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ABSTRACT 13 

Organ function is at least partially shaped and constrained by the organization of their 14 

constituent cells. Extensive investigation has revealed mechanisms explaining how these 15 

patterns are generated, with less being known about their functional relevance. In this paper, a 16 

methodology to discretize and quantitatively analyze cellular patterning is described. By 17 

performing global organ-scale cellular interaction mapping, the organization of cells can be 18 

extracted and analyzed using network science. This provides a means to take the 19 

developmental analysis of cellular organization in complex organisms beyond qualitative 20 

descriptions, and provides data-driven approaches to inferring cellular function. The bridging of 21 

a structure-function relationship in hypocotyl epidermal cell patterning through global topological 22 

analysis provides support for this approach. The analysis of cellular topologies from patterning 23 

mutants further enables the contribution of gene activity towards the organizational properties of 24 

tissues to be linked, bridging molecular and tissue scales. This systems-based approach to 25 

investigate multicellular complexity paves the way to uncovering the principles of complex organ 26 

design, and achieving predictive genotype-phenotype mapping. 27 

 28 

 29 
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Introduction 32 

Organs are self-contained collections of interacting cells that perform a function that individual 33 

cells cannot (Bonner, 1988). Through the process of emergence, these multicellular consortia 34 

give rise to complex life (Solé and Goodwin, 2000). What organs are capable of achieving is at 35 

least partially shaped and constrained by structure-function relationships at the cellular level 36 

such that their organization impacts their collective performance (Ollé-Vila et al., 2016; 37 

Thompson, 1942).  38 

Previous studies have identified principles and mechanisms by which patterns are created in 39 

plants, including the contribution of each genetic pathways and biophysical forces (Gaillochet et 40 

al., 2015; Hamant et al., 2008). The use of genetic mutant screens have identified molecular 41 

agents that underpin the active control of specific cell divisions that give rise to cell 42 

arrangements, and provide key insight into how local arrangements of cells are created 43 

(DiLaurenzio et al., 1996; Hardtke and Berleth, 1998).  44 

The immobility of cells in plant tissues makes the combination of the control of the cell cycle, 45 

and orientation of the division plane, the key factors defining cellular organization (Meyerowitz, 46 

1997). Given these constraints, asymmetric divisions are sufficient to generate novel 47 

arrangements (De Smet and Beeckman, 2011; Dong et al., 2009; Smith, 2001). Several 48 

examples of this include the formation of stomata (Raissig et al., 2017), the creation hypophysis 49 

during embryo development (Schlereth et al., 2010), and cell divisions leading to cortical and 50 

endodermal cell layers during root development (DiLaurenzio et al., 1996).  51 

These studies provide detailed and mechanistic insights as to how local arrangements of cells 52 

are generated. How these groups of cells come together to form a global integrated system of 53 

interacting cells at the organ scale, is less well understood. The functional consequences 54 

cellular organization has on organ function and structure-function relationships at this scale also 55 

represents a knowledge gap. In order to address these questions, a discrete and quantitative 56 

approach to extract and analyze cellular architecture is required.  57 

Anatomical analyses have historically provided largely qualitative descriptions of tissues, with 58 

quantitative approaches to analyzing structure rapidly being developed. Methods to analyze cell 59 

shape (Pincus and Theriot, 2007; Sánchez-Corrales et al., 2018), curvature across organs 60 

(Kierzkowski et al., 2012), and root systems (Fang et al., 2013) in quantitative ways have been 61 

applied previously. Gaps remain in understanding organ level organizational properties at a 62 

cellular level. 63 

An approach that has been transformative to understanding nervous system structure and 64 

function is that of cellular interaction mapping (Ramon y Cajal, 1911) and “connectomics” 65 
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(Sporns et al., 2005). By performing cellular interaction mapping of neurons, the organizational 66 

properties of nervous systems, and function of individual neurons, has been predicted (Chalfie 67 

et al., 1985).  68 

In this article an extension of connectionist approaches to analyzing cellular organization is 69 

proposed. This creates for a “systems biology of the organ”, opening the door to a host of 70 

investigative opportunities provided by network and complexity science.  71 

 72 

The origins of cellular interaction mapping 73 

The advent of cellular interaction mapping can be traced to Ramon y Cajal (Ramon y Cajal, 74 

1911). By staining tissues with a Golgi stain and performing light microscopy, Cajal was able to 75 

visualize the connections between individual neurons in various animal tissues. A more 76 

systematic approach was later taken to comprehensively map each of the 302 neurons and their 77 

connections within the worm C. elegans (White et al., 1986). This resulted in the production of 78 

the first “wiring diagram”, a network describing global neuronal connectivity (connectome) 79 

(Sporns et al., 2005). In the case of such an interaction network, cells are represented by 80 

nodes, and their physical associations as edges. The network-based analyses of this dataset 81 

has proven sufficient to predict the function of individual neurons in touch sensitivity (Chalfie et 82 

al., 1985), and motor control  (Yan et al., 2017). The only other completed neuronal connectome 83 

to date has come from the sea squirt, 30 years after that of C. elegans, and contains 177 84 

neurons (Ryan et al., 2016).  85 

The topological analysis of connectomes has been sufficient to predict the function of individual 86 

cells in nervous systems in C. elegans, demonstrating the ability to bridge structure-function 87 

relationships in cellular consortia using network science. While a neuron is one of many cell 88 

types which contribute to the construction of complex animals, many organisms including plants, 89 

don’t have nervous systems, and consist of collections of diverse cells types upon which 90 

information may be processed (Baluška and Levin, 2016; Bassel, 2018). The investigation of 91 

relationships between cell organization and function in non-neuronal systems remains largely 92 

unexplored. 93 

 94 

Organs as integrated systems of interacting cells 95 

Communication between cells underpins the emergent behaviour of organs (Solé and Goodwin, 96 

2000). Multicellular plants may therefore be viewed as integrated multicellular transport 97 

systems. In these systems, mobile information may be any developmentally instructive 98 

molecule, which can include mRNA (Lucas et al., 1995), miRNA (Carlsbecker et al., 2010), 99 
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proteins (Nakajima et al., 2001), ions (Knight et al., 1991), hormones (Swarup et al., 2001; Tal 100 

et al., 2016), and peptides (Ogawa et al., 2008). Networks describing the connectivity between 101 

cells capture the possible routes of information movement across the organ. 102 

Symplastic connections between cells, mediated by plasmodesmata, represent a primary 103 

means of information movement between cells (Brunkard and Zambryski, 2017; Fitzgibbon et 104 

al., 2013; Lucas and Lee, 2004). Cells also communicate through specific membrane-bound 105 

transporters, and their intercellular space termed the apoplast (Blilou et al., 2005). In these latter 106 

cases, the proximity between adjacent cells plays a key role in determining the destination of 107 

extracellular mobile information, making cellular proximity and association relevant in these 108 

instances as well. 109 

 110 

Abstraction of plant organs into cellular interaction networks 111 

In order to identify physical associations between cells in plant organs, image-based 112 

approaches may be applied (Figure 1). Imaging techniques involving clarification of fixed tissue 113 

provide a means to perform whole organ cellular resolution imaging that is otherwise limited by 114 

optical aberration of laser light (Kurihara et al., 2015; Palmer et al., 2015; Truernit et al., 2008). 115 

These techniques enable all cells in entire organs to be digitally captured in 3D from z-stacks 116 

using confocal microscopy. In contrast to neuronal connectomics which focuses on a single cell 117 

type, this approach focuses on all cells within the organ, providing a comprehensive approach to 118 

understanding global structure of these multicellular systems.  119 

The abstraction of these image volumes into networks describing cellular interactions requires 120 

computational image analysis (Bassel and Smith, 2016; Roeder et al., 2012; Roeder et al., 121 

2011).  Cells are segmented in 3D, and surfaces are defined using polygonal meshes (Cuno et 122 

al., 2004), leading to the identification of nodes in the network.  Cell surfaces which are in 123 

physical association with one another are identified, enabling the establishment of edges 124 

(Montenegro-Johnson et al., 2015). The geometric size of these shared intercellular interfaces 125 

can be quantified based on the amount of shared interface between cell pairs. The output of this 126 

analysis comes in the form of a text file describing the pairwise interactions between cells in the 127 

organ analyzed. 128 

The physical nature of this image analysis provides robust datasets, which are both accurate 129 

and reproducible (Jackson et al., 2017b; Yoshida et al., 2014). In contrast to other biological 130 

interaction network data which are often incomplete and subject to inaccuracies due to false 131 

positives and negatives (Von Mering et al., 2002), cellular interactome datasets capture all cells 132 

and interactions with high confidence due to the physical nature of the measurements. The 133 
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complete nature of these datasets (capturing the entire system) further provides powerful 134 

opportunities to perform quantitative network-based analyses to explore the system-wide 135 

properties with high confidence given no aspects of the system are missing. The further 136 

identification of cell types within cellular representations of organs, using for example 137 

3DCellAtlas (Montenegro-Johnson et al., 2015), enables cell type specific topological analyses 138 

to be performed (Jackson et al., 2017b). 139 

 140 

Topological analysis of plant cellular interaction networks 141 

Unlike animal tissues where cells move around, cells in plant organs are fixed in their position 142 

(Coen et al., 2004). This renders cellular organization topologically invariant, and simplifies the 143 

analysis of these static cellular arrangements. Cells are typically tessellated within plant organs, 144 

with some notable exceptions such as the leaf, where air spaces are formed. The lattice-like 145 

nature of these cellular arrangements provides templates upon which molecular events take 146 

place. 147 

The topological analysis of networks describing plant cellular organization can be performed at 148 

each local and global scales (Jackson et al., 2017a; Jackson et al., 2017b). The simplest local 149 

question that can be asked is how many direct neighbours a cell has. In network terminology, 150 

this is termed degree (Barabási, 2016; Newman, 2010), and measures how much local 151 

influence an individual cell has at a given location within an organ (Figure 2B). The degree of 152 

cells has been explored in the context of animal and plant epithelia previously, and described in 153 

terms of polygons (Carter et al., 2017; Gibson et al., 2006; Gibson et al., 2011; Sahlin and 154 

Jönsson, 2010). The polygonal count of these cells is a readout of their number of neighbours, 155 

and was demonstrated to converge on a distribution centering at the number six. The cell 156 

cleavage plane in the Drosophila imaginal wing disc and cucumber shoot apical meristem 157 

(SAM) was further shown to have a bias towards intersecting the neighbouring cell having the 158 

lowest degree, thus increasing the number of neighbours of this adjacent cell (Gibson et al., 159 

2011). It was proposed that this generative process leads to the maintenance of topological 160 

order in these tissues. 161 

While informative, degree does not capture the role of cells within the broader context of 162 

multicellular systems (Barabási, 2016). In light of the immobility and spatial constraints on these 163 

multicellular transport networks, the property of path length represents a biologically significant 164 

topological feature (Barthélemy, 2011). On a local scale, cells are only able to directly 165 

communicate with their immediate neighbours. On the global scale, cells are indirectly in contact 166 
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with one another through other intermediary cells, a property which may play a functional role in 167 

organ function. 168 

In traversing a network, optimal routing is to follow a shortest path between two nodes, 169 

representing the minimum number of edges travelled (Barabási, 2016; Newman, 2010). The 170 

same applies to plant organs where molecular movement within a cytoplasm is less costly than 171 

passing through cell interfaces. Cells which lie upon shortest paths between other pairs of cells 172 

are therefore able to control the flow of information across an organ.  173 

Network centrality measures have been developed which are capable of identifying nodes that 174 

lie upon a greater number of shortest paths between other pairs of nodes. Betweenness 175 

centrality (BC) uses prior knowledge of the complete network to calculate the shortest paths 176 

between all pairs of nodes (Freeman, 1977) (Figure 2C). Cells which lie upon a greater number 177 

of shortest paths between other cell pairs have a higher BC. 178 

Random Walk Centrality (RWC) does not use prior knowledge of the system to calculate 179 

shortest paths. Source nodes send out many random walkers and track which nodes are 180 

traversed until they reach their destination (Newman, 2005) (Figure 2D). Nodes which are 181 

traversed more frequently are given a greater RWC. Very large number of random walkers are 182 

required to identify high RWC paths as a minority of individual agents follow near-optimal routes 183 

due to their random motion. 184 

In the case of both BC and RWC, having a greater value increases the ability of a cell to control 185 

information flow across an organ as it identifies cells lying upon a greater number of shortest 186 

paths. This represents a biologically relevant property of organs in light of the system-wide 187 

communication which takes place. 188 

The application of global topological analyses including BC and RWC to plant connectomes is 189 

appropriate when these systems are fully represented, with all cells and interactions present. 190 

The ability to derive meaningful results from partial or inaccurate datasets using global 191 

calculations is limited given the global reach of these measures.  192 

The identification of a shortest path in a network without prior knowledge of its topology 193 

represents a complex logistical problem. This is equivalent to identifying optimal routes in 194 

navigating a city without a map. This scenario is encountered by tissues, as they do not have 195 

information as to where all other cells are located within an organ. A recently developed 196 

measure named Navigation Centrality (NC) (Seguin et al., 2018), analogous to Greedy 197 

Navigation (Muscoloni and Cannistraci, 2019; Muscoloni et al., 2017) provides a simple 198 

propagation rule that is able to identify near optimal shortest paths using only local information. 199 

By integrating the geometric information as to how nodes are embedded in space, progressive 200 
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steps following a gradient to a destination is followed (Figure 2E). NC therefore provides a 201 

biologically realistic calculation to identify optimal routes which are not provided by other 202 

measures such as BC and RWC. This centrality has yet to be applied to multicellular tissues 203 

outside of the nervous system, yet provides a promising approach in light of the nature by which 204 

the calculation is performed. 205 

Another biologically relevant consideration in the analysis of multicellular tissues is the efficiency 206 

by which they can exchange information (Barabási, 2016). This may be considered at each the 207 

local and global scales (Latora and Marchiori, 2001). The global measure considers how 208 

efficient a whole system is at transmitting information, while local efficiency quantifies the 209 

resilience of this information movement on a small scale in the face of individual failures. A 210 

tradeoff between global and local efficiency and the optimization between each of these in 211 

different contexts represents an important design feature in diverse transport systems, and 212 

provides another promising approach to understanding tissue architecture. 213 

Several caveats in the analysis of cellular interaction network datasets must be considered. 214 

Input datasets need to be carefully curated to ensure their maximal accuracy and completeness. 215 

The lattice-like nature of these networks and the small number of nodes and edges lead small 216 

inaccuracies to have large consequences on subsequent analyses. In order to achieve robust 217 

global path length-based analyses, fully accurate networks are required (Barthélemy, 2011). 218 

A second caveat lies with the nature of topological analyses performed. It necessary to consider 219 

the calculation that is made and its relevance to biology. How a cell calculates its number of 220 

neighbours remains an outstanding question (Gibson and Gibson, 2009), while centralities such 221 

as BC are not biologically feasible as plants lack maps of their cellular organization (Baluška 222 

and Levin, 2016). Despite the biological challenges associated with both degree and BC, their 223 

measurement still provides important insight into the organization of cells in organ, while the 224 

manner in which they are interpreted requires the appropriate caution. 225 

 226 

Structural and functional networks 227 

The capture and abstraction of global cellular interactions into networks is analogous to the 228 

creation of a map describing a transport system such as a rail network (Barthélemy, 2011). All 229 

the routes of possible movement are described by the representation.  230 

In the context of cellular interactomes, these are termed structural networks, and describe the 231 

possible routes of information flow across an organ (Figure 3A) (Bullmore and Sporns, 2009). 232 

Following this rail system analogy, these maps do not provide a schedule indicating the 233 
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timetable or speed of the trains. In order to achieve this, functional annotation of the map with 234 

additional information is required.  235 

A functional network is a structural network that has been annotated with additional dimensions 236 

of data (Bullmore and Sporns, 2009) (Figures 3B-C). In the case of a plant connectome, 237 

functional annotation could include information relating to either the nodes (cells) (Figure 3B) or 238 

the edges (interfaces) (Figure 3C), or both, depending on what is being investigated.  239 

Node annotation may include different data types, including for example the abundance of a 240 

protein within a cell, or the intensity of a biosensor. The application of these data to the network 241 

involves the additional of a value to an individual node (Figure 3B).  242 

Edge annotation may include the presence and/or abundance of a transporter, the abundance 243 

of plasmodesmata/pit fields on cell interfaces, or the size of cell interfaces. Functional 244 

annotation of plasmodesmata aperture can also be evaluated by measuring the rates of 245 

movement of fluorescent molecules between adjacent cells (Gerlitz et al., 2018). The application 246 

of these data to a network data structure involves the addition of values to edges (Figure 3C).  247 

Understanding each the abundance and aperture of plasmodesmata on intercellular interfaces 248 

is central to understanding system-wide organ communication. While structural templates 249 

provide routes of possible information flow, functional annotation represents that which is 250 

observed to occur. With this in mind, two cells which are physically associated are not 251 

necessarily communicating. In order for that to occur there both needs to be plasmodesmata 252 

present, and they also need to be open. Symplastic connections are dynamic and change 253 

across plant development (Rinne et al., 2001; Rinne et al., 2011), indicating that functional 254 

annotation itself is temporal in nature (Holme and Saramäki, 2012). 255 

The functional annotation of plant connectomes may be greatly aided by techniques involving 256 

the gel-based embedding of tissues including PEA-CLARITY (Palmer et al., 2015). This 257 

technique enables the repeated localization of molecular components within tissues through 258 

repeated rounds whole mount in situ hybridization using antibodies and/or oligonucleotides. 259 

Samples may repeatedly be stripped and reprobed, analogous to a western blot membrane. 260 

This provides a highly multidimensional functional annotation with multiple rounds of probing of 261 

the same sample, and transcends the limits imposed by resolving individual fluorophores using 262 

confocal microscopy.  263 

With the functional annotation of networks comes additional values which can be integrated into 264 

centrality measurements. These centralities are in turn calculated using these “weighted” 265 

values, and simultaneously integrate both the organization of cells and their functional 266 

properties in the outputs. 267 
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 268 

Case study 1: the plant hypocotyl 269 

Global structural cellular interaction mapping has been applied to understanding the 270 

organization of cells in the plant hypocotyl (Jackson et al., 2017b). Following the germination of 271 

the embryo, cells in the hypocotyl elongate to promote seedling development, in the absence of 272 

cell divisions (Gendreau et al., 1997; Sliwinska et al., 2009). Similar to the root, cells in the 273 

hypocotyl have a radial and modular organization (Figure 4A). In both organs, two cell types are 274 

present in the epidermis: trichoblasts which produce hairs which promote nutrient uptake, and 275 

atrichoblasts which are adjacent to trichoblasts but do not produce hairs. Studies have 276 

uncovered detailed genetic mechanisms that lead to the formation of these two cell types, 277 

describing how epidermal patterning is generated (Dolan, 2005; Duckett et al., 1994). The 278 

functional relevance of the stereotyped pattern of these two cell types is less well understood. 279 

An attempt to bridge structure and function in epidermal cell organization was undertaken using 280 

a connectionist approach (Jackson et al., 2017b). Whole mount 3D imaging of fixed samples 281 

resulted in the capture and discretization of cellular connectivity in this organ. Individual cell 282 

types were identified (Figure 4A) (Montenegro-Johnson et al., 2015) in quadruplicate biological 283 

replicates enabling cell type specific topological analyses of patterning to be performed together 284 

with statistical analyses. 285 

In the Arabidopsis hypocotyl epidermis it was found that trichoblasts had more neighbours 286 

(higher degree) than atrichoblasts (Figure 4B). Contributing to this is their position above two 287 

underlying cortical cells, in contrast to atrichoblasts which are above one (Figure 4A). Path 288 

length calculation revealed that atrichoblasts have a higher BC than trichoblasts (Figure 4C). 289 

Despite having fewer neighbours, atrichoblasts lie upon a greater number of shortest paths than 290 

their counterparts. This represents a non-intuitive higher-order property of epidermal patterning 291 

in the hypocotyl, and the presence of conduits of reduced path length along the longitudinal axis 292 

of this organ.  293 

The functional relevance of these conduits of reduced path length was examined by placing 294 

seedlings onto media containing fluorescein and imaging using confocal microscopy to identify 295 

where it moves (Duran-Nebreda and Bassel, 2017b). Bulk molecular movement of the 296 

fluorescein molecule followed the identified shortest paths through the hypocotyl via the 297 

atrichoblast cell type (Figure 4D). Given a map of global cellular organization, BC is therefore 298 

sufficient as a topological proxy to predict molecular movement at single cell resolution through 299 

this complex multicellular plant system. The means by which this shortest path calculation is 300 
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performed in the biological context remains enigmatic, with Navigation Centrality providing a 301 

promising approach to understand how this may be achieved (Seguin et al., 2018). 302 

These observations provide a potential link between structure and function in epidermal cell 303 

patterning in the hypocotyl in Arabidopsis. Each hair cell promotes solute uptake, and is flanked 304 

by 2 non-hair cells. The higher-order organization of non-hair cells facilitates them for the 305 

optimized longitudinal movement of molecules. A division of labour is therefore implemented 306 

whereby hair cells perform nutrient uptake, while non-hair cells aid transport (Figure 4E). This 307 

enables intracellular solute concentration to be kept low in trichoblast cells facilitating their 308 

uptake function, while providing optimized conduits for molecular movement on the surface of 309 

the organ. In this example, the analysis of a structural network alone is sufficient to predict cell 310 

function in the hypocotyl epidermis.  311 

Analyses of biological quadruplicates from 3 different Arabidopsis ecotypes identified 312 

statistically significant genotype-specific differences epidermal path length (Jackson et al., 313 

2017b). This demonstrates the presence of conserved emergent patterning properties at each 314 

the local and global scales in the hypocotyl, and the ability to reliably perform quantitative 315 

analyses of cellular global organization in plants using connectionist approaches. It further 316 

highlights the presence of patterning plasticity within the epidermis of the Arabidopsis hypocotyl 317 

in different genetic backgrounds which have higher-order organizational consequences. This 318 

plasticity may provide a means for modulating adaptive fitness at the organ design level in light 319 

of these structure-function relationships. 320 

 321 

Case study 2: the developing plant embryo 322 

Early embryo development in Arabidopsis was also investigated using a connectionist approach 323 

previously (Yoshida et al., 2014). The topological analysis of the 16 cell embryo was performed 324 

with a view to understanding how pairs of cells are connected to one another. To address this, 325 

the frequency of shared neighbours, the number of shared 1st degree connections between 326 

pairs of nodes (Assenov et al., 2007), was determined. This represents a mesoscopic analysis 327 

of the connectedness of a system. 328 

Wild type embryos (Figure 5A) were compared with transgenic individuals expressing the 329 

IAA12/BODENLOS (BDL) gene (Figure 5B), which is a  repressor of the AUXIN RESPONSE 330 

FACTOR5 named MONOPTEROS (MP) (Hamann et al., 2002). MP has been demonstrated to 331 

carry defects in embryo patterning (Hardtke and Berleth, 1998), and plays a role in mediating 332 

the contribution of the hormone auxin towards creating this structure. BDL was placed under the 333 

control of the RPS5A promoter (RPS5A::bdl), supporting high level expression in the embryo. 334 
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The number of shared neighours in the transgenic RPS5A::bdl expressing line was greater than 335 

that of the wild type embryo, indicating an overall increase in the connectedness of this system 336 

(Figure 5C). This provided a quantitative link between auxin signaling mediated by MP and the 337 

organization of cells in the developing embryo. The analysis of biological triplicate samples 338 

supported the robustness these mesoscale patterning properties in this tissue.  339 

 340 

Case study 3: the plant shoot apical meristem 341 

A recent study topologically investigated the organization of cells within the SAM at both local 342 

and global scales (Figure 6A) (Jackson et al., 2019). Time lapse live imaging was performed to 343 

examine the relationship between cellular organization and the control of the cell cycle. Cellular 344 

connectivity networks of cells in the SAM were extracted from images, and the topological 345 

dynamics of this network was established using image registration and lineage tracking (de 346 

Reuille et al., 2015; Fernandez et al., 2010). 347 

Cells were separated into 3 classes: those which do not divide, cells which will divide, and 348 

daughter cells following divisions (Figure 6B). The volume of cells was capable of discriminating 349 

between these size classes, consistent with previous reports describing a size control 350 

mechanism for cells in the SAM (Jones et al., 2017; Willis et al., 2016). While cell shape 351 

(anisotropy) did not discriminate whether or not a cell would divide, the number of neighbours 352 

(degree) did, along with the number of shortest paths a cell lies upon (BC and RWC) (Figure 353 

6B). These data demonstrated cells in the SAM to be undergoing both geometric and 354 

topological cycling. 355 

These observations further suggested that topology can be used to identify when a cell will 356 

divide, as cells that lie upon an increasing number of shortest paths are more likely to undergo a 357 

division. Following this division, the number of shortest paths the daughter cells is limited 358 

(Figure 6B), opening the possibility that the placement of a cell division plane may be predicted 359 

based on the global topology of the tissue.  360 

Computational analysis of cell division planes based on the minimization of the degree and 361 

RWC of daughter cells was performed, along with the local geometric rule from Errera that 362 

divides a cell in half using the shortest possible wall which passes through the middle (Besson 363 

and Dumais, 2011; Errera, 1888) (Figure 6C). The local geometric rule of Errera and the global 364 

topological RWC Minimizing rule were found to largely both predict the same division plane, and 365 

show similar deviations from observed division planes (Figure 6D). The results collectively 366 

suggested that the local shape of a cell within the SAM predisposes it for a shortest wall division 367 

plane that also satisfies the minimization of RWC in the daughter cell 368 
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Intercellular interactions play a key role in the control of cell shape in plant tissues with cells 369 

being connected through shared cell walls (Coen et al., 2004). The microtubule severing protein 370 

KATANIN1 (KTN1) has been demonstrated to mediate mechanical interactions between cells 371 

and regulate morphogenesis of the SAM (Uyttewaal et al., 2012). Geometric analysis of cell 372 

shape in the ktn1 SAM demonstrated these to be more anisotropic that their counterparts in the 373 

wild type (Figure 6G) which in turn led to cells lying upon more shorter paths, based on 374 

increased RWC (Figure 6H). Mechanical interactions between cells therefore generate the cell 375 

shapes required for a local shortest wall division that in turn leads to the minimization of RWC in 376 

their cells (Figure 6I). 377 

This mechanical feedback onto cell geometry and emergent generation of a tissue with 378 

minimized RWC identifies how local rules can lead to global properties. It further provides an 379 

example of complexity for free, whereby an emergent global system feature arises from simple 380 

local interactions. This example of emergent global topological order in the Arabidopsis SAM 381 

may extend to other tissue contexts, where division rules may either increase or limit the path 382 

length the daughter cells lie upon following their division.  383 

The function implication of the minimization of RWC (maximization of path lengths traversed) 384 

across the SAM represents an optimization for the robustness of the system (increased local 385 

efficiency) at the cost communication speed (global efficiency), as no individual cells lie in 386 

privileged positions to facilitate rapid communication across the tissue. This may in turn impact 387 

the behaviour of this multicellular system in the face of perturbation, or internal failure. 388 

Topological homogeneity in the SAM also correlated with robustness in phylotaxis, as 389 

perturbations were observed in the ktn1 mutant. 390 

 391 

Bridging molecular and cellular scales 392 

A quantitative approach to the analysis of cellular organization provides the opportunity to 393 

identify the consequences of altered arrangements in patterning mutants at local and global 394 

scales. In instances where the gene responsible for changes in cellular patterning is known, this 395 

represents a quantitative bridging of the molecular and cellular scales of plant development 396 

(Duran-Nebreda and Bassel, 2017a). 397 

Examples of this have been described above, where a link between auxin-mediated signaling 398 

and connectivity in the 16 cell Arabidopsis embryo was identified (Figure 5C) (Yoshida et al., 399 

2014), and mechanical feedbacks mediated by KATANIN1 control cell shape and the path 400 

length upon which cells lie in the SAM (Figures 6G-I) (Jackson et al., 2019). These examples 401 
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provide quantitative links between genetic agents and the cellular configurations they contribute 402 

towards generating. 403 

Ecotype-specific differences in the Arabidopsis hypocotyl were also identified with respect to the 404 

path length upon which epidermal cells lie (Jackson et al., 2017b). The functional relevance of 405 

these differences was demonstrated through the use of fluorescein transport assays which 406 

identified the preferential movement of molecules along cells lying upon shortest paths in this 407 

tissue. This relationship was faithfully followed across ecotypes having divergent path length 408 

differences between epidermal cell types. 409 

Further quantitative analysis of altered cellular configurations were performed using Arabidopsis 410 

hypocotyls and the patterning mutants CYCLIN DEPENDENT KINASEA1;1 (CDKA1;1) 411 

(Dissmeyer et al., 2009) and MP (Schlereth et al., 2010). CDKA1;1 was found to have equal BC 412 

between hair and non-hair cells, while the BC of both epidermal cells types MP is significantly 413 

greater than the equivalent wild-type.  414 

 415 

Genotype-phenotype mapping and meso scale analyses 416 

The ability to map genotype to phenotype represents a grand challenge in biology. The 417 

measurement of each genotype through sequencing, and downstream macro outputs through 418 

phenotyping, enables links between the molecular and organismal scales (Atwell et al., 2010). 419 

Our ability to do this in a predictive fashion remains limited, and may be due to gaps in our 420 

understanding as to the mechanistic basis by which genetic changes lead to phenotypic 421 

consequences. One means to bridge this gap is through the study of the “meso” scales of 422 

development, representing the events which occur between genotype and phenotype. These 423 

include, but are not limited to, intracellular behaviour, cellular organization, inter-organ 424 

communication, and how each of these in turn interact with the environment.  425 

A quantitative view of organ architecture, and the pursuit of investigation to understand the 426 

functional consequences of cellular configurations, may contribute towards the bridging of 427 

scales and predictive genotype-phenotype mapping. An example of this potential is provided by 428 

the identification of ecotype-specific differences in epidermal patterning across ecotypes of the 429 

Arabidopsis hypocotyl (Jackson et al., 2017b). These differences had consequences in terms of 430 

the bulk movement of small molecules, and suggests the higher order properties of cellular 431 

organization may represent an axis upon which natural selection acts to optimize plant fitness. 432 

Further work in this area is required to establish the extent to which this occurs in different 433 

organs and species. 434 

 435 
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Single cell sequencing and organ topology 436 

The ability to sequence individual cells across whole organs is providing unparalleled insight 437 

into the heterogeneity of gene expression within individual cell types, and the developmental 438 

trajectories they take as they acquire their identity (Birnbaum, 2018). While powerful, these 439 

approaches require the dissociation of tissue to isolate single cells for sequencing. If one seeks 440 

to understand how cells come together to create a functional integrated organ system, this loss 441 

of positional information and their relationships presents a boundary to achieving a 442 

multidimensional understanding.  443 

The ability to perform single cell sequencing on intact tissue where relationships between cells 444 

are preserved would reconcile this gap. This was recently achieved in moss through the use of 445 

microcapillary manipulation (Kubo et al., 2018). Further technological advances promise to 446 

bridge this gap, including the integration of landmark genes (Halpern et al., 2017). 447 

 448 

Towards the principles of organ design  449 

The ability to abstract and discretize patterning into networks enables quantitative comparisons 450 

between diverse genotypes and species to be performed (Avena-Koenigsberger et al., 2015). 451 

The topological analysis of these distinct datasets coupled with statistical analyses may lead to 452 

the identification of shared and divergent properties in organ design, paving the way for an 453 

understanding of the principles of cellular architecture. Elucidating how cells come together to 454 

form organs, and how those arrangements shape and constrain tissue function is central to 455 

understanding multicellular complexity. Identifying properties that emerge “for free” by virtue of 456 

cells being embedded in space, versus the mechanisms that underpin deviations from these 457 

default configurations, represent key objectives in understanding multicellular development and 458 

realizing rational morphogenetic engineering (Doursat et al., 2012; Solé et al., 2018). 459 

 460 

Concluding remarks 461 

The application of connectionist approaches holds promise for plant developmental biology. The 462 

construction of whole organ structural networks has begun, and paves the way for their 463 

functional annotation by the collective efforts of the community. In this way, the manner by 464 

which cells and molecules interact to create an integrated system will increase our 465 

understanding of plant development. The bridging of scales from molecules to organs may 466 

facilitate quantitative genotype-phenotype mapping. The translational promise of this approach 467 

lies with its application to crop species, to which technical boundaries do not limit this extension. 468 
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By understanding the context in which genetic programs act and how they emerge to create 469 

phenotypes, rational and predictable crop engineering may be achieved. 470 

 471 
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 476 

TABLES  477 

Method Marker 
Visualization 

Number of 
channels 
that can be 
visualized 

Vital Marker 
Visualization 

Subcellular 
resolution 

Reference 

mPA-PI GUS 1 No No (Truernit et al., 2008) 
ClearSee Fluorescent 3-4 Yes Yes (Kurihara et al., 2015) 
PEA-
CLARITY 

Fluorescent 24+ Yes Yes (Palmer et al., 2015) 

 478 

Table 1. Summary of whole mount 3D imaging techniques for generating organ-wide cellular 479 

resolution images. 480 

 481 

FIGURE and TABLE LEGENDS 482 

Table 1. Summary of whole mount 3D imaging techniques for generating organ-wide cellular 483 

resolution images.  484 

Figure 1. Workflow used to generate and analyse plant cellular interaction networks. 485 

Figure 2. Schematic illustrating topological analyses of cellular interaction networks. (A) 486 

Extraction of a connectivity network from a hypothetical network. (B) Degree is the number of 487 

neighbours a cell has. (C) Betweenness centrality (BC) uses prior knowledge of the network to 488 

find which nodes lie upon shortest paths between all other pairs of nodes. (D) Random Walk 489 

Centrality (RWC) uses multiple random walkers to identify which cells lie upon shortest paths 490 

between pairs of nodes. This does not use prior knowledge of the network to identify cells lying 491 

upon shortest paths. (E) Navigation Centrality (NC) identifies near optimal shortest paths by 492 

using local knowledge of a network while following a gradient to a destination node. 493 

Figure 3. Illustrations highlighting differences between structural and functional networks. (A) 494 

Structural network of a hypothetical tissue. (B) Functional annotation of cells (nodes) in the 495 

network from (A) with the abundance of a cellular factor. The greyscale is proportional to the 496 

abundance of this hypothetical component, indicated by the scale bar to the right having 497 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 
 
Bassel         Organ systems biology   Page 17 

arbitrary units. (C) Functional annotation of cell interfaces (edges) using the size of cell 498 

interfaces as a weighting. The size of the line width is proportional to the value. 499 

Figure 4. Topological analysis of cellular organization in the Arabidopsis hypocotyl. (A) 500 

Annotation of cell types. (B) False colouring of cell degree. (C) False colouring of cell BC. (D) 501 

Concentration of fluorescein in distinct epidermal cell types of the hypocotyl. False colouring 502 

shows the relative concentration of fluorescence in each atrichoblast (a) and trichoblast (t) cells. 503 

(E) Model illustrating the division of labour between cell types in the hypocotyl epidermis. Large 504 

red arrows indicate the entry of solutes through hair cells (t). Small red arrows indicate the 505 

movement of solutes into adjacent non-hair cells (a) and their longitudinal movement is depicted 506 

by orange arrows. 507 

Figure 5. Topological analysis of cellular organization in the 16 cell Arabidopsis embryo. (A) 508 

Connectivity network of the wild type 16 cell embryo and (B) the RPS5A::bdl expressing 509 

embryo. Cells (nodes) on the outside of the embryo are coloured green and those within the 510 

embryo yellow. The hypohysis is red and supensor is in cyan. (C) Frequency distribution of 511 

shared neighbours between the wild type and RPS5A::bdl expressing embryo. Error bars 512 

represent the standard deviation of biological triplicates. 513 

 514 

Figure 6. Topological analysis of the Arabidopsis SAM. (A) Confocal stack of the SAM and 515 

extraction of a cellular connectivity network of the central region. (B) Geometric and topological 516 

cycling of cells which do not divide, cells which will divide, and cells which have divided in the 517 

SAM. (C) Computational prediction of cell division planes based on a local geometric rule 518 

(Errera), a rule which minimizes the degree of daughter cells, and a rule which minimizes the 519 

RWC of daughter cells. (D) Degree deviation from the observed cell division plane for each rule 520 

tested in (C). (E) Confocal image of the surface of a wild type SAM and (F) ktn1 SAM. (G) 521 

Frequency distribution of cell anisotropy in the cells of the wild type and ktn1 SAM. (H) Same as 522 

(G) for the RWC of cells. (I) Model describing emergence of global order in the SAM from the 523 

sensing of intercellular interactions by the cytoskeleton to minimization of RWC across the 524 

system. 525 

of intercellular interactions by the cytoskeleton to minimization of RWC across the system. 526 

 527 
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