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ABSTRACT 

Objective: Studies using diffusion tensor imaging (DTI) to investigate white matter (WM) 

microstructure in youths with conduct disorder (CD) have reported disparate findings. We 

investigated WM alterations in a large sample of youths with CD, and examined the influence 

of sex and callous-unemotional (CU) traits.  

Method: DTI-data were acquired from 124 youths with CD (59 female youth) and 174 

typically-developing (TD) youths (103 female youth) aged 9-18 years. Tract-based spatial 

statistics tested for effects of diagnosis and sex-by-diagnosis interactions. Associations with 

CD symptoms, CU traits, a task measuring impulsivity, and the impact of comorbidity and 

age- and puberty-related effects were examined.  

Results: Youths with CD exhibited higher axial-diffusivity in the corpus callosum and lower 

radial-diffusivity and mean-diffusivity in the anterior thalamic radiation relative to TD 

youths. Female and male youth with CD exhibited opposite changes within the internal 

capsule, fornix, posterior thalamic radiation and uncinate fasciculus. Within the CD group, 

CD symptoms and callous traits exerted opposing influences on corpus callosum axial-

diffusivity, with callous traits identified as the unique clinical feature predicting higher axial-

diffusivity and lower radial-diffusivity within the corpus callosum and anterior thalamic 

radiation, respectively. In an exploratory analysis, corpus callosum axial-diffusivity partially 

mediated the association between callous traits and impulsive responses to emotional faces. 

Results were not influenced by symptoms of comorbid disorders and no age- or puberty-

related interactions were observed. 

Conclusion: WM alterations within the corpus callosum represent a reliable neuroimaging 

marker of CD. Sex and callous traits are important factors to consider when examining WM 

in CD.  
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Key words: conduct disorder, callous-unemotional traits, diffusion tensor imaging (DTI), sex 

differences, FemNAT-CD. 

 

INTRODUCTION 

Conduct disorder (CD) is characterized by aggressive, antisocial and 

oppositional/defiant behaviors during childhood and adolescence1 and impairments across 

social, cognitive, and affective domains.2 Meta-analytic evidence from functional (fMRI) and 

structural (sMRI) MRI studies has shown abnormal neural responses3 and volume reductions4 

across a number of cortical and subcortical regions critical for emotion processing and 

regulation, decision-making, executive functions and empathy. However, diffusion tensor 

imaging (DTI) findings on white matter (WM) microstructure in youths with antisocial 

behavior have been inconsistent in both the nature and loci of reported effects.5 

Methodological factors, as well as demographic and clinical features of the samples, may 

have contributed to the inconsistent findings and lack of replication.5  

The current study used DTI to investigate WM microstructure in the largest sample of 

female and male youths with CD recruited to-date and compared them to age- and puberty-

matched typically-developing (TD) female and male youth. Tract-based spatial statistics 

(TBSS)6 were used to examine WM microstructure at the whole-brain level and within 

specific regions-of-interest (ROIs). We adopted this approach because we had a priori 

hypotheses regarding the loci of expected group differences, and wanted to compare our 

results to existing DTI literature on CD in which both approaches have been used. However, 

we also sought to identify previously undetected effects owing to our large and mixed sex 

sample. To measure diffusion within WM tracts, fractional anisotropy (FA) was computed, 

reflecting differences in microstructural properties such as axon density and degree of 
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myelination.7 FA is a function of axial diffusivity (AD) and radial diffusivity (RD) values, 

such that FA increases when AD increases and/or RD decreases, and vice-versa. When 

observing changes/differences in FA, the changes in AD and/or RD can help with the 

biological interpretation. For example, greater axon density will manifest as increased FA and 

decreased RD. Axonal breakdown will lead to decreased FA and decreased AD, whereas 

demyelination will show up as decreased FA and increased RD.7 Mean diffusivity (MD) is 

the rate of diffusion averaged over all orientations and is thought to provide a marker of 

neuronal damage in cell bodies and axonal fibers.8 We used these four indices to characterize 

differences in microstructure across WM tracts between CD and TD groups.  

The primary aim of the study was to test for effects of CD diagnosis on these DTI 

indices. Recent studies9-13 have reported increased FA or AD within the uncinate fasciculus 

and/or corpus callosum in youths with CD compared to TD youths. Lower RD within the 

uncinate fasciculus12 and the corpus callosum13 has been reported in male youth with CD. 

Finally, decreased MD within the right uncinate fasciculus (defined as a ROI) was also 

reported for female youth with CD11 compared to TD controls. As such, we predicted higher 

FA or AD and reduced RD or MD (believed to reflect increased microstructural integrity7) 

within the uncinate fasciculus and corpus callosum in youths with CD compared to TD 

youths. However, we note that several studies have also reported the opposite pattern of 

results (i.e., reduced FA and AD, and increased RD and MD) across a number of other WM 

tracts.14,15 Therefore, we also predicted differences in FA, AD, RD and MD within other 

association, commissural, projection and thalamic tracts but did not make predictions 

regarding the direction of these effects.  

Our second aim was to test for sex-by-diagnosis interactions. Given known sex 

differences in the CD phenotype,16 its etiology,17 as well as rates of WM maturation in TD 
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youths,18 WM diffusivity may differ between female and male youth with CD. To date, 

however, most studies on CD have focused only on male youth9,10,13,19 or female youth 

alone.11 Three studies12,14,20 have included mixed-sex samples but were underpowered to test 

for sex-by-diagnosis interactions, thereby contributing to the inconsistencies in the literature. 

These data highlight the need to investigate similarities across the sexes as well as testing for 

potential sex-specific effects.5 In this context, we made no a priori hypotheses regarding 

differences between male and female youth with CD in terms of the location or direction of 

changes across the DTI indices.  

Our third aim was to examine the impact of callous-unemotional (CU) traits (i.e., 

reduced empathy and guilt, combined with shallow emotions and the callous use of others; 

see the “limited prosocial emotions” specifier for CD in DSM-51) on WM alterations 

associated with CD. Indeed, several studies14,20 have failed to account for heterogeneity 

within CD in relation to CU traits, which might have contributed to inconsistent findings 

across studies. Two recent studies showed that CU traits influenced the pattern of WM 

differences in youths with CD.21,22 Furthermore, fMRI and sMRI studies have revealed that 

the unique variance associated with CD symptoms and CU traits shows opposing 

relationships with neural activity and gray matter volume in cortical23 and subcortical 

structures.24,25 Interestingly, two recent fMRI studies of empathy in youths reported that the 

callous subcomponent of CU traits was the strongest predictor of group differences in neural 

response26 and connectivity.27 Hence, we hypothesized that CD symptoms and CU traits (or 

the callous subcomponent) might show opposing associations with WM microstructure in 

youths with CD.  

In addition to our three central aims, we conducted two follow-up analyses and one 

exploratory analysis. First, disorders that frequently co-occur with CD (e.g., attention-
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deficit/hyperactivity disorder (ADHD), mood and anxiety disorders and substance abuse) are 

also associated with WM alterations in the corpus callosum and the uncinate fasciculus.28-31 

We therefore systematically assessed the impact of symptoms of comorbid disorders in our 

sample, predicting that group differences in WM microstructure might be partly explained by 

these symptoms. Second, given the large age range of our sample (9-18 years) and 

suggestions that relationships between CD and WM may differ by age5,9,20 or pubertal stage,32 

we tested for age-by-diagnosis and puberty-by-diagnosis interactions. Finally, given that self-

reported impulsivity has been shown to positively correlate with FA within the corpus 

callosum in CD youths,13 we conducted an exploratory analysis aiming to extend this finding 

by relating WM microstructure to performance on an objective, laboratory-based measure of 

impulsivity: the emotional Go/No-Go task.33 We hypothesized that in youths with CD, corpus 

callosum FA or AD would be positively correlated with impulsive responses on this task. 

METHOD 

Participants and Measures 

A total of 124 (59 female) youths with CD and 174 (103 female) TD youths aged 9–

18 years were included as part of the Neurobiology and Treatment of Adolescent Female 

Conduct Disorder study (FemNAT-CD), a European multi-site study investigating sex 

differences in CD (https://www.femnat-cd.eu/). Thirty participants (16 with CD) were 

included in a previous DTI study comparing CD and TD female youth.11 However, excluding 

those participants (N=30) did not alter the main effects (data available upon request). 

Participants and their parents/main-caregivers were interviewed separately using the Kiddie-

Schedule for Affective Disorders and Schizophrenia-Present and Lifetime version (K-SADS-

PL34). Interviews were conducted by trained staff at each site to assess for CD and other 

common comorbid disorders using DSM-IV-TR criteria.35 Further details regarding 
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participant demographics, socioeconomic status, inclusion/exclusion criteria and inter-rater 

reliability of diagnoses are provided in Supplement 1, available online.  

CU traits were assessed using the parent-report Inventory of Callous-Unemotional 

traits (ICU),36 a standardized measure including callous (α=.74), uncaring (α=.79), and 

unemotional subscales (α=.85). An estimate of full-scale IQ was obtained using the two-

subtest (vocabulary and matrix reasoning) version of the Wechsler Abbreviated Scale of 

Intelligence37 or the same subtests from the Wechsler Intelligence Scale for Children.38 

Participants were classified as either pre/early or mid/late/post pubertal using the Pubertal 

Development Scale.39 Across all sites, written informed consent/assent was obtained from all 

participants and their parents according to site-specific ethical requirements (see Supplement 

2 and 3, available online, for information on imputation procedures for missing data and 

ethical approvals). 

Emotional Go/No-Go Task 

Impulsivity was operationalized using the number of commission errors (false-alarm 

rates expressed as a %) on an emotional Go/No-Go task33 (see Supplement 4 and Figure S1, 

available online, for further details regarding task design, response coding, convergent 

validity check and testing procedures).  

DTI Data Acquisition and Pre-processing 

Diffusion-weighted images were acquired across four sites (Tables S1-S2, available 

online) and subsequently pre-processed using the FMRIB Software Library (FSL) diffusion 

toolkit40 (see Supplements 5 and 6, available online, for details regarding site qualification 

procedures, acquisition parameters, image processing, movement and distortion correction).  

Statistical Analyses 
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We used ANOVAs (post-hoc pairwise comparisons with Bonferroni correction, 

p<.05) and Chi-Square tests to compare diagnostic groups (CD vs. TD) on demographic and 

clinical variables (Table 1 and Supplement 1, available online).  

[Table 1 here] 

Within FSL,40 separate general linear models with a 2 (diagnosis: CD vs. TD) x 2 

(sex: male vs. female) factorial design were fitted to the FA, AD, RD and MD diffusion 

indices to test for main effects of diagnosis and sex-by-diagnosis interactions. Age and IQ 

were included as covariates of no interest (see Supplement 7, available online, for results of 

analyses without including IQ as a covariate of no interest and for an IQ-matched 

subsample). Additional factorial analyses were conducted entering mean-centered age as 

continuous covariates into the GLM. This enabled investigation of age-related differences 

between CD and TD youths (age-by-diagnosis interactions) as well as potential interactions 

with sex (age-by-diagnosis-by-sex interactions). Finally, in separate analyses, puberty scores 

were included as continuous covariates enabling investigation of potential puberty-related 

differences between youths with CD and TD youths and potential interactions with sex. For 

the models testing for age and puberty effects, IQ was included as a covariate of no interest 

(see Supplement 8, available online, for further details). Details of how between-site 

variability was accounted for within all statistical models are provided in Supplement 9, 

available online. All analyses (whole-brain and region-of-interest) were also conducted on 

mode of anisotropy, but no significant effects were observed (see Table S3). 

At a whole-brain level, areas showing significant differences were identified using 

threshold-free cluster enhancement (TFCE; p<0.05 Family-Wise Error (FWE) corrected for 

multiple comparisons; 5000 permutations). We note that for our weakest effect (the observed 

sex-by-diagnosis interaction in the left internal capsule) we re-ran the analysis with 10000 
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permutations to ensure that the p-value still fell within the 95% CIs around alpha = 0.05 of 

[0.0459, 0.0544]. 

Two WM atlases41,42 were used to label significant results. We also tested for 

differences in FA, AD, RD and MD within specific fiber tracts previously implicated in CD.5 

These masks were created using the JHU-ICBM-DTI-81 WM atlas41 and included 

association, commissural and projection pathways identified by5 (see Table S4, available 

online, for full list of tracts). The same threshold was used for the voxel-wise permutation-

based ROI analyses (see also Table S3, available online, for False-Discovery-Rate corrected 

and uncorrected ROI results). Contrast-wise FA, AD, RD and MD values at a whole-brain 

and ROI level were extracted using the fslmeants tool in FSL, enabling cluster-based 

statistical analysis and multiple regression analyses. Cohen’s d effect sizes based on group-

means and standard-deviations are reported for the main effects and sex-by-diagnosis 

interactions.  

Consistent with previous work,25 bivariate correlations (see Table S5, available 

online) and regression analyses were conducted for the CD group only within regions 

showing main effects of diagnosis or sex-by-diagnosis interactions. Multiple regression 

analyses were conducted in two steps to investigate the association between significant 

cluster-wise differences and dimensional measures. First, CD symptoms (derived from the K-

SADS-PL34) and CU traits (ICU total score) or ICU subscales (Callousness, Uncaring, 

Unemotional) were entered. Second, symptom counts of comorbid ADHD, oppositional 

defiant disorder, generalized anxiety disorder and major depressive disorder, alcohol 

use/abuse and substance use/abuse, as well as a measure of handedness, were added to assess 

their influence. Zero-order correlation coefficients were calculated to estimate associations 

between WM differences observed between groups (CD and TD) and impulsivity, as 

measured using the emotional Go/No-Go task.33  
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RESULTS 

Whole-Brain Results 

Youths with CD exhibited significantly higher AD (p=.02) within the body of the 

corpus callosum (posterior aspect) in the right hemisphere compared to TD youths (Figure 

1A). No areas of reduced AD and no sex-by-diagnosis interactions were identified. Youths 

with CD also showed lower RD in bilateral anterior thalamic radiation (left, p<.01; right, 

p=.01) compared to TD youths (Figure 2A) and lower MD in the left anterior thalamic 

radiation (p=.01) (Figure 2B). No areas showing higher RD or MD were identified, but a sex-

by-diagnosis interaction in RD was observed within the left internal capsule (posterior limb; 

p=.04), bordering the corticospinal tract (Figure 3A). Underlying this interaction, CD female 

youth showed higher RD than TD female youth, whereas CD male youth had lower RD than 

TD male youth (Figure 3A). No significant main effects or sex-by-diagnosis interactions 

were observed for FA. Finally, no significant two-way or three-way interactions were 

observed between age, diagnosis and sex or puberty, diagnosis and sex for any DTI index (all 

p-values >.19; see Supplement 8 and Figure S2, available online). 

[Figures 1-3 here] 

Regression Analyses: Effects of CD symptoms, CU traits, and Comorbid Symptoms 

In the corpus callosum, unique variance associated with CD symptoms, after 

controlling for ICU total score, negatively predicted AD (β=-.21, p=.02), whereas unique 

variance associated with CU traits did not significantly predict AD in this region after 
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controlling for CD symptoms (β=.15, p=.12; Table S6, available online). After controlling for 

CD symptoms, and the uncaring and unemotional subscales of the ICU, unique variance 

associated with callous traits positively predicted AD (β=.33, p<.01; Figure 1B and Table S7, 

available online). CD symptoms still negatively predicted AD when controlling for ICU 

subscale scores (β= -.20, p=.03) (Figure 1B and Table S7, available online). Controlling for 

symptoms of comorbid disorders did not alter these results and the unique variance of those 

symptoms did not significantly predict AD (all p>.13; Tables S6 and S7, available online). 

In the anterior thalamic radiation, neither CD symptoms nor total ICU scores 

predicted RD (all p>.07; Table S8, available online). After controlling for CD symptoms, and 

the uncaring and unemotional subscales of the ICU, unique variance associated with callous 

traits negatively predicted RD (left: β=-.27, p=.03; right: β=-.30, p=.01; Figure 2A and Table 

S9, available online). Adding comorbid disorder symptoms did not alter these results and the 

unique variance of those symptoms did not significantly predict RD (Tables S8-S9, available 

online). In the left anterior thalamic radiation, neither CD symptoms nor ICU total or ICU 

subscale scores significantly predicted MD (all p>.06; Table S10-S11, available online). 

Controlling for symptoms of comorbid disorders did not alter these results and the unique 

variance of those symptoms did not significantly predict RD (all p>.12; Tables S10-S11, 

available online).  

 To explore the sex-by-diagnosis interaction observed within the posterior limb of the 

left internal capsule, regression analyses were conducted on female and male youth with CD 

separately. A significant negative relationship was found between unique variance associated 

with CD symptoms and RD (β=-.21, p=.04) for male youth with CD, but not female youth 

(β=.22, p=.1) when controlling for ICU total score (Table S12, available online). After 

controlling for ICU subscale scores, unique variance associated with CD symptoms and RD 

was also observed for male youth (β=-.22, p=.04) but not female youth (β=.06, p=.66) with 
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CD (Figure 3B and Table S13, available online). Controlling for symptoms of comorbid 

disorders did not alter these results and the unique variance of those symptoms did not 

significantly predict RD in male youth (all p>.15; Tables S12-S13, available online).  

 

ROI Results 

Sex-by-diagnosis interactions were observed in AD within the left fornix and the left 

posterior thalamic radiation (see Figure 4A and 4B, respectively). Female youth with CD 

showed lower AD in the fornix compared to TD female youth, whereas male youth with CD 

showed a non-significant increase in AD compared to TD male youth, whilst the opposite 

pattern (TD female youth<CD female youth; TD male youth>CD male youth) was observed 

within the left posterior thalamic radiation. A significant sex-by-diagnosis interaction was 

also observed for left uncinate fasciculus MD (CD female youth>TD female youth; CD male 

youth<TD male youth; see Figure 4C). No further main effects or interactions were observed 

in the other ROIs for any DTI-index (Table S4, available online). No associations were 

detected between CD symptoms, CU traits or the ICU subscale scores, or any of the 

comorbid disorder symptoms and WM microstructure within the left fornix, left posterior 

thalamic radiation or left uncinate fasciculus.  

[Figure 4 here] 

Associations between WM Microstructure and Impulsivity 

  In a subset of the CD group for whom data were available (n=107), commission errors 

to emotional ‘no-go’ stimuli on the ‘Go/No-Go’ task were positively correlated with AD in 

the corpus callosum (r=0.24, p=.01) (Figure S3, available online). Furthermore, callous traits 

were positively correlated with commission errors to emotional ‘no-go’ stimuli (r=0.18, 

p=.05; Figure S3, available online). Given this pattern of results and evidence linking the 
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corpus callosum to impulsivity in CD,13 an exploratory post-hoc mediation analysis was 

conducted to assess whether, in CD youths, corpus callosum AD values mediated the 

relationship between callous traits and impulsive responses (commission errors) to emotional 

faces. Callous traits, corpus callosum AD values and commission errors to emotional ‘no-go’ 

stimuli were modeled as the independent, mediating and dependent variables, respectively. 

Given that CD symptoms negatively predicted AD in the corpus callosum when controlling 

for ICU subscale scores, CD symptoms was included as a covariate (see43 for a similar 

approach). Bootstrap-mediation analysis (with 5000 bootstrap resamples of the data with 

replacement) was implemented with the SPSS PROCESS macro.44 Rather than providing 

formal p-values, statistical significance with alpha set at .05 is indicated by the 95% CIs not 

crossing zero. Corpus callosum AD partially mediated the relationship between callous traits 

and impulsive responses to emotional faces, but this effect was small (indirect effect=0.14, 

95% CIs=[0.0019, 0.3734]; Figure S3, available online).  

DISCUSSION 

This study extends our understanding of WM microstructure in youths with CD in 

several important ways. First, consistent with our predictions, we demonstrated that 

compared to TD youths, female and male youths with CD show higher AD within the body 

of the corpus callosum and lower RD bilaterally (plus lower MD on the left) in the anterior 

thalamic radiation. Our whole-brain and ROI analyses also revealed that female and male 

youths with CD exhibit opposite changes in WM microstructure within the left uncinate 

fasciculus and multiple projection pathways in the left hemisphere. Second, partially 

supporting our predictions, we demonstrated that callous traits and CD symptoms exerted 

opposite effects on AD within the corpus callosum, with callous traits identified as the unique 

clinical feature predicting higher AD and lower RD within the corpus callosum and anterior 

thalamic radiation, respectively. Furthermore, higher AD values in the corpus callosum were 
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associated with higher levels of impulsive responses to emotional faces and partially 

mediated the association between callous traits and impulsive responses, but this effect was 

small. Finally, no age-by-diagnosis or puberty-by-diagnosis interactions were observed and, 

contrary to predictions, no significant group differences or sex-by-diagnosis in FA were 

observed and none of the findings were influenced by symptoms of comorbid disorders. 

This study is the first to show that female and male adolescents with CD exhibit 

common alterations in WM microstructure within the body of the corpus callosum and the 

anterior thalamic radiation. For the corpus callosum, consistent with the results of previous 

studies on CD with male only,13,21 female only11 or mixed-sex samples,12,14 we observed 

higher AD values (lower diffusivity) within this tract across sexes. The corpus callosum, 

which connects homologous regions across the hemispheres, is the largest WM tract and 

commissural pathway in the brain, and is thus central to interhemispheric communication.45 

Disrupted interhemispheric communication has been associated with anger and aggression;46 

behaviors that are characteristic of CD individuals. Importantly, the corpus callosum is 

structurally and functionally heterogeneous across its three sub-divisions: the genu, body, and 

splenium.47 The observed group difference was located centrally in the posterior part of the 

body of the corpus callosum, which connects precentral regions (premotor area, 

supplementary motor area), as well as the insular, mid-posterior cingulate and somatosensory 

cortices.47 As such, that sub-division connects regions involved in response inhibition and 

socioemotional processing,46,48 consistent with the observed association between corpus 

callosum AD and commission errors to emotional faces in the CD group. Interestingly, our 

exploratory analysis revealed that higher AD within the corpus callosum partially mediated 

the relationship between callous traits and the number of commission errors to emotional ‘no-

go’ stimuli, implicating corpus callosum alterations in the association between callous traits 

and impulsive responses to emotional faces in youths with CD. We note, however, that 
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previous research using this task has identified commission errors to emotional no-go stimuli 

as an index of emotion (dys)regulation.33  

Youths with CD also exhibited lower RD (lower diffusivity) bilaterally within the 

anterior thalamic radiation, a result consistent with just one study using a mixed-sex sample 

where greater CD severity was associated with increased FA (lower diffusivity) within this 

tract.14 The anterior thalamic radiation forms part of the limbic system and connects the 

mediodorsal and anterior thalamic nuclei with the dorsolateral, ventrolateral, orbitofrontal 

and anterior cingulate cortices.49 These prefrontal regions are implicated in working memory, 

affective decision-making, and empathy; notably, youths with CD also show impairments in 

these domains.2 Given our results and the prominent role of the thalamus as a ‘relay station’ 

and ‘gatekeeper’ of sensory information between subcortical and cortical regions,50 future 

studies should clarify to what extent impairments observed in CD and structural/functional 

alterations within those prefrontal regions might reflect ‘downward consequences’ of WM 

differences within the anterior thalamic radiation. 

The observed sex-by-diagnosis interactions were restricted to association (uncinate 

fasciculus) and projection pathways (posterior limb of the internal capsule, the fornix, and the 

posterior thalamic radiation) in the left hemisphere. The MD effect in the left uncinate 

fasciculus is consistent with those observed in previous studies that reported increased FA in 

male youth with CD9,10,13 and one study on a mixed-sex sample.12 Taken together, these 

results reinforce the view that the orbitofrontal cortex–amygdala circuitry might be central to 

the pathophysiology of CD and to some of its associated emotional and decision-making 

impairments, as suggested by a neurocognitive model of CD.2 Most previous studies of CD 

have not observed group differences in the projection tracts we identified (although see 

11,14,19). The internal capsule contains both ascending (from thalamus to cortex) and 

descending fibers (from fronto-parietal cortex to basal ganglia and corticospinal tract) and is 
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considered a ‘neuroanatomical backbone’ supporting perceptual, motor and higher-order 

cognitive functions.45 The fornix forms part of the limbic system and connects the medial 

temporal lobe and hippocampus to the mammillary bodies and hypothalamus, thereby playing 

a central role in memory formation and retrieval.45 Finally, the posterior thalamic radiation, 

which connects the posterior parts of the thalamus with the occipital and the parietal cortices, 

is a critical component of the visual system. Our results, along with those of two previous 

studies,12,20 provide novel evidence that the relationship between CD and WM microstructure 

partly differs by sex, but given the novelty of these findings, future studies should seek to 

replicate them and investigate their origins and functional significance. 

Building on, and extending, previous behavioral and neuroimaging studies,2 we 

demonstrated that amongst youths with CD, the unique variance associated with CD 

symptoms and callous traits exhibited opposing associations with corpus callosum WM 

microstructure, with callous traits identified as the unique clinical feature predicting the 

group differences in AD observed within the corpus callosum and in RD in the bilateral 

anterior thalamic radiation. From a theoretical stance, these results: (i) identify novel WM 

correlates of CD, supporting the view that youths with CD constitute a heterogeneous group 

with different neurocognitive profiles,25,26, and, (ii) could help explain some of the 

inconsistent results reported in previous DTI studies.5 Finally, our finding that callous traits 

were the strongest predictor of the group differences is consistent with two fMRI studies 

examining neural responses to others’ pain in youths with conduct problems. The first 

showed that callous traits predicted lower anterior insula and anterior cingulate cortex 

responses,26 while the second reported that callous traits predicted reduced functional 

connectivity of the amygdala and insula with the anterior cingulate cortex.27 These results, 

together with recent psychometric, experimental, behavioral, genetic, and meta-analytic 

evidence demonstrating that the ICU subscales are each associated with distinct phenotypic 
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and etiological characteristics as well as external correlates51-53, highlight the importance of 

considering the distinct dimensions underlying the CU traits construct as operationalized by 

the ICU.36 This line of research may inform future research and clinical work. Future studies 

should also examine how different clinical presentations of CD (e.g., aggressive versus non-

aggressive) might relate to WM differences. 

Neurodevelopmental considerations 

Despite the fact that CD is considered a neurodevelopmental disorder,54 and the 

hypothesis that the relationship between CD and WM microstructure may differ with age,5,9,20 

no age- or puberty-related interactions were observed. This tentatively suggests that the 

magnitude of differences between groups that we report here reflects similar developmental 

trajectories across the age range (9-18 years) for both CD and TD youths. Thus, it is possible 

that any neurodevelopmental changes might have already occurred by age 9. In any case, this 

developmental trend is different from the deviant and age-related trajectories reported for 

autism spectrum disorders,55 another neurodevelopmental disorder. However, cross-sectional 

or correlational designs preclude drawing any valid inferences regarding 

(neuro)developmental processes,56 highlighting the pressing need for prospective longitudinal 

studies of CD. Second, our results and those of previous studies suggest that CD might be 

characterized by a unique pattern of lower diffusivity (higher AD, lower RD and MD as 

reported here) compared to other neurodevelopmental disorders such as ADHD (lower FA 

with TBSS28) and autism spectrum disorders (lower FA, higher MD57) where meta-analyses 

have identified higher WM diffusivity.28,58 DTI studies in youths with depression,29 

generalized anxiety disorder,30 and substance misuse31 have also consistently reported higher 

diffusivity (lower FA) in those clinical groups across a range of WM tracts that includes the 

uncinate fasciculus and corpus callosum. The fact that these results are in the opposite 

direction to those reported here may explain why the unique pattern of findings in CD youths 
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were not influenced by symptoms of comorbid disorders.  Finally, the adult condition of 

antisocial personality disorder, for which a diagnosis of CD by age 15 is required,1 has also 

been associated with WM differences in the same tracts that we identified. However, in 

contrast to our findings, there is a consistent pattern of higher diffusivity (e.g. lower AD59) in 

in adults with antisocial personality disorder,5,59 and those with psychopathy.5 Interestingly, a 

recent study in adults with antisocial personality disorder found a negative correlation 

between AD in the corpus callosum and self-reported impulsivity.60 Taken together, these 

data highlight the need for prospective longitudinal studies to clarify the association between 

WM microstructure and the developmental course of severe antisocial behavior and 

associated personality traits. 

Despite the strengths of our study, which include the use of a much larger sample than 

has been included in previous DTI studies of CD, groups matched on pubertal status, and a 

systematic examination of the influence of of age, puberty, IQ, and clinical variables on the 

findings, some limitations should be noted. As with all previous DTI studies of CD, the cross-

sectional design prevents us from inferring whether WM differences are a cause or a 

consequence of the disorder.56 Relatedly, until replicated, the results of our exploratory 

mediation analysis should be interpreted as preliminary given that the observed effect was 

small and mediation analyses are more suited to longitudinal data.61 We also note that, 

because faces are the targets in the Go/No-Go task used here,33 this paradigm might conflate 

emotional processing (known to be impaired in CD2) with impulsivity. However, because 

corpus callosum AD values did not correlate with any performance indices (accuracy or 

reaction time) on the Emotion Hexagon task62 in which participants have to identify 

emotional facial expressions (see Supplement 4, available online), we believe that our 

interpretation of the association between AD values and commission errors is consistent with 

an impulsivity account, albeit when target stimuli are emotional faces. The ROI analysis 
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approach of using atlas-derived probability maps to extract tract means from the voxel-wise 

skeleton, whilst common (e.g.11), is not optimal due to the use of an atlas-inferred rather than 

individually-calculated trajectory to define the tracts. Furthermore, the results of our ROI 

analysis should be interpreted cautiously, as the correction for multiple comparisons was 

applied to each DTI-index separately, rather than across all four indices simultaneously. 

Indeed, when we tested for group differences/interactions within all ROIs (n=16) across all 

four DTI-indices (i.e. 16*4 = 64 tests), the reported ROI results did not survive this highly 

conservative multiple comparison procedure. However, when the findings were corrected for 

multiple comparisons within each DTI-index (i.e. for FA, AD, RD and MD only; 16 tests) 

then all reported ROI results were significant. Finally, diffusivity measures can be influenced 

by factors such as partial volume, fiber crossing effects, fiber alignment, myelination density 

of the tract, tract coherence, or a combination of any/all of these factors, which are unrelated 

to ‘WM integrity’.63 In this context, the interpretability of any observed group differences is 

challenging. Thus, we have been careful to describe our results as differences in specific DTI 

metrics and the nature of diffusivity without specific reference to WM ‘integrity’.63  

In summary, female and male youths with CD exhibit common increases in AD in the 

corpus callosum and common reductions in RD and MD in the anterior thalamic radiation, 

relative to TD youths. However, sex-specific effects of CD on WM microstructure were 

observed within the left uncinate fasciculus and projection pathways in the left hemisphere. 

Importantly, while the results were not influenced by symptoms of comorbid disorders, 

unique variance associated with CD symptoms and callous traits exhibited opposing 

influences on corpus callosum AD, with callous traits identified as the unique clinical feature 

predicting higher AD and lower RD within the corpus callosum and anterior thalamic 

radiation, respectively. Finally, AD in the corpus callosum partially mediated the association 

between callous traits and impulsive responses to emotional faces in youths with CD. These 
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data suggest that there are sex differences in the neurobiological basis of CD, and provide 

further evidence that callous traits may delineate a distinct subtype of CD. 
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TABLE 1 Demographic and Clinical Characteristics of Youths With Conduct Disorder (CD) 
and Typically-Developing (TD) Participants   
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Note: Where appropriate, group (CD/TD) and sex (male/female) differences, sex-by-
diagnosis interactions and subsequent post-hoc tests were computed using ANOVAs and Chi 
square tests. Means with different superscripts (a, b and c) denote significant differences 

(pairwise comparisons with Bonferroni adjusted p-values are shown, p < .05). In addition to 
the commonly comorbid disorders currently listed in Table 1 which were present in our 

  Statistical analysis 
Characteristic/ 
Variable 

1. Female 
Youth  
   CD          

   (n=59) 

2. Female 
Youth 

TD 
 (n=103) 

3. Male 
Youth 
 CD 

  (n=65) 

4. Male 
Youth 

TD 
(n=71) 

Group 
(CD/TD)  
effects 

Sex   
(M/F) 
effects 

Group X 
Sex 

interactions 

 Mean SD Mean SD Mean SD Mean SD F p F p F p 
Age (years) 15.1 1.9 14.1 2.6 14.7 2.2 14.5 2.4 3.5 0.07 <1 0.94 1.4 0.24 

 
Full-scale IQ 97.6 13.1 102.5a 11.0 93.4b  11.8 102.5a 10.6 26.4 0.001 2.3 0.13 2.3 0.13 

SES -0.4a 0.8 0.09 0.9 -0.17 0.6 0.24b 0.7 13.5 0.001 2.37 0.13 0.1 0.7 
Lifetime CD 
symptoms 

5.5a  2.5 0.2b 0.4 6.2a 2.5 0.3b 0.6 814.5 0.001 4.3 0.04 2.2 
 

0.14 

Lifetime ODD 
symptoms 

6.1a  2.7 0.2b    0.6 5.8a 2.8 0.1b     0.4 742.7 0.001 <1 0.6 <1 0.7 

Lifetime 
ADHD 
symptoms 

6.1b  6.3 0.1ͨ    0.3 9.4a   6.4 0.1ͨ     0.2 241.9 0.001 12.1 0.001 12.0 0.001 

Lifetime GAD 
symptoms 

1.3a  1.7 0.1ͨ 0.4 0.8b 1.4 0.04c 0.2 63.1 0.001 7.3 0.007 4.4 0.04 

Lifetime MDD 
symptoms 

8.8a  7.9 0.4ͨ 1.9 5.0b 6.4 0.2c 1.0 135.6 0.001 12.4 0.001 10.6 0.001 

Total ICU 32.5b 12.6 16.4ͨ     8.0   37.5a 12.7 19.3ͨ 7.8 202.3 0.001 10.8 0.01 <1 0.4 
Callous subscale 
of ICU 

11.3b  6.2 4.2ͨ 3.4  13.7a    6.5 4.7ͨ     2.5   202.6 0.001 6.9 0.01 2.8 0.1 

Uncaring 
subscale of ICU 

14.1a 5.0    7.9b 4.3 15.8a     5.0  8.9b    4.3 140.9 0.001 6.1 0.01 <1 0.5 

Unemotional 
subscale of ICU 

7.2a  3.9 4.2b 2.5 8.0a     3.2  5.6b    2.9 52.5 0.001 9.6 0.01 <1 0.5 

Current 
DSM-IV 
diagnoses 

N % N % N % N % χ
2 p χ

2 p χ
2 P 

ODD 41 70 0 0 48 74 0 0 178.1 0.001 3.5 0.06 <1 0.6 
ADHD 26ᵇ 44 0 0 39a 60 0 0 123.6 0.001 11.1 0.01 5.3 0.02 
GAD 12a  20 0 0 4b 6 0 0 23.7 0.001 2.9 0.09 5.5 0.02 
MDD 22 37 0 0 18 28 0 0 64.8 0.001 <1 0.9 1.3 0.3 
Alcohol abuse 2 3 0 0 1 2 0 0 4.3 0.05 <1 0.7 5.3 0.2 
Drug abuse 
(cannabis) 

3 5 0 0 4 6 0 0 10.1 0.01 <1 0.5 <1 0.8 

Medication 17 29 0 0 13 20 0 0 43.3 0.001 <1 0.7 1.3 0.3 
PDS N % N % N % N % χ

2 p χ
2 p χ

2 p 
Pre/Early 
(stages I and II) 

3 5 7 7 12 18 17 24 6.5 0.2 31.2 0.001 3.0 0.6 

Mid/Late/Post 
(stages III – V) 

56b  95 96a 93 53b 82 54b 76       

Age of onsetd               
Childhood 17 33 0 0 34 54 0 0   2.7 0.1   
Adolescent 27 53 0 0 28 44 0 0       
Missing 7 14 0 0 1 2 0 0       
Handedness               
Right 49 83 91 88 51 78 66 93 4.9 0.08 <1 0.9 3.9 0.1 
Left 4 7 11 11 11 17 3 4       
Ambidextrous 3 5 0 0 1 1.5 1 1       
Missing 3 5 1 0.9 2 3 1 1       
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sample, the following disorders were also screened for as part of the K-SADS assessment: 
Psychosis, mania, schizophrenia, autism spectrum disorder, bipolar disorder, panic disorder, 
separation anxiety disorder, phobia (simple/social/agoraphobia), obsessive compulsive 
disorder, post-traumatic stress disorder, enuresis, encopresis. Further information regarding 
the presence of those disorders in our sample is available upon request. Diagnoses of CD and 
comorbid disorders were made using the Kiddie-Schedule for Affective Disorders and 
Schizophrenia-Present and Lifetime version. ADHD = attention-deficit/hyperactivity 
disorder; GAD = Generalized anxiety disorder; ICU = Inventory of Callous-Unemotional 
traits; MDD = Major depressive disorder ODD = oppositional defiant disorder; PDS = 
Pubertal Development Scale; SES = socioeconomic status.  
 
d
 Not including the 10 participants with ODD plus CD symptoms 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1 White Matter Microstructure in Corpus Callosum: Youths With Conduct 

Disorder (CD) Compared With Typically-Developing (TD) Youths 
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Note: (A) Voxels within the body of the corpus callosum (coordinates, x=7, y=-27, z=24; 

p=.02; k=41; d=.59) where axial diffusivity (AD) differed between groups (CD>TD). All 

voxels (shown in red-yellow) are thresholded at p<.05, threshold-free cluster enhancement 

(TFCE); Family-Wise Error (FWE)-corrected for multiple comparisons. Findings overlaid 

onto mean fractional anisotropy (FA) skeleton (green) in MNI (Montreal Neurosciences 

Institute) space (x, y, z). Corpus callosum shown in blue overlaid on to a 3D 

MNI152_T1_1mm template. For viewing purposes, statistical images were “thickened”. (B) 

Partial regression plots showing unique associations between CD symptoms and mean AD in 

the corpus callosum (left) and ICU callous subscale scores and mean AD in the corpus 

callosum (right) in CD youths only (n=124). P and β values reflect the level of statistical 

significance and the standardized regression coefficients, respectively. Shaded error bars 

reflect 95% CIs. K-SADS-PL = Kiddie-Schedule for Affective Disorders and Schizophrenia-

Present and Lifetime version; ICU = Inventory of Callous-Unemotional traits.  

 

FIGURE 2 White Matter Microstructure in Anterior Thalamic Radiation: Youths With 

Conduct Disorder (CD) Compared With Typically-Developing (TD) Youths.  

 

Note: (A) Voxels within the anterior thalamic radiation (left anterior thalamic radiation: x=-8, 

y=-28, z=15; p<.01; k=140; d=.41: right anterior thalamic radiation: x=13, y=-28, z=15; 

p=.01; k=80; d=.27) where radial diffusivity (RD) differed between groups (CD < TD).  

Partial regression plots show unique associations between ICU callous subscale scores and 

mean RD within the left (left graph) and right (right graph) anterior thalamic radiation in CD 

youths only (n=124). P and β values reflect the level of statistical significance and the 

standardized regression coefficients, respectively. Shaded error bars reflect 95% CIs.  (B) 

Voxels within the left anterior thalamic radiation (x=-6 y=-20, z=16; p=.03; k=52; d=.31) 

where mean diffusivity (MD) differed between groups (CD < TD). All voxels (shown in red-

yellow (top) and blue-light-blue (bottom)) are thresholded at p < .05, threshold-free cluster 

enhancement (TFCE); Family-Wise Error (FWE)-corrected for multiple comparisons. 

Findings are overlaid onto the mean fractional anisotropy (FA) skeleton (green).  

 

 

FIGURE 3 Sex-by-Diagnosis Interaction in Posterior Limb of Internal Capsule 
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Note: (A) Voxels within the left internal capsule (x=-20, y=-12, z=5; p=.04; k=8; d=1.35) 

revealing a sex-by-diagnosis interaction in radial diffusivity (RD). All voxels (shown in red-

yellow) are thresholded at p < .05, threshold-free cluster enhancement (TFCE); Family-Wise 

Error (FWE)-corrected for multiple comparisons. Findings are overlaid onto the mean 

fractional anisotropy (FA) skeleton (green). The internal capsule (bilateral) is shown in blue 

and the corticospinal tract (bilateral) is shown in yellow overlaid on to a 3D 

MNI152_T1_1mm template. Bar-graph shows white-matter differences in the left internal 

capsule cluster for female youth (t=3.26, df=160, p = .005) and male youth (t=-2.71, df=134, 

p=.04) with CD compared to TD controls. (B) Inset (dashed line) partial regression plot 

shows unique associations between CD symptoms for female and male youth with CD and 

mean RD within the left internal capsule cluster. P and β values reflect the level of statistical 

significance and the standardized regression coefficients, respectively. Shaded error bars 

reflect 95% CIs. SE = standard error.  

*p < .05; **p < .01, (Bonferroni-corrected; p <.05) 

 

FIGURE 4 Region of Interest (ROI) Analysis: Youths with Conduct Disorder (CD) 

Compared to Typically-Developing (TD) Youths 

Note: (A) Voxels within the left fornix (x=-1, y=-13, z=18; p=.02; k=6; d=1.15) revealing a 

sex-by-diagnosis interaction in axial diffusivity (AD). Bar-graph shows white matter 

differences for female youth (t = 3.27, df = 160, p < .01) and male youth (t = 2.1, df = 134, p 

= .22). (B) Voxels within the left posterior thalamic radiation (x=-34, y=-61, z=7; p=.03; k=7; 

d=1.5) revealing a sex-by-diagnosis interaction in AD. Bar-graph shows white matter 

differences for female youth (t = 2.35, df = 160, p = .04) and male youth (t = 3.41, df = 134, p 

< .01). (C) Voxels within the left uncinate fasciculus (x=-33, y=-11, z=7; p=.01; k=9; d=0.81) 

revealing a sex-by-diagnosis interaction in mean diffusivity. Bar-graph shows white matter 

differences for female youth (t = 1.97, df = 160, p = .03) and male youth (t = 1.98, df = 134, p 

< .01). All voxels (shown in red-yellow (A-B) and blue-light-blue (C)) are thresholded at p < 

.05, threshold-free cluster enhancement (TFCE); Family-Wise Error (FWE)-corrected for 

multiple comparisons. Findings are overlaid onto the mean fractional anisotropy (FA) 

skeleton (green). n/s = non-significant; PTR = posterior thalamic radiation; SE = standard 

error; UF = uncinate fasciculus.  

*p <.05; **p <.01.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Financial Disclosures: Prof. Konrad has received speaker fees from Shire Pharmaceuticals 
and Medice.  Prof. Stadler receives royalties for a book on aggression. Prof. Freitag receives 
royalties for books on Attention-Deficit/Hyperactivity Disorder and Autism Spectrum 
Disorder. She has served as consultant to Desitin and Roche. Dr. De Brito has received 
speaker fees from the Child Mental Health Centre and the Centre for Integrated Molecular 
Brain Imaging. Dr Raschle is a Jacobs Foundation Early Career Fellow 2017-2019 (Grant no. 
2016 1217 13). Drs. Rogers, Gonzalez-Madruga, Clanton, Baker, Chowdhury, Kirchner, 
Andersson, Smaragdi, Puzzo, Kohls, Menks, Steppan, Fairchild, and Mss. Pauli, Birch, 
Baumann, and Fehlbaum report no biomedical financial interests or potential conflicts of 
interest. We verify that the financial disclosure statements are accurate and up-to-date for 
each author as per the policy endorsed by JAACAP.  

 

Funding: This study was funded by the European Union's Seventh Framework Programme 
for research, technological development and demonstration (FP7/2007-2013) under Grant 
Agreement no° 602407 (FemNAT-CD; coordinator: Christine M. Freitag). The funding 
source had no role in the design and conduct of the study; collection, management, analysis, 
and interpretation of the data; preparation, review, or approval of the manuscript; or decision 
to submit the manuscript for publication. 

 

Acknowledgements: We thank Anderson M. Winkler, PhD, of the FMRIB Centre at the 
University of Oxford for his help implementing PALM (permutation analysis of linear 
models) and the between-site heteroscedasticity analysis. Thanks also to Ronald Limprecht of 
the IMBI in Heidelberg who established and maintained the phenotypic database. In addition 
to the other members of the FemNAT-CD consortium, we sincerely thank our participants 
and their families for taking part in the study as well as all the frontline workers across all our 
recruiting sites who have helped our recruitment efforts.   

 

Presentation Information: Preliminary data from this study were presented at the European 
Association for Forensic Child & Adolescent Psychiatry, Porto, Portugal, 11-13 May 2016, 
the Society of Biological Psychiatry, San Diego, USA, 18-20 May, 2017 and the Society for 
the Scientific Study of Psychopathy, Antwerp, Belgium, 21-24 May 2017. 

 

Author Contribution: We confirm that all individuals listed as authors meet authorship 
criteria. Drs. Rogers, Gonzalez-Madruga, Clanton, Baker, Chowdhury, Kirchner, Andersson, 
Smaragdi, Puzzo, Kohls, Raschle, Menks, Steppan, Fairchild, De Brito and Mss. Pauli, Birch, 
Baumann, and Fehlbaum all contributed to the conception, design, analysis and interpretation 
of the data, drafting the article and revising it for publication with important intellectual 
content and final approval of the manuscript and agreed to be accountable for all aspects of 
the work in ensuring that questions related to the accuracy or integrity of any part of the work 
are appropriately investigated and resolved. Profs. Konrad, Stadler and Freitag provided 
important interpretation of data, intellectual contribution on drafting the article and final 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

approval of the version to be published and oversaw all aspects of the work ensuring that the 
accuracy or integrity of any part of the work was appropriately investigated and resolved.   



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT


