Our hypertension definition, however, is the same as was used in other studies of
hypertension care,²⁵⁻²⁸ and yields conservative estimates for the care cascade under the
assumption that some of those who reported a previous hypertension diagnosis, but had a normal
BP and did not report to be on treatment, did, in fact, not have hypertension.

438

439 This study identified important variation in the hypertension care cascade between and within 440 countries, which can guide governments with regards to the design - such as whether to prioritise 441 efforts to improve screening, diagnosis, treatment initiation, or medication adherence – and 442 target groups of appropriate interventions and reforms. Given that hypertension is a major risk factor for several of the most common causes of death in LMICs,¹ and that the condition can be 443 effectively controlled at a low cost.³ the hypertension care cascade could be used as an important 444 445 tracer of health system performance in LMICs. Improving hypertension care, however, will be a 446 formidable undertaking requiring strong political will and financial commitments.

447

448 **Funding**

LMJ, PG, JMG, and RA received funding from the Harvard McLennan Family Fund. The
corresponding author had full access to the data and had final responsibility for the decision to
submit for publication.

452

453 **Contributors**

PG, JMG, JID, TB, RA, SV, and LMJ co-conceived the study. PG, JMG, MEM, CE, JID, TB,
RA, SV, and LMJ led the data collation. PG, JMG, and LMJ led the data analysis. PG wrote the
first draft of the manuscript and all authors provided critical inputs on multiple iterations. All
authors have approved the final version. PG is the guarantor of the work.

458

459 **Declaration of interests**

460 AS has received a research grant from Johnson & Johnson for work unrelated to this manuscript.

461 All other authors declare no competing interests.

462

463 Acknowledgements

We would like to thank Clare Flanagan, Sarah Frank, Michaela Theilmann, Esther Lim, Yuanwei
Xu, and Jacqueline Seiglie for help with data harmonization and translation of study
documentation. We would also like to thank each of the country-level survey teams and study
participants who made this analysis possible.

468

469 **References**

GBD 2017 Risk Factors Collaborators. Global, regional, and national comparative risk
 assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of
 risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of
 Disease Study 2017. Lancet 2018; 392(10159):1923-1994.

NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from
1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million
participants. Lancet 2017; 389(10064): 37-55.

477 3. Prabhakaran D, Anand S, Watkins D, et al. Cardiovascular, respiratory, and related
478 disorders: key messages from Disease Control Priorities, 3rd edition. Lancet 2018; 391(10126):
479 1224-36.

480 4. Hogan DR, Stevens GA, Hosseinpoor AR, Boerma T. Monitoring universal health
481 coverage within the Sustainable Development Goals: development and baseline data for an index
482 of essential health services. Lancet Global Health 2018; 6(2): e152-e68.

483 5. Ikeda N, Sapienza D, Guerrero R, et al. Control of hypertension with medication: a
484 comparative analysis of national surveys in 20 countries. Bulletin of the World Health
485 Organization 2014; 92(1): 10-9c.

486 6. Sudharsanan N, Geldsetzer P. Impact of Coming Demographic Changes on the Number
487 of Adults in Need of Care for Hypertension in Brazil, China, India, Indonesia, Mexico, and
488 South Africa. Hypertension 2019; 73(4):770-776.

Riley L, Guthold R, Cowan M, et al. The World Health Organization STEPwise
Approach to Noncommunicable Disease Risk-Factor Surveillance: Methods, Challenges, and
Opportunities. American Journal of Public Health 2016; 106(1): 74-8.

- 492 8. United Nations Population Division. World Population Prospects: The 2017 Revision,
 493 Key Findings and Advance Tables. New York, NY: United Nations, 2017.
- 494 9. The World Bank. GDP per capita, PPP (constant 2011 international \$). 2018.
 495 https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD (accessed May 22 2018).
- 496 10. World Health Organisation. World Health Statistics 2018: Monitoring health for the
 497 SDGs. Geneva, Switzerland: World Health Organisation, 2018.
- 498 11. Jan S, Laba TL, Essue BM, et al. Action to address the household economic burden of
 499 non-communicable diseases. Lancet 2018; 391(10134): 2047-58.
- 500 12. Organisation for Economic Co-operation and Development. Costa Rica Evaluación y
 501 recommendaciones. San José, Costa Rica: Ministry of Health of the Republic of Costa Rica and
 502 Organisation for Economic Co-operation and Development, 2019.
- 503 13. Ibraimova A, Akkazieva B, Ibraimov A, Manzhieva E, Rechel B. Kyrgyzstan Health
 504 System Review. Copenhagen, Denmark: World Health Organization, 2011.
- 505 14. Ministry of Health and Family Welfare of the People's Republic of Bangladesh.
 506 Community-based health care 2019. http://www.communityclinic.gov.bd/index.php?id=14
 507 (accessed March 4th 2019).
- 508 15. Ahmed SM, Evans TG, Standing H, Mahmud S. Harnessing pluralism for better health in
 509 Bangladesh. Lancet 2013; 382(9906): 1746-55.
- 510 16. Pesec M, Ratcliffe HL, Karlage A, Hirschhorn LR, Gawande A, Bitton A. Primary
 511 Health Care That Works: The Costa Rican Experience. Health Affairs (Millwood) 2017; 36(3):
 512 531-8.
- 513 17. Pesec M, Ratcliffe HL, Bitton A. Building a thriving primary health care system: The
 514 story of Costa Rica. Boston, MA: Ariadne Labs, 2017.

515 18. El Arifeen S, Christou A, Reichenbach L, et al. Community-based approaches and 516 partnerships: innovations in health-service delivery in Bangladesh. Lancet 2013; 382(9909): 517 2012-26.

518 19. Wirtz VJ, Kaplan WA, Kwan GF, Laing RO. Access to Medications for Cardiovascular
519 Diseases in Low- and Middle-Income Countries. Circulation 2016; 133(21): 2076-85.

520 20. Medicines Transparency Alliance. Medicine Prices, Availability, Affordability in Kyrgyz
521 Republic. Bishkek, Kyrgyz Republic: Medicines Transparency Alliance, 2015.

522 21. Attaei MW, Khatib R, McKee M, et al. Availability and affordability of blood pressure-523 lowering medicines and the effect on blood pressure control in high-income, middle-income, and 524 low-income countries: an analysis of the PURE study data. Lancet Public Health 2017; 2(9): 525 e411-e9.

526 22. Chimbindi N, Bor J, Newell ML, et al. Time and money: the true costs of health care
527 utilization for patients receiving 'free' HIV/TB care and treatment in rural KwaZulu-Natal.
528 Journal of Acquired Immune Deficiency Syndromes 2015; 70(2): e52-60.

529 23. Olsen MH, Angell SY, Asma S, et al. A call to action and a lifecourse strategy to address
530 the global burden of raised blood pressure on current and future generations: the Lancet
531 Commission on hypertension. Lancet 2016; 388(10060): 2665-712.

532 24. Brook RD, Weder AB, Rajagopalan S. "Environmental hypertensionology" – the effects
533 of environmental factors on blood pressure in clinical practice and research. The Journal of
534 Clinical Hypertension 2011; 13(11): 836-42.

535 25. Chow CK, Teo KK, Rangarajan S, et al. Prevalence, awareness, treatment, and control of
536 hypertension in rural and urban communities in high-, middle-, and low-income countries.
537 JAMA 2013; 310(9): 959-68.

- 538 26. Lu J, Lu Y, Wang X, et al. Prevalence, awareness, treatment, and control of hypertension
 539 in China: data from 1.7 million adults in a population-based screening study (China PEACE
 540 Million Persons Project). Lancet 2017; 390(10112): 2549-58.
- 541 27. Falaschetti E, Mindell J, Knott C, Poulter N. Hypertension management in England: a 542 serial cross-sectional study from 1994 to 2011. Lancet 2014; 383(9932): 1912-9.
- 543 28. Wozniak G, Khan T, Gillespie C, et al. Hypertension Control Cascade: A Framework to
- 544 Improve Hypertension Awareness, Treatment, and Control. Journal of Clinical Hypertension
- 545 (Greenwich) 2016; 18(3): 232-9.
- 546 29. Office of Chief Government Statistician Zanzibar. Gross Domestic Product (GDP). 2018.
- 547 http://www.ocgs.go.tz/profile.php (accessed July 11 2018).
- 548 30. National Bureau of Statistics, Ministry of Finance and Planning. National Population
 549 Projections. Dar es Salaam, Tanzania: Office of the Chief Government Statistician, 2018.
- 550
- 551

552 Figure legends

- 553 Figure 1. The hypertension care cascade by region^{1,2}
- ⁵⁵⁴ ¹ Vertical error bars are 95% confidence intervals.
- ² Individual points depict the point estimate for each country.
- 556 Abbreviations: S.E. Asia=South-East Asia; W. Pacific = Western Pacific; ALB=Albania;
- 557 AZE=Azerbaijan; BGD=Bangladesh; BLZ=Belize; CRI=Costa Rica; IDN=Indonesia;
- 558 KAZ=Kazakhstan; KGZ=Kyrgyz Republic; LSO=Lesotho; MEX=Mexico; MNG=Mongolia
- 559 MOZ=Mozambique; NAM=Namibia; NPL=Nepal; PER=Peru; ROU=Romania;
- 560 SYC=Seychelles; TLS=Timor-Leste; UGA=Uganda; ZAN=Zanzibar
- 561
- 562 Figure 2. Hypertension care cascade indicators by GDP per capita^{1,2,3,4,5,6}
- ¹ Gross Domestic Product per capita is shown in constant 2011 international dollars for the year
- in which the survey was carried out.
- 2 The grey ribbon depicts the point-wise 95% prediction interval.
- ³ The vertical bars depict 95% confidence intervals.
- ⁴ The p-values for the coefficients of the linear regressions of each cascade step onto GDP per
- 568 capita (with each country having the same weight) were <0.001 except for 'Controlled'
- 569 (p=0.0014)
- ⁵Country labels are not shown for the following countries in the "controlled" plot to avoid over-
- 571 crowding: Benin, Burkina Faso, Comoros, Ghana, Kenya, Liberia, Mozambique, Nepal,
- 572 Tanzania, Timor-Leste, Togo, and Uganda.
- ⁶ The figure is shown separately for each ten-year age group in Figure S19-22.
- 574

575	Abbreviations: A	LB=Albania;	AZE=Azerbaijan;	BEN=Benin;	BFA=Burkina	Faso:

- 576 BGD=Bangladesh; BLZ=Belize; BRA=Brazil; BTN=Bhutan; CHL=Chile; CHN=China;
- 577 COM=Comoros; CRI=Costa Rica; ECU=Ecuador; EGY=Egypt; GDP=Gross Domestic Product;
- 578 GEO=Georgia; GHA=Ghana; GRD=Grenada; GUY=Guyana; IDN=Indonesia; IND=India;
- 579 KAZ=Kazakhstan; int=international; KEN=Kenya; KGZ=Kyrgyzstan; LBN=Lebanon;
- 580 LBR=Liberia; LSO=Lesotho; MEX=Mexico; MNG=Mongolia; MOZ=Mozambique;
- 581 NAM=Namibia; NPL=Nepal; PER=Peru; ROU=Romania; RUS=Russian Federation;
- 582 SWZ=Swaziland; SYC=Seychelles; TGO=Togo; TLS=Timor-Leste; TZA=Tanzania;
- 583 UGA=Uganda; UKR=Ukraine; VCT=St. Vincent & the Grenadines; ZAF=South Africa;
- 584 ZAN=Zanzibar
- 585
- Figure 3. The percent of participants with hypertension reaching each cascade step stratified by
 sex, age group, and education.^{1,2,3}
- ¹ The colour gradient and the numbers in each cell of the figure display the same point estimates.
- ² 'Primary school' refers to having received some primary schooling or having completed
- 590 primary school.
- ³ 'High school or above' refers to having received some secondary schooling, having completed
- secondary school, or having received some type of tertiary education.
- 593

Country	Year ³	Response rate (%) ⁴	Missing outcome ⁵ (%)	Sample size	Hypertensive, n (%)	Median age (y)	Age range (y)	Female (%)	GDP per capita ⁶	Population in 2015 (thousands)
Latin America a	nd the Caril	bbean								
Belize	2005/06	92.6	0.0	2,434	695 (28.6)	44	20-97	59.0	7,947	359
Brazil	2013	86.0	10.6	57,466	17,517 (30.5)	41	18-101	56.5	15,430	205,962
Chile	2009/10	85.0	8.4	4,851	1,497 (30.9)	46	15-100	59.8	18,995	17,763
Costa Rica	2010	87.8	0.6	3,607	1,291 (35.8)	47	18-110	72.0	13,000	4,808
Ecuador	2012	81.5	19.8	29,659	2,834 (9.6)	34	20-59	58.7	10,322	16,144
Grenada	2011/12	67.8	2.8	1,097	460 (41.9)	44	24-64	59.9	11,249	107
Guyana	2016	66.7	0.6	2,640	776 (29.4)	40	18-69	59.9	7,266	769
Mexico	2009- 12	90.0	30.2	20,946	5,066 (24.2)	35	15-99	56.6	15,668	125,891
Peru	2012	94.3 ⁷	5.3	29,415	7,771 (26.4)	54	40-96	52.6	10,944	31,377
St. Vincent & the Grenadines	2013	67.8	0.4	3,457	1,056 (30.5)	42	18-70	55.9	10,193	109
<i>Europe and the</i> Albania	2008	95.4	4.3	6,380	1,494 (23.4)	33	15-49	55.2	9,154	2,923
Azerbaijan	2006	83.3	0.4	10,486	1,712 (16.3)	32	15-59	75.9	10,711	9,617
Egypt	2015	95.0	0.5	14,790	2,476 (16.7)	33	15-59	53.0	10,096	93,778
Georgia	2016	75.7	4.2	4,034	1,800 (44.6)	50	17-70	70.4	9,277	3,952
Kazakhstan	2012	93.0	13.8	10,901	2,995 (27.5)	43	15-90	57.3	21,987	17,750
Kyrgyzstan	2012	96.5	2.5	9,422	852 (9.0)	29	15-49	75.5	2,870	5,865
Lebanon	2008/09	62.0	1.2	2,800	841 (30.0)	37	18-95	52.9	15,193	5,851
Romania	2015/16	69.1	0.0	1,970	611 (31.0)	47	18-80	52.5	21,080	19,877
Russia	2007/08	61.4	2.7	4,209	2,696 (64.1)	62	18-100	64.2	24,006	143,888
Ukraine	2007	81.5	17.9	7,932	2,013 (25.4)	33	15-49	68.4	8,497	44,658
South-East Asia	and the We	stern Pacific								
Bangladesh	2011	95.0	10.4	7,593	2,052 (27.0)	48	35-96	49.5	2,571	161,201
Bhutan	2014	96.9	0.2	2,814	1,107 (39.3)	39	18-69	61.9	7,366	787
China	2009	88.0^{8}	9.3	9,752	2,842 (29.1)	50	15-99	52.5	8,652	1,397,029
India	2015/16	96.0	2.0	742,838	98,451 (13.3)	30	15-54	85.6	5,924	1,309,054
Indonesia	2014	83.0	0.7	32,492	7,882 (24.3)	35	15-110	53.2	10,003	258,162
Mongolia	2009	95.0	0.4	5,420	1,719 (31.7)	36	15-65	40.8	7,368	2,977
Nepal	2013	98.6	0.5	4,124	1,211 (29.4)	40	15-69	67.8	2,164	28,656

Table 1. Survey characteristics by region^{1,2}

Timor-Leste	2014	96.3	1.6	2,568	713 (27.8)	40	18-69	58.5	1,888	1,241
Sub-Saharan Aj	frica									
Benin	2008	99.0	0.3	3,799	1,218 (32.1)	42	15-65	51.5	1,841	10,576
Burkina Faso	2013	97.8	15.1	3,993	713 (17.9)	36	25-64	53.9	1,562	18,111
Comoros	2011	96.5	1.4	5,381	1,443 (26.8)	39	25-64	71.2	1,415	777
Ghana	2007/08	79.4	9.6	5,030	2,677 (53.2)	60	18-110	46.7	2,760	27,583
Kenya	2015	95.0	1.4	4,408	1,188 (27.0)	35	18-69	60.2	2,836	47,236
Lesotho	2014	90.8	3.9	5,690	989 (17.4)	27	15-59	52.6	2,677	2,175
Liberia	2011	87.1	1.7	2,482	719 (29.0)	36	24-64	57.9	734	4,500
Mozambique	2005	98.3	7.0	3,073	1,102 (35.9)	38	25-64	58.4	742	28,011
Namibia	2013	96.9	17.9	3,617	1,543 (42.7)	46	35-64	57.6	9,256	2,426
Seychelles	2013	73.0	0.0	1,240	413 (33.3)	47	25-64	57.2	24,791	94
South Africa	2012	39.8	3.6	6,317	2,644 (41.9)	39	15-98	64.9	12,215	55,291
Swaziland	2014	81.8	9.9	3,183	948 (29.8)	33	15-70	65.1	7,871	1,319
Tanzania	2012	94.7	1.2	5,636	1,737 (30.8)	40	23-65	53.8	2,228	53,880
Togo	2010	91.0	3.7	4,190	846 (20.2)	32	15-64	52.0	1,208	7,417
Uganda	2014	99.0	2.1	3,904	983 (25.2)	33	18-69	59.8	1,637	40,145
Zanzibar	2011	91.0	0.7	2,467	848 (34.4)	40	24-64	61.6	1,3189	1,441 ¹⁰
Total	-	$90.9^{11} (81.5 - 95.6)^{12}$	$2.3^{11} (0.6 - 8.6)^{12}$	1,100,507 ¹³	192,441 ¹³ (29.3 ¹¹)	$39.5^{11} \\ (34.8 - 44.5)^{12}$	-	58.2^{11} (53.2 - 62.5) ¹²	$8,222^{11}$ (2,651 – 11,491) ¹²	4,177,630 ¹³

Abbreviations: n=number; y=years; GDP=Gross Domestic Product. ¹ Values are unweighted (i.e., do not account for the complex survey design).

² Except for the percent missing, all values were calculated among those with a non-missing outcome variable (i.e., no missing BP measurement or questionnaire answer needed to calculate the hypertension cascade). ³ Years in which the data collection for the survey was carried out. ⁴ This includes both the household and the individual response rate.

⁵ This is the percent of participants for whom the blood pressure measurement was missing or a who had a missing response for the survey question needed to ascertain whether the participant had reached the first step of the country's hypertension care cascade.

⁶ This is the GDP per capita in constant 2011 international dollars (as estimated by the World Bank⁹) for the year in which data was collected for the survey.
⁷ This is the response rate among women; the men's response rate in Peru was not available.
⁸ This is the response rate for the 2006 wave of the survey (the most recent wave for which a response rate was published).
⁹ This is the GDP per capita in constant 2007 international dollars using data from the Office of the Chief Government Statistician of Zanzibar.²⁹

¹⁰ The population estimate for Zanzibar was taken from the Tanzania Population Projection Report 2013-2035.³⁰

¹¹ This is the median value with each country having the same weight.

¹² This is the interquartile range.

¹³ This is the sum across all countries.

ti-variable regressions of		Diagnaga	A	Treated		Controlled		
Ever BP measured		Diagnose			D			
RR	P	RR	P	RR	P	RR	P	
							r	
1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		
1.16 (1.14-1.18)	< 0.001	1.39 (1.33-1.46)	< 0.001	1.50 (1.41-1.58)	< 0.001	1.69 (1.53-1.87)	< 0.001	
1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		
1.39 (1.33-1.46)	< 0.001	1.51 (1.30-1.74)	< 0.001	1.47 (1.22-1.77)	< 0.001	1.09 (0.88-1.36)	0.426	
1.52 (1.46-1.60)	< 0.001	2.18 (1.93-2.47)	< 0.001	2.24 (1.94-2.57)	< 0.001	1.27 (1.09-1.48)	0.002	
1.57 (1.50-1.65)	< 0.001	3.14 (2.79-3.52)	< 0.001	3.51 (3.08-4.00)	< 0.001	1.67 (1.44-1.92)	< 0.001	
1.57 (1.50-1.64)	< 0.001	3.87 (3.43-4.36)	< 0.001	4.78 (4.17-5.49)	< 0.001	2.15 (1.81-2.55)	< 0.001	
1.56 (1.48-1.64)	< 0.001	4.21 (3.72-4.76)	< 0.001	5.42 (4.72-6.22)	< 0.001	2.10 (1.76-2.51)	< 0.00	
				· · · · · · · · · · · · · · · · · · ·				
1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		
	< 0.001		0.454		0.462		0.807	
	< 0.001		0.014		0.003		0.322	
		· · · · · · · · · · · · · · · · · · ·		· · · · /				
1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		
	< 0.001		0.021		0.024		0.075	
				· · · · · · · · · · · · · · · · · · ·			0.596	
							0.026	
				· · · · · · · · · · · · · · · · · · ·			< 0.001	
0.82 (0.78-0.85)	< 0.001	0.85 (0.75-0.96)	0.009	0.86 (0.72-1.02)	0.085	0.89 (0.72-1.10)	0.265	
				· · · · · · · · · · · · · · · · · · ·				
	< 0.001		< 0.001		< 0.001		0.730	
	< 0.001		< 0.001	· · · · · · · · · · · · · · · · · · ·	< 0.001		0.007	
		((
1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		
	<0.001	· /	<0.001		<0.001		< 0.00	
	1.16 (1.14-1.18) 1.00 (Ref.) 1.39 (1.33-1.46) 1.52 (1.46-1.60) 1.57 (1.50-1.65)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RRPRR1.00 (Ref.)1.00 (Ref.)1.16 (1.14-1.18)<0.001	RRPRRP $1.00 (Ref.)$ $1.00 (Ref.)$ $1.39 (1.33-1.46)$ <0.001 $1.00 (Ref.)$ $1.39 (1.33-1.46)$ <0.001 $1.39 (1.33-1.46)$ <0.001 $1.39 (1.33-1.46)$ <0.001 $1.51 (1.30-1.74)$ <0.001 $1.52 (1.46-1.60)$ <0.001 $2.18 (1.93-2.47)$ <0.001 $1.57 (1.50-1.65)$ <0.001 $3.14 (2.79-3.52)$ <0.001 $1.57 (1.50-1.64)$ <0.001 $3.87 (3.43-4.36)$ <0.001 $1.56 (1.48-1.64)$ <0.001 $4.21 (3.72-4.76)$ <0.001 $1.00 (Ref.)$ $1.00 (Ref.)$ $0.97 (0.91-1.04)$ 0.454 $1.13 (1.11-1.16)$ <0.001 $0.97 (0.91-1.04)$ 0.454 $1.12 (1.09-1.14)$ <0.001 $1.12 (1.02-1.23)$ 0.021 $1.18 (1.15-1.21)$ <0.001 $1.10 (1.00-1.20)$ 0.053 $1.26 (1.23-1.30)$ <0.001 $1.31 (1.20-1.44)$ <0.001 $0.82 (0.78-0.85)$ <0.001 $1.21 (1.15-1.28)$ <0.001 $1.00 (Ref.)$ $1.00 (Ref.)$ $1.00 (Ref.)$ $1.00 (Ref.)$ $1.16 (1.14-1.18)$ <0.001 $1.21 (1.15-1.28)$ <0.001 $1.00 (Ref.)$ $1.00 (Ref.)$ $1.00 (Ref.)$ <0.001 $1.00 (Ref.)$ $1.00 (Ref.)$ <0.001 $1.54 (1.43-1.66)$ 0.001 $1.54 (1.43-1.66)$ <0.001	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Table 2. Uni- and multi-variable regressions of each cascade step onto individual-level predictors¹

Multi-variable regression with age group, sex, and education ⁵											
Sex											
Male	1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)				
Female	1.20 (1.18-1.23)	< 0.001	1.40 (1.33-1.47)	< 0.001	1.50 (1.42-1.59)	< 0.001	1.78 (1.61-1.98)	< 0.001			
Age group											
15-24 years	1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)				
25-34 years	1.42 (1.36-1.49)	< 0.001	1.50 (1.30-1.73)	< 0.001	1.46 (1.22-1.76)	< 0.001	1.08 (0.87-1.35)	0.468			
35-44 years	1.57 (1.50-1.65)	< 0.001	2.12 (1.87-2.41)	< 0.001	2.15 (1.87-2.48)	< 0.001	1.23 (1.05-1.43)	0.010			
45-54 years	1.66 (1.58-1.74)	< 0.001	3.14 (2.79-3.54)	< 0.001	3.49 (3.06-3.99)	< 0.001	1.68 (1.45-1.95)	< 0.001			
55-64 years	1.66 (1.58-1.74)	< 0.001	3.95 (3.48-4.48)	< 0.001	4.86 (4.22-5.60)	< 0.001	2.22 (1.85-2.66)	< 0.001			
≥65 years	1.68 (1.59-1.77)	< 0.001	4.45 (3.90-5.08)	< 0.001	5.74 (4.96-6.64)	< 0.001	2.31 (1.90-2.82)	< 0.001			
Education											
No schooling	1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)				
Primary school ³	1.14 (1.11-1.17)	< 0.001	1.14 (1.06-1.23)	< 0.001	1.18 (1.08-1.29)	< 0.001	1.22 (1.03-1.46)	0.024			
\geq High school ⁴	1.26 (1.23-1.30)	< 0.001	1.33 (1.24-1.42)	< 0.001	1.39 (1.27-1.51)	< 0.001	1.59 (1.34-1.88)	< 0.001			

Multi-variable regressions with all predictor variables⁶

Multi-variable regressions	with all predictor	variables ^o						
Sex								
Male	1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)	
Female	1.16 (1.14-1.18)	< 0.001	1.26 (1.19-1.34)	< 0.001	1.31 (1.22-1.42)	< 0.001	1.54 (1.35-1.76)	< 0.001
Age group								
15-24 years	1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)	
25-34 years	1.33 (1.27-1.39)	< 0.001	1.29 (1.09-1.53)	0.003	1.16 (0.93-1.44)	0.187	0.95 (0.73-1.23)	0.698
35-44 years	1.42 (1.36-1.49)	< 0.001	1.73 (1.49-2.01)	< 0.001	1.61 (1.37-1.89)	< 0.001	1.03 (0.85-1.23)	0.790
45-54 years	1.50 (1.44-1.57)	< 0.001	2.61 (2.27-3.01)	< 0.001	2.67 (2.30-3.10)	< 0.001	1.40 (1.18-1.67)	< 0.001
55-64 years	1.47 (1.40-1.54)	< 0.001	3.46 (2.96-4.06)	< 0.001	3.92 (3.31-4.64)	< 0.001	2.01 (1.60-2.53)	< 0.001
≥65 years	1.47 (1.40-1.54)	< 0.001	4.02 (3.42-4.73)	< 0.001	4.76 (4.01-5.63)	< 0.001	2.11 (1.65-2.69)	< 0.001
Education								
No schooling	1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)	
Primary school ³	1.08 (1.05-1.11)	< 0.001	1.06 (0.97-1.16)	0.179	1.09 (0.98-1.21)	0.128	1.13 (0.90-1.43)	0.279
\geq High school ⁴	1.11 (1.09-1.14)	< 0.001	1.16 (1.06-1.27)	0.001	1.17 (1.05-1.31)	0.005	1.33 (1.06-1.66)	0.013
Household wealth quintile								
1 (poorest)	1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)	
2	1.09 (1.06-1.12)	< 0.001	1.11 (1.00-1.23)	0.051	1.13 (1.00-1.27)	0.054	1.15 (0.91-1.44)	0.242
3	1.14 (1.11-1.18)	< 0.001	1.08 (0.98-1.19)	0.119	1.12 (0.99-1.26)	0.071	1.00 (0.80-1.26)	0.993
4	1.20 (1.16-1.24)	< 0.001	1.18 (1.07-1.30)	0.001	1.25 (1.11-1.41)	< 0.001	1.17 (0.93-1.48)	0.186
5 (richest)	1.27 (1.23-1.31)	< 0.001	1.28 (1.16-1.41)	< 0.001	1.36 (1.21-1.53)	< 0.001	1.56 (1.23-1.96)	< 0.001
BMI								
Underweight	0.88 (0.84-0.91)	< 0.001	0.84 (0.72-0.98)	0.030	0.83 (0.68-1.01)	0.057	0.87 (0.69-1.11)	0.263

Normal weight	1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)	
Overweight	1.08 (1.06-1.10)	< 0.001	1.19 (1.12-1.27)	< 0.001	1.20 (1.11-1.30)	< 0.001	0.97 (0.83-1.13)	0.655
Obese	1.11 (1.09-1.13)	< 0.001	1.47 (1.37-1.59)	< 0.001	1.58 (1.45-1.72)	< 0.001	1.01 (0.86-1.20)	0.873
Tobacco smoking								
Not currently smoking	1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)		1.00 (Ref.)	
Currently smoking	0.94 (0.92-0.97)	< 0.001	0.93 (0.86-1.00)	0.048	0.87 (0.79-0.96)	0.006	0.74 (0.62-0.89)	0.001

 Currently smoking
 0.94 (0.92-0.97)
 <0.001</td>
 0.93 (0.86-1.00)
 0.048
 0.87 (0.79-0.96)
 0.006
 0.74 (0.62-0.89)
 0.001

 Abbreviations: BP=blood pressure; RR=Risk Ratio; P=P-value; Ref=reference category;
 1
 Standard errors were adjusted for clustering at the level of the primary sampling unit.

 2
 These regressions included only one of the variables shown in the table and a binary indicator for each country (country-level 'fixed effects').

 3
 This refers to having received some primary schooling or having completed primary school.

 4
 This refers to having received some secondary schooling, having completed secondary school, or having received some type of tertiary education.

 5
 These regressions included sex, age group, education, and a binary indicator for each country (country-level 'fixed effects').

 6
 These regressions included sex, age group, education, household wealth quintile, BMI, tobacco smoking, and a binary indicator for each country (country-level 'fixed effects').

 'fixed effects').