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Abstract

According to one prominent strand of mainstream logic and metaphysics, identity is
indistinguishability. Priest has recently argued that this permits counterexamples to
the transitivity and substitutivity of identity within dialetheic metaphysics, even in
paradigmatically extensional contexts. This paper investigates two alternative reg-
imentations of indistinguishability. Although classically equivalent to the standard
regimentation on which Priest focuses, these alternatives are strictly stronger than it
in dialetheic settings. Both regimentations are transitive, and one satisfies substitu-
tivity. It is argued that both regimentations provide better candidates to occupy the
core theoretical role of numerical identity than does the standard regimentation.

1 Introduction

According to one prominent strand of mainstream logic and metaphysics, numerical iden-
tity satisfies each of the following:1

Substitutivity of Identicals (SI) a = b,ϕx(b) ⊢ ϕx(a)

1 Notation and terminology. → is the material conditional, with ϕ → ψ definitionally equivalent to
¬ϕ ∨ ψ. ↔ is the material biconditional, with ϕ ↔ ψ definitionally equivalent to (ϕ → ψ) ∧ (ψ → ϕ). ∀X is
the second-order universal quantifier, with X a variable of the syntactic type of monadic predicates. ϕ and ψ
are schematic letters for formulae. a, b, and c are used ambiguously, sometimes as constants and sometimes
as schematic for any constant or variable of the syntactic type of singular terms. For each formula ϕ, variable
v, and constant c of the same syntactic type as v, ϕv(c) is the result of replacing each free occurrence in ϕ of
v with an occurrence of c; for example, (x = c)x(b) is b = c, and XaX(F) is Fa. Γ ⊢ ϕ says that formula ϕ
is derivable from the collection Γ of formulae. A consequence relation |= validates Γ ⊢ ϕ iff Γ |= ϕ. I am
sloppy with use/mention where there is no danger of confusion, allowing context to disambiguate, and I omit
quotation marks around formal vocabulary unless absolutely necessary.
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Transitivity of Identity (TI) a = b, b = c ⊢ a = c.

Identity is Indistinguishability (II) Numerical identity is indistinguishability, understood
as complete sharing of properties.

These theses are closely related. TI is an instance of SI where ϕ is x = c, and therefore
follows from SI. Moreover, both SI and TI are valid in classical logic, if the standard second-
order regimentation of indistinguishability as ∀X(Xa ↔ Xb) is used to define the identity
sign. Since II appears to license that definition, II appears to validate SI and TI.

Perhaps themost controversial of the above principles is II. Doubts flow primarily from
two sources.2 One concerns putative examples of numerically distinct indistinguishable
objects. The other concerns putative circularities arising from identifying numerical iden-
tity with, or grounding it in, indistinguishability. My own view is that this second kind
of consideration is compelling, though I won’t go into details here. My present claim is
not that II is true, or unproblematic, or even close to universally accepted; I claim only
that II, together with SI and TI, belongs to a prominent, reasonably mainstream, and not
obviously false conception of identity. I propose simply to bracket doubts about II here, in
the interest of exploring the view that results.

In a series of papers culminating in his recent bookOne, GrahamPriest uses a dialetheic
theory of identity on which II holds and yet both SI and TI are invalid to challenge this
mainstream package of views (Priest 2009, 2010a,b, 2014). Although putative counterexam-
ples to SI abound, notably involving attitude ascriptions and intensional operators, Priest’s
theory permits failures of SI and TI in even paradigmatically extensional contexts. He ar-
gues persuasively that these failures of SI and TI allow for elegant and unified solutions to
a cluster of seemingly intractable metaphysical problems concerning the unity of propo-
sitions and other objects, intentionality, change, modality, vagueness, fission, and fusion.3

This amounts to a powerful new case for dialetheism. Whereas standard motivations for
dialetheism—the classic being (Priest 2006)—come largely (though not quite exclusively)
from logic and semantics, this one draws on squarely metaphysical considerations. The
conception of identity as satisfying II whilst invalidating both SI and TI is central to this
case.

To see why II is so important, consider the following natural objection: Priest’s view
simply changes the subject by using the identity sign to express a non-transitive identity-
like relation, rather than the transitive relation of identity properly so-called. That’s where
II comes in; it blocks this objection by ensuring that these rival views assign different
logical properties to the same relation of indistinguishability, as defined in the standard
second-order way, rather than merely differing over which relation they use to interpret
the identity sign. Classical and dialetheic metaphysicians may both agree that II is true,

2 For discussion and references, see, e.g. (Forrest 2016; Hawley 2009; Hawthorne 2003; Noonan and Curtis
2018).

3 See (Jones 2018) for more on Priest’s account of the problem of unity, and two consistent solutions to it.
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agree on the standard second-order regimentation of indistinguishability, and yet disagree
on the logical properties of the relation thereby defined.

I will argue that this new metaphysical case for dialetheism fails. The problem is that,
in dialetheic metaphysics, the standard second-order regimentation of indistinguishability
does not capture II’s intended notion. According to the intended notion, indistinguishable
objects are not distinguished by their properties. But in dialetheic settings, the standard
second-order regimentation of indistinguishability as ∀X(Xa ↔ Xb) allows for properties
that distinguish a from b.

This doesn’t in itself undermine the metaphysical case for dialetheism. If the standard
regimentation captures the strongest definable relation of indistinguishability, perhaps
this is just a discovery about indistinguishability within dialetheic metaphysics: indistin-
guishable (hence, by II, identical) objects may be differentiated by their properties. Al-
though that’s surprising and non-standard, so is dialetheism. And once you’ve admitted
true contradictions, why not also admit indistinguishables whose properties differentiate
them?

However, within dialetheic metaphysics, the strongest definable relation of indistin-
guishability is not captured by the standard regimentation ∀X(Xa ↔ Xb). In §3, I present
two alternative regimentations of indistinguishability which, although classically equiv-
alent to the standard regimentation, are strictly stronger than it in dialetheic settings. If
the first regimentation is employed in II, then TI but not SI is valid. And if the second
regimentation is employed in II, then both TI and SI are valid. I argue in §4 that only
this second regimentation defines a relation that can occupy the core theoretical role of
numerical identity. It follows that the non-transitive relation defined by ∀X(Xa ↔ Xb) is
not numerical identity, and is therefore irrelevant to the identity-involving metaphysical
problems mentioned above.

Unlike previous dialetheic attempts to validate SI and TI in the presence of II, notably
(Cobreros et al. 2013, 2014), my approach is compatible with Priest’s preferred paraconsis-
tent logic LP, and with attractive meta-rules like the transitivity of entailment. My focus
throughout is on what are normally regarded as extensional contexts, setting intensional
operators and attitude ascriptions aside as raising complications not central to the present
investigation; for Priest’s system permits failures of SI and TI not involving intensionality
or the attitudes.4

4 The mechanisms responsible for failures of SI and TI in Priest’s system fundamentally differ between
extensional and intensional contexts. In intensional contexts, SI and TI fail because many functions from
worlds to extensions are not in the second-order domain. The specifically dialetheic aspect of the semantics
is irrelevant, in that failures of SI and TI for intensional contexts remain even if the underlying non-modal
logic is classical because all properties are classical (i.e. extension and anti-extension are exclusive as well as
exhaustive at every world). However, if every property is classical and every formula defines a property, fail-
ures of SI and TI vanish for intensional contexts. By contrast, if all properties are classical, Priest’s semantics
permits no failures of SI and TI in extensional contexts; but if properties are not all classical, failures of SI and
TI for extensional contexts remain even if all formulae define properties. See §3.6 and (Priest 2014: 35–7) for
details of some of these claims.
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2 From indistinguishability to substitutivity

Our first task is to regiment the notion of indistinguishability, or complete sharing of
properties, i.e.: every property of a is a property of b, and conversely. This quantification
over properties is naturally regimented as second-order quantification. Our first notion of
indistinguishability is then defined thus:

a is weakly indistinguishable from b =df ∀X(Xa ↔ Xb).

I will assume for the time being that the notion of indistinguishability employed in II is
weak indistinguishability. If II is true thus interpreted, the identity sign can be introduced
with its intended interpretation into a second-order language without it, by defining a = b

as ∀X(Xa ↔ Xb). When the identity sign is defined in this way, SI and TI are valid in
classical second-order logic.

Priest advocates a paraconsistent logic (LP) within which this definition of identity
does not validate SI or TI. He also provides a corresponding model-theoretic semantics
for the language of second-order logic which supplies countermodels to, and thereby in-
validates, both SI and TI when the identity sign is defined by weak indistinguishability; I
describe some such countermodels in §3.4 and §3.5. Instead, this semantics validates only
the following weaker substitutivity principles:

Material SI (MSI) a = b ⊢ ϕx(b) → ϕx(a)

Material TI (MTI) a = b ⊢ b = c → a = c

MTI is an instance of MSI where ϕ is x = c, and therefore follows from MSI.
At a first pass, one might expect that SI and TI follow fromMSI andMTI. For one might

expect that one can use MSI to argue from the left of SI to its right, thus:

1. Suppose: a = b

2. Suppose: ϕx(b)

3. By 1, MSI: ϕx(b) → ϕx(a).

4. By 2, 3, modus ponens: ϕx(a).

However, this argument fails because modus ponens (i.e. ϕ,ϕ → ψ ⊢ ψ) is invalid in One’s
paraconsistent system.

The model theory adopted in One invalidates modus ponens because it permits models
in which (a) ϕ is true, (b) ϕ → ψ is true, and yet (c) ψ is false. The trick is to permit
models that make some formulae both true and false, as well as to make ϕ → ψ true in a
model whenever ϕ is false in that model including whenever ϕ is both true and false in the

model. When ϕ is both true and false, (a) holds because ϕ is true, and (b) holds because ϕ
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is false. But (c) may also hold because merely making ϕ true and false is irrelevant (in this
semantics) to whether any other, arbitrarily chosen and potentially unrelated formula ψ
is true. §3.2 onwards discusses this semantics in more detail.

We’ve seen where the arguments fromMSI andMTI to SI and TI break down in Priest’s
setting. Let’s now see why MSI and MTI are valid, if identity is defined as weak indistin-
guishability.5

Thematerial conditional ϕx(b) → ϕx(a) fails to be true on Priest’s semantics iff ϕx(b) is
true and not also false, and ϕx(a) is false and not also true. Call any such ϕ a differentiating
formula for a and b; when it’s of the form Px, call it a differentiating predication for a and
b.

A negation ¬ϕ is a differentiating formula for a and b only if ϕ is. A conjunction ϕ∧ψ,
disjunction ϕ ∨ ψ, or conditional ϕ → ψ is a differentiating formula for a and b only if at
least one of ϕ and ψ is. And a generalisation ∀xϕ or ∀Xϕ is a differentiating formula for a
and b only if at least one of its instantiations ϕx(t) or ϕX(P) is. All formulae are recursively
built from predications Pt using the connectives and quantifiers just mentioned. So there
are no differentiating formulae for a and b unless there are differentiating predications for
a and b.

If ∀X(Xa ↔ Xb) is true, there are no differentiating predications for a and b (or for b
and a). Intuitively, any such predication requires a property true and not also false of b, as
well as false and not also true of a, whereas ∀X(Xa ↔ Xb) says that every property is true
of both a and b or false of both a and b (but doesn’t preclude some properties also being true
of one and yet false of the other). So if ∀X(Xa ↔ Xb) is true, there are no differentiating
predications and hence no differentiating formulae for a and b. This validates MSI and
hence also MTI if the identity sign is defined as weak indistinguishability. One can also
run this argument in classical second-order logic, wheremodus ponens is valid; so this also
explains why defining identity as weak indistinguishability validates SI and TI in classical
second-order logic. Although this argument was couched in relatively informal terms, it’s
straightforward to check that the model theory described in §3.2 verifies the preceding
claims.

3 Strong and super-strong indistinguishability

Because weak indistinguishability is defined from the material conditional, its properties
depend on those of the material conditional. If II concerns weak indistinguishability, this
makes the logic of identity, including the validity of principles like SI, dependent on the
logic of the material conditional, and in particular on the validity of modus ponens. As we

5 See (Priest 2014: 30–31) for a more detailed argument. A simpler argument is available given unre-
stricted λ-conversion or second-order comprehension. Yet these are valid only if every formula determines a
corresponding property, which Priest (2014: 24–26) explicitly denies. Comprehension is discussed in §3.6.
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have seen, modus ponens is invalid for the material conditional in LP, which invalidates SI
and TI when the identity sign is defined by weak indistinguishability.

This section introduces two alternative notions of indistinguishability defined without
employing a conditional of any kind, material or otherwise. This makes their logic inde-
pendent of the material conditional’s. These notions of indistinguishability are conjunc-
tions of purely quantificational notions, whereas weak indistinguishability is a conjunc-
tion of partly quantificational and partly conditional notions. (In each case, the conjuncts
correspond to the two directions of the biconditional.)

If the first notion of strong indistinguishability is used to define the identity sign, TI but
not SI is valid. If the second notion of super-strong indistinguishability is used to define the
identity sign, TI and SI are both valid. So if one these notions is employed instead of weak
indistinguishability in II, then TI and perhaps also SI is valid. Although strong and super-
strong indistinguishability are classically equivalent to weak indistinguishability, they’re
strictly stronger than it in the present dialetheic setting. I use this last fact in §4 to argue
that both strong and super-strong indistinguishability are better candidates to occupy the
theoretical role of numerical identity than is weak indistinguishability.

3.1 Strong indistinguishability

To define strong indistinguishability, we need to supplement the language of second-order
logic with an irreducibly binary universal second-order quantifier. To understand what
this means, consider English generalisations of the form ‘all Fs are Gs’. In introductory
logic, we teach that this should be regimented as:

∀x(Fx → Gx)

The universal first-order quantifier ∀x here is unary in the following sense: it combines
with a single formula—in this case Fx → Gx—to form a sentence. According to the theory
of generalised quantifiers, not all quantifiers are unary (e.g. Peters and Westerståhl 2008;
Westerståhl 2016; Uzquiano 2018: §3.1). There are also binary quantifiers that combine
with two formulae to form sentences. The classic example is ‘most’: ‘most Fs are Gs’
cannot be adequately regimented using only F, G, unary quantifiers, and the usual logical
connectives. Yet this sentence can be adequately regimented using a binary quantifier
that takes both ‘Fx’ and ‘Gx’ as arguments. Sentences formed using this quantifier have
the form:

Most x(ϕ : ψ)

where ϕ occupies the quantifier’s first argument and ψ its second.
‘Most’ is not the only binary quantifier. There is also a binary universal quantifier:

∀x(ϕ : ψ). We can use this quantifier to regiment ‘all Fs are Gs’ thus:

∀x(Fx : Gx)



7

Unlike the familiar, orthodox regimentation, this one does not employ an extraneous log-
ical connective → not present in the surface form of English. It is thus a purely quantifi-
cational regimentation of ‘all Fs are Gs’, whereas the traditional regimentation is partly
quantificational and partly conditional.

Indistinguishability is complete sharing of properties: all properties of a are properties
of b, and conversely. We now have a choice in regimenting this. We can adopt the stan-
dard unary regimentation, obtaining weak indistinguishability. Or we can adopt a binary
regimentation. Because we are using second-quantifiers to regiment property-talk, this
second approach requires a binary second-order universal quantifier. With this to hand,
we define strong indistinguishability thus:

a is strongly indistinguishable from b =df ∀X(Xa : Xb) ∧ ∀X(Xb : Xa)

Is there really any difference these two notions of indistinguishability? Does the choice
of unary or binary universal quantification have semantic consequences? The rest of this
section provides intuitive reason to think so, before we turn to formal details in §3.2; we
focus on the first-order case for simplicity until then.

Intuitively, the truth of the unary generalisation ∀xϕ requires something of every ob-
ject in the domain, namely, that it satisfies ϕ. Thus the unary generalisation ∀x(Fx → Gx)

requires of every object in the domain that it satisfy the logically complex formula Fx →
Gx. By contrast, the truth of the binary generalisation ∀x(ϕ : ψ) requires something of
only those objects in the domain that satisfy ϕ; it requires nothing of objects that don’t
satisfy ϕ. Thus the binary generalisation ∀x(Fx : Gx) requires of every satisfier of Fx in
the domain that it also satisfy Gx; it requires nothing of the non-satisfiers of Fx, whereas
its unary counterpart requires that they also satisfy Fx → Gx. We now see the key seman-
tic difference between the binary and unary regimentations of ‘all Fs are Gs’: the binary
regimentation’s truth requires nothing of things that fail to satisfy Fx, whereas the unary
regimentation’s truth requires them to satisfy Fx → Gx. (Although that’s the key semantic
difference for this paper’s purposes, it’s not the only one: the unary regimentation’s truth
requires satisfiers of Fx to satisfy Fx → Gx whereas the binary regimentation’s truth only
requires them to satisfy Gx.)

In classical semantics, the unary and binary regimentations of ‘all Fs are Gs’ are mutu-
ally entailing. Suppose ∀x(Fx : Gx) is true, and hence that every satisfier of Fx also satisfies
Gx. Then every satisfier of Fx also satisfies Fx → Gx. And since every non-satisfier of Fx
satisfies ¬Fx, every non-satisfier of Fx also satisfies Fx → Gx. So everything satisfies
Fx → Gx and ∀x(Fx → Gx) is true. Conversely, suppose ∀x(Fx → Gx) is true, and hence
that everything satisfies Fx → Gx. There are two mutually exclusive ways of satisfying
that formula: by satisfying both Fx and Gx, or by satisfying ¬Fx. So if every object satisfies
Fx → Gx, every satisfier of Fx also satisfies Gx, thereby making ∀x(Fx : Gx) true.

In the dialetheic semantics described in §3.2, this equivalence breaks down. Oneway of
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satisfying Fx → Gx is to satisfy ¬Fx. But satisfaction of ¬Fx doesn’t preclude satisfaction
of Fx. So even if some satisfiers of Fx fail to satisfyGx theywill nonetheless satisfy Fx → Gx

if they also satisfy ¬Fx. The existence of any such objects prevents the binary ∀x(Fx : Gx)

from being true—since they satisfy Fx but not Gx—but not the unary ∀x(Fx → Gx) since
they satisfy Fx → Gx (though they also make it false, hence, if true, both true and false).
So the latter does not entail the former, and the binary is strictly stronger than the unary.

3.2 Semantics

We can make these ideas precise in a model-theoretic setting. I first summarise the seman-
tics in One, and then add an irreducibly binary second-order universal quantifier.

A model is a triple ⟨D1,D2, v⟩. D1 and D2 are non-empty sets: the domains of first-
and second-order quantification. There are no constraints on D1, except that it be non-
empty. Each element D of D2 is a pair ⟨D+,D−⟩ such that (a) D+ ⊆ D1, (b) D− ⊆ D1,
and (c) D+ ∪ D− = D1. These pairs represent properties of the individuals (represented
by the individuals) in D1, with D+ the property’s extension (comprising the things that
possess it) and D− its anti-extension (comprising the things that do not possess it). Note
that extension and anti-extension may overlap, though they jointly exhaust D1. v is a
valuation function taking constants c of the object-language to their semantic values v(c)
in the model. For singular term constants t, v(t) ∈ D1. For predicate constants P, v(P) ∈
D2, with v+(P) and v−(P) the extension and anti-extension respectively of v(P); that is,
v(P) = ⟨v+(P), v−(P)⟩. We work with monadic predicates only for simplicity.

Each formula of the language of monadic second-order logic without identity is as-
signed truth-conditions (⊩+) and falsity-conditions (⊩−) in each model m = ⟨D1,D2, v⟩:

(Pt+) m ⊩+ Pt iff v(t) ∈ v+(P)

(Pt−) m ⊩− Pt iff v(t) ∈ v−(P)

(¬+) m ⊩+ ¬ϕ iff m ⊩− ϕ

(¬−) m ⊩− ¬ϕ iff m ⊩+ ϕ

(∧+) m ⊩+ ϕ ∧ ψ iff m ⊩+ ϕ and m ⊩+ ψ

(∧−) m ⊩− ϕ ∧ ψ iff m ⊩− ϕ or m ⊩− ψ

(→+) m ⊩+ ϕ → ψ iff m ⊩− ϕ or m ⊩+ ψ

(→−) m ⊩− ϕ → ψ iff m ⊩+ ϕ and m ⊩− ψ

I omit ∨ and↔ because they’re definable from the connectives above and are not required
below. For the quantifiers, we consider an extension of the object-language with a new
constant term td for each d ∈ D1 and a new constant predicate PD for each D ∈ D2; we also
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extend the valuation v so that v(td) = d and v(PD) = D.6 Truth- and falsity-conditions
are then assigned to quantified sentences of the original language using sentences of the
extended language thus:

(∀+1u) m ⊩+ ∀xϕ iff, for all d ∈ D1, m ⊩+ ϕx(td)

(∀−1u) m ⊩− ∀xϕ iff, for some d ∈ D1, m ⊩− ϕx(td)

(∀+2u) m ⊩+ ∀Xϕ iff, for all D ∈ D2, m ⊩+ ϕx(PD)

(∀−2u) m ⊩− ∀Xϕ iff, for some D ∈ D2, m ⊩− ϕx(PD)

I omit the existential quantifier ∃ because it’s definable from ∀ and is not required below.
Finally, we define consequence as truth-preservation in all models:

Γ |= ϕ iff, for all models m such that m ⊩+ γ for all γ ∈ Γ, m ⊩+ ϕ (where Γ is any
collection of sentences and ϕ is a sentence).

If the identity sign is defined as weak indistinguishability, this semantics validates MSI and
MTI but not SI and TI. That is:

a = b |= ϕx(b) → ϕx(a) a = b,ϕx(b) ̸|= ϕx(a)

a = b |= b = c → a = c a = b, b = c ̸|= a = c

We’ll see models that verify the right-hand results in §3.4 and §3.5.
We now add binary universal quantifiers, thus:

(∀+1b) m ⊩+ ∀x(ϕ : ψ) iff, for all d ∈ D1 such that m ⊩+ ϕx(td), m ⊩+ ψx(td)

(∀−1b) m ⊩− ∀x(ϕ : ψ) iff, for some d ∈ D1 such that m ⊩+ ϕx(td), m ⊩− ψx(td)

(∀+2b) m ⊩+ ∀X(ϕ : ψ) iff, for all D ∈ D2 such that m ⊩+ ϕX(PD), m ⊩+ ψx(PD)

(∀−2b) m ⊩− ∀X(ϕ : ψ) iff, for some D ∈ D2 such that m ⊩+ ϕX(PD), m ⊩− ψx(PD)

What is the logical form of these truth- and falsity-conditions for the binary quantifiers?
In particular, what exactly is the logical form of clauses like the following?:

For all d ∈ D1 such that m ⊩+ ϕx(td), m ⊩+ ψx(td)

For all D ∈ D2 such that m ⊩+ ϕx(PD), m ⊩+ ψX(PD)

6 Rather than extending the language with new constants, we could relativise ⊩+ and ⊩− to assignments
of elements of D1 and D2 to the first- and second-order variables respectively. The clauses for the quantifiers
would then concern truth- and falsity under all assignments differing at most over the variable bound by the
quantifier. For present purposes, nothing of philosophical or technical significance turns on this choice. I
chose the presentation in the body text because it matches Priest’s.
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I now discuss two options, the binary semantics and the material semantics.
The binary semantics employs a primitive binary universal quantifier in the metalan-

guage. Using Λ for this quantifier to differentiate it from the object-language ∀, we can
rewrite (∀+1b) and (∀+2b) as:

m ⊩+ ∀x(ϕ : ψ) iff Λd(d ∈ D1 and m ⊩+ ϕx(td) : m ⊩+ ψx(td))

m ⊩+ ∀X(ϕ : ψ) iff ΛD(D ∈ D2 and m ⊩+ ϕX(PD) : m ⊩+ ψX(PD))

This makes the logic of object-language binary quantifiers dependent on that of metalan-
guage binary quantifiers. Specifically, §3.3 argues that unary regimentations of ‘all Fs are
Gs’ do not entail their binary counterparts, while §3.4 and §3.5 argue for the validity of
TI and SI when binary regimentations of indistinguishability are used to define identity.
These arguments all depend on the validity of the following form of inference in the met-
alanguage:

Metalinguistic Binary Universal Instantiation (MBUI) Λx(ϕ : ψ),ϕx(a), therefore ψx(a)

(where Λx(ϕ : ψ), ϕx(a), and ψx(a) are all sentences of the metalanguage).

MBUI licenses instantiation of the second condition ψ with arbitrary satisfiers of the first
condition ϕ. Although appealing to metalinguistic binary quantifiers is non-standard, I
see no problem with it in principle, or with the validity of MBUI in particular. Given
the intended semantic effect of binary quantifiers outlined in §3.1—the truth of ∀x(ϕ : ψ)
requires satisfiers of ϕ to satisfy ψ without requiring anything of non-satisfiers of ϕ—this
rule is clearly valid. But it is worth noting that we do not have to invoke such non-standard
resources, provided the metatheory is classical. I return to these issues, including non-
classical metatheory, in §3.7.

The material semantics employs a material conditional of the metalanguage. Using ⇒
for this conditional to differentiate it from the object-language→, we can rewrite (∀+1b) and
(∀+2b) as:

m ⊩+ ∀x(ϕ : ψ) iff, for all d
(
(d ∈ D1 and m ⊩+ ϕx(td)) ⇒ m ⊩+ ψx(td)

)
m ⊩+ ∀X(ϕ : ψ) iff, for all D

(
(D ∈ D2 and m ⊩+ ϕX(PD)) ⇒ m ⊩+ ψX(PD)

)
We can also rewrite the truth-conditions for the corresponding unary generalisations as:

m ⊩+ ∀x(ϕ → ψ) iff, for all d
(
(d ∈ D1 and m ⊮− ϕx(td)) ⇒ m ⊩+ ψx(td)

)
m ⊩+ ∀X(ϕ → ψ) iff, for all D

(
(D ∈ D2 and m ⊮− ϕX(PD)) ⇒ m ⊩+ ψX(PD)

)
Say that d satisfies ϕ in m iff m ⊩+ ϕx(td), and anti-satisfies ϕ in m iff m ⊩− ϕx(td).
Then on this approach, the underlying difference between the truth-conditions for binary
generalisations and their unary counterparts is essentially that between the following:



11

Binary It satisfies ϕ ⇒ it satisfies ψ.

Unary It does not anti-satisfy ϕ ⇒ it satisfies ψ.

In classical semantics, anti-satisfaction coincides with failure of satisfaction, and so failure
of anti-satisfaction coincides with satisfaction. This makes Binary and Unary equivalent.
In the present dialetheic semantics, failure to anti-satisfy entails satisfaction; so Binary
entails Unary. But satisfaction does not entail failure to anti-satisfy, since formulae can be
both true and false; so Unary does not entail Binary.

The material semantics does not perfectly capture the intended semantic effect of bi-
nary quantifiers. The intended truth-condition of ∀x(ϕ : ψ) requires that everything d

in the domain satisfying ϕ also satisfies ψ, requiring nothing of non-satisfiers of ϕ. Yet
the material truth-condition requires everything in the domain to satisfy a certain met-
alinguistic material conditional, i.e. Binary. This difference doesn’t matter to the logic of
the object-language when the metatheory is classical, since then every non-satisfier of
the antecedent satisfies the whole conditional; this ensures that non-satisfiers of the an-
tecedent cannot render the corresponding object-language binary generalisation untrue,
in line with its intended interpretation. We can then simulate binary quantification us-
ing material conditionals and unary quantifiers in the metalanguage, but it is really just
a simulation. This discrepancy between the intended semantic effect of binary quantifi-
cation and the model-theoretic means by which it is implemented will matter when we
consider dialetheic metatheory in §3.7. Until then, I assume that the metatheory is classi-
cal. For simplicity, I will also tend to focus on the material semantics, rather than employ
a primitive binary quantifier in the metalanguage.

On either semantics for binary quantifiers, a and b are strongly indistinguishable when
every property with a in its extension also has b in its extension, and conversely. By con-
trast, a and b are weakly indistinguishable when every property without a in its anti-
extension has b in its extension, and conversely. Because a property without a in its
anti-extension must have a in its extension, strong indistinguishability entails weak in-
distinguishability. But because a property can have a in its extension whilst also having a

in its anti-extension, weak indistinguishability does not entail strong indistinguishability.
Were satisfaction and anti-satisfaction not just exhaustive but exclusive, however, then
weak and strong indistinguishability would coincide. The next section argues for these
claims in more detail.

3.3 Logical strength

In the present dialetheic setting, binary generalisations are strictly stronger than their
unary counterparts. I begin with the first-order case, before turning to second-order quan-
tifiers followed by weak and strong indistinguishability.
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Consider binary generalisations ∀x(ϕ : ψ) and their unary counterparts ∀x(ϕ → ψ).
The binary has truth-condition (∀+1b). The unary has the following truth-condition, by (∀+1u)
and (→+):

m ⊩+ ∀x(ϕ → ψ) iff, for all d ∈ D1, m ⊩− ϕx(td) or m ⊩+ ψx(td)

I short, the truth of ∀x(ϕ → ψ) in m requires that every single d ∈ D1 either anti-satisfies
ϕ in m or satisfies ψ in m (or both). By contrast, the truth of ∀x(ϕ : ψ) in m requires only
that every satisfier of ϕ inm is also a satisfier of ψ inm. As a result, binary generalisations
entail their unary counterparts but not conversely:

∀x(ϕ : ψ) |= ∀x(ϕ → ψ) ∀x(ϕ → ψ) ̸|= ∀x(ϕ : ψ)

To see why the second entailment fails, consider the following countermodel:

D1 = {0}

D2 = {P,Q}

P+ = {0} P− = {0}
Q+ = ∅ Q− = {0}

v(F) = P

v(G) = Q

In this model 0 ∈ v−(F) and hence 0 anti-satisfies Fx. Since 0 is the only element of D1,
∀x(Fx → Gx) is true. Since 0 ∈ v+(F), 0 also satisfies Fx. But since 0 /∈ ∅, we have
0 /∈ v+(G), and hence 0 doesn’t satisfy Gx. So on both the binary and material semantics
of §3.2, ∀x(Fx : Gx) is not true. So this is a countermodel to ∀x(ϕ → ψ) |= ∀x(ϕ : ψ).
Since ∀x(ϕ : ψ) |= ∀x(ϕ → ψ), however, binary generalisations are strictly stronger than
their unary counterparts.

This difference in logical strength vanishes in classical semantics. We can obtain clas-
sical semantics from the present semantics by requiring that D+ and D− are disjoint, for
all D ∈ D2. This precludes the countermodel above. Moreover, failure to satisfy ϕ coin-
cides with anti-satisfaction of ϕ in this version of the semantics. We can then show that
∀x(ϕ → ψ) |= ∀x(ϕ : ψ) in classical semantics. Suppose m ⊩+ ∀x(ϕ → ψ) and hence
that, for all d ∈ D1, d anti-satisfies ϕ or satisfies ψ. Consider an arbitrary d ∈ D1 that
satisfies ϕ. Since anti-satisfaction coincides with failure to satisfy, d does not anti-satisfy
ϕ. So d must satisfy ψ. Since d was arbitrary, every d ∈ D1 that satisfies ϕ also satisfies ψ,
and hence m ⊩+ ∀x(ϕ : ψ). Since m was arbitrary, ∀x(ϕ → ψ) |= ∀x(ϕ : ψ).

The lesson is that the choice between unary and binary regimentations of ‘all Fs are
Gs’ doesn’t matter in classical semantics. In dialetheic semantics—or any other many-
valued semantics—differences can emerge. Analogous results hold for the second-order
quantifiers too. In particular:
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∀X(ϕ : ψ) |= ∀X(ϕ → ψ) ∀X(ϕ → ψ) ̸|= ∀X(ϕ : ψ)

Here’s a countermodel to show that the unary regimenation does not entail its binary
counterpart, and moreover that weak does not entail strong indistinguishability.

D1 = {0, 1}

D2 = {Q}

Q+ = {0} Q− = {0, 1}

v(a) = 0

v(b) = 1

v(F) = Q

In this model, v(a) and v(b) both belong to v−(F) because both belong to Q−. So each
of Fa → Fb and Fb → Fa is true (because each antecedent is false). Since Q is the only
element of D2 and v(F) = Q, the same holds for every predicate P that can be added to
the language with v(P) ∈ D2. So each of ∀X(Xa → Xb) and ∀X(Xb → Xa) is true. So it’s
true in this model that a is weakly indistinguishable from b. Yet since v(a) but not v(b)
belongs to v+(F), i.e. Q+, ∀X(Xa : Xb) is not true and so a is not strongly indistinguish-
able from b. This shows that ∀X(Xa → Xb) does not entail ∀X(Xa : Xb), and that weak
indistinguishability does not entail strong. In sum, because binary second-order gener-
alisations entail their unary counterparts but not conversely, strong indistinguishability
entails weak indistinguishability but not conversely.

One striking feature of thismodel is that its second-order domain has only onemember.
As a result, many formulae do not define properties in this model and it does not verify all
instances of the second-order comprehension schema:

∃Y∀z(Yz ↔ ϕ) (where Y is not free in ϕ)

One might wonder whether countermodels to ∀X(ϕ → ψ) |= ∀X(ϕ : ψ) are available only
because of this unusually permissive conception of the second-order domain. Perhaps
the logical difference between weak and strong indistinguishability vanishes if we require
that the second-order domain is much fuller. In fact, this is not the case; but since it’s a
somewhat involved matter, I postpone discussion to §3.6 to avoid getting sidetracked now.

3.4 Transitivity

Although weak indistinguishability is not transitive, strong indistinguishability is tran-
sitive. It follows that TI is valid if the identity sign is defined by strong but not weak
indistinguishability.

It may be helpful to begin with a countermodel to the transitivity of weak indistin-
guishability:
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D1 = {0, 1, 2}

D2 = {Q}

Q+ = {0, 1} Q− = {1, 2}

v(a) = 0

v(b) = 1

v(c) = 2

In this model, a is weakly indistinguishable from b because every property (i.e. Q) in D2

with v(a) in its extension also has v(b) in its extension, and conversely. This model also
makes b weakly indistinguishable from c because every property with v(b) in its anti-
extension also has v(c) in its anti-extension, and conversely.7 The model does not make a
weakly indistinguishable from c, however, because although v(a) ∈ Q+, we have neither
v(c) ∈ Q+ nor v(a) ∈ Q−, which makes PQa → PQc false and not also true. So this model
shows that weak indistinguishability is not transitive and invalidates TI if the identity sign
is defined by weak indistinguishability.

Although a is strongly indistinguishable from b in this model, b is not strongly indis-
tinguishable from c; so the model also shows how weak indistinguishability fails to entail
strong indistinguishability. b and c are not strongly indistinguishable because although
Q is a property such that v(b) ∈ Q+, it’s not the case that v(c) ∈ Q+. So this isn’t a
countermodel to the transitivity of strong indistinguishability; in fact, there are no such
countermodels.

Strong indistinguishability is transitive just in case the following holds:

∀X(Xa : Xb) ∧ ∀X(Xb : Xa),∀X(Xb : Xc) ∧ ∀X(Xc : Xb) |= ∀X(Xa : Xc) ∧ ∀X(Xc : Xa)

That holds if both of the following do:

∀X(Xa : Xb),∀X(Xb : Xc) |= ∀X(Xa : Xc)

∀X(Xc : Xb),∀X(Xb : Xa) |= ∀X(Xc : Xa)

Since those have the same form, it suffices to examine the first. We can show that it holds
as follows. Suppose ∀X(Xa : Xb) and ∀X(Xb : Xc) are both true in an arbitrary model m.
That is:

For all D ∈ D2 such that v(a) ∈ D+, v(b) ∈ D+.
7 Were v(b) but not v(c) in the anti-extension of some property Q∗, the conditional PQ∗c → PQ∗b would

not be true, and so b would not be weakly indistinguishable from c. Note also that although the model makes
a, b and b, c weakly indistinguishable, it also makes them not weakly indistinguishable. That’s because the
following are both true and false in the model: PQa → PQb, PQb → PQc. The first is false because v(a) ∈ P+

and v(b) ∈ P−. The second is false because v(b) ∈ P+ and v(c) ∈ P−.
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For all D ∈ D2 such that v(b) ∈ D+, v(c) ∈ D+

Consider an arbitrary D ∈ D2 such that v(a) ∈ D+. By the first clause, v(b) ∈ D+. So D

is such that v(b) ∈ D+. So by the second clause, v(c) ∈ D+. Since D was arbitrary: for
all D ∈ D2 such that v(a) ∈ D+, v(c) ∈ D+. But then m ⊩+ ∀X(Xa : Xc). And since m

was arbitrary: ∀X(Xa : Xb),∀X(Xb : Xc) |= ∀X(Xa : Xc). It follows that strong indistin-
guishability is transitive. So if the identity sign is defined as strong indistinguishability,
TI is valid: numerical identity is transitive, dialetheism and the non-transitivity of weak
indistinguishability notwithstanding.

3.5 Substitutivity and super-strong indistinguishability

We’ve seen that if identity is defined as strong indistinguishability, then TI is valid. Inter-
estingly, however, this does not validate SI, of which TI is an instance. I first explain why,
and then introduce a notion of super-strong indistinguishability that validates SI when
used to define identity.

To see why SI fails, consider this instance of it:

a = b,¬Fa ⊢ ¬Fb

If the identity sign is defined as strong (or weak) indistinguishability, the following model
invalidates that sequent:

D1 = {0, 1}

D2 = {Q}

Q+ = {0, 1} Q− = {0}

v(a) = 0

v(b) = 1

v(F) = Q

In this model, a is strongly (hence also weakly) indistinguishable from b because the only
property Q in D2 has both v(a) and v(b) in its extension Q+. The model makes ¬Fa true
because v(a) is in the anti-extension Q− of v(F). But because v(b) is not in Q−, the model
does not make ¬Fb true and therefore invalidates the sequent displayed above.

We can define a stronger notion of indistinguishability that validates SI when used
to define the identity sign. Whereas strong indistinguishability requires only that every
property of a is a property of b and conversely, this notion requires also that every property
not of a is also not a property of b and conversely. Formally:
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a is super-strongly indistinguishable from b =df ∀X(Xa : Xb) ∧ ∀X(Xb : Xa) ∧
∀X(¬Xa : ¬Xb) ∧ ∀X(¬Xb : ¬Xa)

Semantically, a model makes a super-strongly indistinguishable from b iff both the follow-
ing hold:

For every D ∈ D2 such that v(a) ∈ D+, v(b) ∈ D+, and conversely.

For every D ∈ D2 such that v(a) ∈ D−, v(b) ∈ D−, and conversely.

In short: v(a) and v(b) belong to the extensions and anti-extensions of exactly the same
properties.

Super-strong indistinguishability is the conjunction of strong indistinguishability with
∀X(¬Xa : ¬Xb) ∧ ∀X(¬Xb : ¬Xa). So super-strong indistinguishability entails strong in-
distinguishability, and TI is valid when identity is defined as super-strong indistinguisha-
bility. Unlike strong indistinguishability, however, this definition of identity also validates
SI.

To get a feel for why this definition of identity validates SI, consider the model de-
scribed at the beginning of this section. In that model, a is not super-strongly indistin-
guishable from b because although v(a) and v(b) are both in Q+, only v(a) ∈ Q−. Were
we to make them super-strongly indistinguishable, by either removing v(a) from Q− or
adding v(b) into Q−, we’d no longer have a countermodel to the initial sequent; for re-
moving v(a) from Q− would make ¬Fa untrue, and adding v(b) to Q− would make ¬Fb
true.

A general argument is also available; it’s a variant of the argument for MTI and MSI
at the end of §2. If identity is defined as super-strong indistinguishability, then a counter-
model to SI is any model that satisfies both the following:

a is super-strongly indistinguishable from b: v(a) and v(b) belong to exactly the
same extensions and anti-extensions of all D ∈ D2.

Some ϕ is a differentiating formula for a and b in the following sense:

ϕx(b) is true and ϕx(a) is false and not true.

Because our present interest is SI rather than MSI, this notion of a differentiating formula
is weaker than that in §2: ϕx(b) need only be true here, rather than true and not also false.
Not all differentiating formulae in the present sense are differentiating formulae in the
earlier sense.

Unless ϕ is a predication, a negation ¬ϕ is a differentiating formula for a and b only
if ϕ is; we saw above that negations of predications may be differentiating formulae even
when the predication itself isn’t. A conjunction ϕ∧ψ, disjunction ϕ∨ψ, or material condi-
tional ϕ → ψ is a differentiating formula for a and b only if at least one of ϕ and ψ is. And
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a generalisation ∀xϕ or ∀Xϕ is a differentiating formula for a and b only if at least one
of its instantiations ϕx(t),ϕX(P) is. All formulae are recursively built from predications
Pt using the connectives and quantifiers just mentioned. So there are no differentiating
formulae for a and b unless some predication or its negation is a differentiating formula
for a and b. But if a is super-strongly indistinguishable from b, no predication Pt or its
negation ¬Pt is a differentiating formula for a and b, regardless of which D ∈ D2 is v(P).
So if a is super-strongly indistinguishable from b, there are no differentiating formulae for
a and b whatsoever. SI is therefore valid if identity is defined as super-strong indistin-
guishability. And I will argue in §4 that identity should indeed be defined as super-strong
indistinguishability, on the assumption of II. Here’s a brief spoiler for that argument.

Objects are indistinguishable when they’re not distinguished by their properties. In
classical metaphysics, that’s ruled out by possession of the same properties. In dialetheic
metaphysics, however, objects may possess the same properties and yet be distinguished
by them. That happens whenever one but not the other object both has and lacks the
property. An adequate regimentation of indistinguishability should therefore ensure that
indistinguishable objects are not distinguished by which properties they possess, and also
not distinguished by which properties they lack. Neither weak nor strong indistinguisha-
bility ensures this, whereas super-strong indistinguishability does. Weakly indistinguish-
able objects may be distinguished by which properties they have or by which properties
they lack, provided only that no property distinguishes them in both ways. Strongly in-
distinguishable objects may be distinguished only by which properties they lack. Super-
strongly indistinguishable objects cannot be distinguished in either way. Super-strong
indistinguishability therefore provides a better dialetheic regimentation of indistinguisha-
bility than does either weak or strong indistinguishability. If numerical identity is indis-
tinguishability, as II says, then numerical identity is super-strong indistinguishability, and
so SI and TI are valid.

3.6 Comprehension

As noted in §3.4, the models discussed so far have very few elements in their second-order
domains. Many formulae do not define properties in such models, and so instances of the
following second-order comprehension schema are not all valid:

∃Y∀z(Yz ↔ ϕ) (where Y is not free in ϕ)

This section shows that the difference in logical strength between weak and strong indis-
tinguishability is not an artefact of this unusually permissive conception of the second-
order domain. We will see, however, that this is relevant to the relative logical strength of
strong and super-strong indistinguishability. In particular, a natural constraint on mod-
els that validates comprehension also makes strong and super-strong indistinguishability
mutually entailing.
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Recall the following model from §3.4:

D1 = {0, 1, 2}

D2 = {Q}

Q+ = {0, 1} Q− = {1, 2}

v(a) = 0

v(b) = 1

v(c) = 2

Because the pairs a, b and b, c but not a, c are weakly indistinguishable in this model, it
invalidates TI and SI when identity is defined as weak indistinguishability. Because b, c

are weakly but not strongly or super-strongly indistinguishable in this model, it shows
that weak does not entail strong or super-strong. And because a, b are strongly but not
super-strongly indistinguishable, it shows that strong does entail super-strong.

The goal is now to modify this model so as to verify each instance of comprehension
without disrupting the pattern of weak indistinguishability, and whilst retaining pairs that
are weakly but not strongly or super-strongly indistinguishable. This will show that the
following are compatible with the validity of second-order comprehension: (a) defining
identity as weak indistinguishability invalidates SI and TI; (b) strong and super-strong
indistinguishability are strictly stronger than weak indistinguishability. In the kind of
model we end up with, however, strong and super-strong indistinguishability are mutually
entailing; that particular difference in logical strength is dependent on Priest’s permissive
conception of the second-order domain. The construction employed is adapted from (Priest
2010a: §3.2).

First, some terminology. For each formula ϕ with at most one free variable x, and each
model m, set:

v+m(ϕ) = {d ∈ D1 : m ⊩+ ϕx(td)} (i.e. the m-extension of ϕ)

v−m(ϕ) = {d ∈ D1 : m ⊩− ϕx(td)} (i.e. the m-anti-extension of ϕ)

vm(ϕ) = ⟨v+m(ϕ), v−m(ϕ)⟩

We will proceed by successively expanding D2. Rename the second-order domain in the
model aboveD0

2 and let modelmi be ⟨D1,Di
2, v⟩; so the model above ism0. Let the language

of mi be the result of extending the object-language with a new predicate PD for each
D ∈ Di

2, and extend the valuation v so that v(PD) = D. The process of expansion is then
defined by:

Di+1
2 = Di

2 ∪ {vmi(ϕ) : ϕ is a formula of the language of mi with at most one free
variable}
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Because D1 is finite, the process terminates after finitely many steps in that Di
2 = Di+1

2 .
Were D1 infinite, we would need an additional clause for limit ordinals λ to ensure that the
process terminates:

Dλ
2 =

∪
i<λ

Di
2

Let M be the model at which the process terminates.
Pairs that are not weakly/strongly/super-strongly indistinguishable inm0 remain so in

all later mi including M; for later models only add to D2, and so leave all counterexamples
to weak/strong/super-strong indistinguishability in place. So we only need to check that
weakly and super-strongly indistinguishable pairs in m0 also remain so in all later mi. I
discuss the behaviour of pairs that are strongly but not super-strongly indistinguishable
shortly.

In this particular model, the super-strongly indistinguishable pairs are just a, a, and
b, b, and c, c. Clearly, no way of adding to D2 can provide counterexamples to those. So
they’re all super-strongly indistinguishable in M.

Let’s turn to weakly indistinguishable pairs. An arbitrary pair α, β are not weakly
indistinguishable inmi iff, for some PD in the language ofmi, the predication PDx strongly
differentiates α from β in the following sense:

PDα is true and not also false in mi

PDβ is false and not also true in mi

or conversely. Each element of Di+1
2 has the same extension and anti-extension as some

formula in the language ofmi (or some other earliermj). So each predicate in the language
of mi+1 has the same extension and anti-extension as some formula in the language of mi

(or some other earlier mj). So there is a strongly differentiating predication for α and
β in the language of mi+1 iff there is a strongly differentiating formula for α and β in
the language of mi (or some other earlier mj). We saw at the end of §2 that there are
no strongly differentiating formulae for α and β in the language of any m if there are
no strongly differentiating predications α and β in the language of m. So if there are
no strongly differentiating predications for α and β in the language of m0, there are no
strongly differentiating predications for α and β in the language of any latermi, including
M. Since α and β were arbitrary, the pattern of weak indistinguishability inm0 is therefore
also present in M.

It remains only to see that each instance of comprehension is true inM. Since vM(ϕ) ∈
DM

2 , for all ϕ in the language of M, each instance of comprehension is true in M. To see
this, instantiate the second-order quantifier for a predicate PvM(ϕ) in the language of M
such that v(PvM(ϕ)) = vM(ϕ):

∀z(PvM(ϕ)z ↔ ϕ)
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Because ϕ and PvM(ϕ) have the same extension and anti-extension in M, each instance of
this schema is true in M. That suffices for the second-order existential generalisation of
each instance of the schema to be true in M too.

Putting these pieces together, some countermodels to the transitivity of weak indis-
tinguishability also verify each instance of comprehension. These models also contain
weakly indistinguishable pairs that are not strongly or super-strongly indistinguishable,
which shows that this difference in logical strength is independent of the validity or oth-
erwise of comprehension.

Say that a model m is comprehensive iff, for all ϕ in the language of m, vm(ϕ) ∈ D2.
Each instance of comprehension is true in each comprehensive model. So restricting the
models to the comprehensive models validates each instance of comprehension. It also
makes strong and super-strong indistinguishability mutually entailing. To see this, con-
sider any strongly indistinguishable pair a, b. Because they’re strongly indistinguishable,
they’re in the extensions of exactly the same properties. We can show that if the model
is comprehensive, a and b lack exactly the same properties too, and hence that they’re
super-strongly indistinguishable. So suppose for reductio that they don’t lack exactly the
same properties, that is, for some D ∈ D2, v(a) ∈ D− and v(b) /∈ D−. Then m ⊩+ ¬PDb,
and so b ∈ v+m(¬PDx). Sincem is comprehensive vm(¬PDx) ∈ D2. But then, because a and
b have exactly the same properties, v(a) ∈ v+m(¬PDx) too. So m ⊩+ ¬PDa, which means
m ⊩− PDa and hence v(a) /∈ D−, contrary to the initial supposition. By reductio, a and b

lack exactly the same properties in comprehensive models where they possess exactly the
same properties. That is: strong indistinguishability entails super-strong indistinguisha-
bility in comprehensive models.

The restriction to comprehensive models is a natural way to validate comprehension.
It also makes strong and super-strong indistinguishability mutually entailing. Since defin-
ing identity as super-strong indistinguishability validates SI, defining identity as strong
indistinguishability validates SI over the comprehensive models. The apparent weakness
of strong indistinguishability therefore depends on a permissive conception of the domain
of second-order quantification; I take no stand here on whether that conception is correct
or not. Note, however, that the difference in strength between both relations and weak
indistinguishability is independent of this issue.

3.7 Dialetheic metatheory

I have been using a classical metatheory to characterise a non-classical consequence re-
lation. However, dialetheists often claim that adequate dialetheic semantics requires di-
aletheic metatheory (e.g. Priest 2006: p70). So I now consider how dialetheic metatheory
affects the preceding discussion. More specifically, I consider how the preceding is affected
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when the logic of the metalanguage is Priest’s preferred paraconsistent logic LP.8

Note first that the difference in logical strength between binary generalisations and
their unary counterparts is not affected by this change. The model witnessing ∀x(ϕ →
ψ) ̸|= ∀x(ϕ : ψ) near the beginning of §3.3 continues to do so. Adopting a dialetheic
metatheory enables construction of another model just like it except, as well as 0 failing
to satisfy Gx, 0 also satisfies Gx. Simply replace ∅with any set that both does and does not
contain 0 as member.9 Like the original unmodified model, the resulting model witnesses
∀x(Fx → Gx) ̸|= ∀x(Fx : Gx) (although the new model also fails to witness that claim).

The primary consequence of adopting dialetheic metatheory concerns the arguments
for TI and SI in §3.4 and §3.5; I focus on the latter. Consider the following principles of
binary universal instantiation:

First-order Binary Universal Instantiation (BUI1) ∀x(ϕ : ψ),ϕx(a) ⊢ ψx(a)

Second-order Binary Universal Instantiation (BUI2) ∀X(ϕ : ψ),ϕX(P) ⊢ ψX(P)

If BUI2 is valid, so is SI (hence also TI) when the identity sign is defined by super-strong
indistinguishability. To see why, recall from §3.5 that when the identity sign is defined in
this way, SI is valid if: whenever a model makes a super-strongly indistinguishable from
b, no formula ϕ differentiates a from b in the following sense:

ϕx(b) is true and ϕx(a) is false and not true.

We saw in §3.5 that if no predication Px or its negation ¬Px satisfies this condition, then
no formula does so. So consider a model that makes a super-strongly indistinguishable
from b, hence in which the following are both true:

∀X(Xb : Xa)

∀X(¬Xb : ¬Xa)

Suppose Pb is true in this model. Then by the validity of BUI2, so is Pa. Now suppose
¬Pb is true in this model. Then by the validity of BUI2, so is ¬Pa. Since the predicate P

was arbitrary, no predication or its negation differentiates a from b in the above sense.
Since the model was arbitrary, the validity of BUI2 suffices for the validity of SI when the
identity sign is defined by super-strong indistinguishability.

The key question is thus whether BUI2 is valid when the metatheory is dialetheic. I
investigate this question under §3.2’s material and binary semantics in turn. We will see
that although thematerial semantics invalidates both BUI principles, it does not respect the
intended interpretation of binary universal quantification. By contrast, the binary seman-
tics validates both BUI principles, if an analogous metalinguistic principle is valid, namely

8 Thanks to an anonymous referee for pressing me to consider this issue.
9 On paraconsistent set theory, see (Priest 2006: ch18). Any set with contradictory membership could be

used in place of that mentioned in the text.
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MBUI from §3.2. I will argue that this principle should be valid even assuming dialetheism.
For simplicity, I focus on first-order quantifiers until further notice; the second-order case
is essentially the same.

According to the material semantics, ∀x(ϕ : ψ) is true in a model iff the following
holds for all d ∈ D1, where ⇒ is a material conditional of the metalanguage:

Binary d satisfies ϕ ⇒ d satisfies ψ

We can argue for the validity of BUI1 on this material semantics as follows. Consider a
model in which ∀x(ϕ : ψ) and ϕx(a) are both true. Because ϕx(a) is true, v(a) satisfies
ϕ. So by Binary and modus ponens for ⇒, v(a) satisfies ψ, and hence ψx(a) is true in this
model. Since the model was arbitrary, BUI1 is valid.

If the metatheory is dialetheic, this argument fails becausemodus ponens is invalid for
the metalinguistic material conditional⇒. As noted in §2, dialetheism allows for true ma-
terial conditionals with true antecedent and false consequent, provided the antecedent is
also false (hence both true and false). So on the material semantics, this argument for the
object-language validity of BUI1 is itself invalid when the metatheory is dialetheic. More-
over, dialetheic metatheory permits countermodels to BUI1. In any such countermodel,
there is d ∈ D1 such that:

1. Binary is true because d does not satisfy ϕ.

2. Binary is false because d satisfies ϕ but does not satisfy ψ.

Note that because these models require d both to satisfy and not satisfy ϕ, they require a
dialetheic metatheory.

However, recall from §3.2 that the material semantics does not perfectly capture the
intended semantic effect of binary quantifiers: the material truth-condition of ∀x(ϕ : ψ)
requires something of everything in D1 when it should require something only of satisfiers
of ϕ. When the metatheory is classical, this intensional semantic difference doesn’t affect
truth-value in any model. But when the metatheory is dialetheic, it does. To see why, note
that models satisfying 1 above misrepresent the intended semantics of binary generalisa-
tions. Insofar as d does not satisfy ϕ, it should not contribute to making ∀x(ϕ : ψ) true:
non-satisfiers of ϕ should be irrelevant to making that generalisation true. So ∀x(ϕ : ψ)
should be false (by 2) only and not also true. This shows that the material semantics is
extensionally incorrect within dialetheic metatheory, given the intended semantic effect
of binary quantifiers. It also shows that countermodels to BUI1 arise only because of this
semantic inaccuracy; for were the metatheory classical, at most one of 1 and 2 could hold
for each d ∈ D1, which precludes countermodels to BUI1.

The lesson is that the material semantics is inadequate for binary quantification within
dialetheic metatheory. In that setting, genuinely binary quantification cannot be simulated
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using unary quantification on a material conditional in the metalanguage. Models veri-
fying 1 and 2 are thus no threat to the validity of BUI1 on the intended interpretation of
binary first-order quantification. Parallel reasoning shows that analogous countermodels
to BUI2 provided by the material semantics are no threat to the validity of BUI2 on the
intended interpretation of binary second-order quantification. So let us now consider the
binary semantics.

According to the binary semantics, the truth-conditions for binary generalisations are
given by:

m ⊩+ ∀x(ϕ : ψ) iff Λd(d ∈ D1 and m ⊩+ ϕx(td) : m ⊩+ ψx(td))

m ⊩+ ∀X(ϕ : ψ) iff ΛD(D ∈ D2 and m ⊩+ ϕX(PD) : m ⊩+ ψX(PD))

where Λ is a primitive binary universal quantifier of the metalanguage. If BUI is valid
for this quantifier—I called this principle MBUI in §3.2—these clauses validate BUI1 and
BUI2 for the object-language binary quantifiers. To see why, consider a model in which
∀x(ϕ : ψ) and ϕx(a) are both true. By the truth-condition above, Λd(d ∈ D1 and d satisfies
ϕ : d satisfies ψ). Since ϕx(a) is true, v(a) satisfies ϕ and v(a) ∈ D1. So by MBUI, v(a)
satisfies ψ, which makes ψx(a) true in the model. Since the model was arbitrary, BUI1 is
valid. The argument for BUI2 is similar.

So, should MBUI be valid under the assumption of dialetheism? I believe so. As men-
tioned previously, the intended semantic effect of a binary universal quantifier is as fol-
lows: its truth requires satisfiers of its first argument ϕ to satisfy its second argument
ψ, whilst requiring nothing of non-satisfiers of ϕ. In dialetheic settings, an object d or
property D may both satisfy and fail to satisfy ϕ. The generalisation’s truth then both (a)
requires that d/D satisfy ψ and (b) requires nothing of d/D. So by (a), d/D satisfies ψ. Since
d/D was arbitrary, this validates MBUI, hence also BUI2 on the binary semantics. As we
saw above, it follows that SI is valid when the identity sign is defined by super-strong
indistinguishability, even when the metatheory is dialetheic.

To close this section, let’s consider two final doubts about the validity of BUI1/2. Both
doubts arise because one can use the binary universal quantifier to define a conditional
operator thus:

ϕ ↠ ψ =df ∀x(ϕ : ψ)

If BUI1 is valid, then modus ponens is valid for ↠. If we’d used a second-order quantifier
to define ↠, rather than a first-order quantifier, the validity of BUI2 would suffice for
that of modus ponens. In a dialetheic setting, however, this might make one suspicious.
Dialetheists typically reject the following as invalid in order to prevent true contradictions
from inducing triviality:

Explosion ϕ ∧ ¬ϕ ⊢ ψ
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The validity of Explosion follows from that of:10

¬ϕ ⊢ ϕ → ψ

ϕ,ϕ → ψ ⊢ ψ

The second principle is modus ponens for the material conditional. Because the first prin-
ciple is valid for the material conditional—since ϕ → ψ is definitionally equivalent to
¬ϕ∨ψ—the dialetheic invalidity ofmodus ponens for→ is no accident. Onemight therefore
doubt whether modus ponens should be valid for the newly defined conditional operator
↠. And if it’s not valid, then neither are BUI1/2.

This argument for the invalidity of BUI1/2 fails because Explosion does not follow from
modus ponens for ↠ alone, but only from the pair:

¬ϕ ⊢ ϕ ↠ ψ

ϕ,ϕ ↠ ψ ⊢ ψ

The first principle is invalid on both material and binary semantics, within classical and
dialetheic metatheory. The following is a countermodel in all of those settings:

D1 = {0}

D2 = {P,Q}

P+ = {0} P− = {0}
Q+ = ∅ Q− = {0}

v(F) = P

v(G) = Q

v(a) = 0

Since 0 ∈ P−: ¬Fa is true. Since 0 ∈ P+, Fa is true and so 0 satisfies Fa. Yet since 0 /∈ ∅, Ga
is not true and so 0 does not satisfy Ga. So ∀x(Fa : Ga) and hence Fa ↠ Ga are not true,
despite¬Fa being true. This shows that the first of the above principles is invalid. A similar
result is available for the alternative definition of↠ using a second-order quantifier. So the
invalidity of Explosion requires the invalidity of neither modus ponens for ↠ nor BUI1/2.

Now for the final doubt about BUI1/2. Any conditional operator > can be combined
with a truth-predicate T to define a Curry sentence for any sentence ϕ:

(C) T(⟨C⟩) > ϕ
10 Proof. Suppose ϕ ∧ ¬ϕ is true. So (a) ϕ is true, and (b) ¬ϕ is true. By (b) and the first principle in the

text, ϕ → ψ is true. Then by (a) and modus ponens, ψ is true.
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where ⟨C⟩ is a quotation name for (C). If (a) T(⟨ψ⟩) and ψ are always mutually entailing,
(b)modus ponens and conditional proof are valid for>, then (c) the existence of the Curry
sentence for ϕ entails ϕ.11 Since ϕ can be any sentence whatsoever, this induces triviality.
One might reasonably take this to show that modus ponens is valid for no conditional,
including ↠, and hence that BUI1/2 are invalid.

I will make two points in response. Firstly, the Curry paradox may be taken to refute
the universal intersubstitutability of T(⟨ψ⟩) and ψ, rather than modus ponens. This alter-
native response to the paradox is attractive because it resolves many other truth-involving
paradoxes too. Secondly, although every solution to the semantic paradoxes has surpris-
ing and otherwise unexpected consequences, one might reasonably require that they be
confined to truth-involving subject matters. The metaphysical questions at issue here do
not essentially involve truth. So even if the Curry paradox shows modus ponens to be in-
valid, it does not automatically threaten the validity ofmodus ponens within the truth-free
languages I have been discussing.

4 The role of identity

We’ve seen three classically equivalent notions of indistinguishability with different log-
ical properties in the present dialetheic setting. Super-strong entails strong, which en-
tails weak, but none of the converse entailments hold (except for that from strong to
super-strong within the comprehensive models). II says that identity is indistinguisha-
bility. This allows us to introduce the identity sign with its intended interpretation into
an identity-free second-order language by defining it as indistinguishability. Different
choices about the regimentation of indistinguishability then yield different logical proper-
ties for the identity sign. If indistinguishability is regimented as weak indistinguishability,
neither SI nor TI is valid even in paradigmatically extensional contexts (§2). If indistin-
guishability is regimented as strong indistinguishability, TI but not SI is valid (§§3.4–3.5).
And if indistinguishability is regimented as super-strong indistinguishability, both TI and
SI are valid (§3.5). Each of those last two views undermines the metaphysical argument for
dialetheism outlined in §1. That is an abductive argument from metaphysical work for a
non-transitive and non-substitutional identity relation; yet if the indistinguishability rela-
tion in II is either strong or super-strong indistinguishability, identity is at least transitive
and perhaps also substitutional.

I will argue that the indistinguishability relation in II should be super-strong indistin-
guishability. I first outline the core theoretical role for numerical identity and then argue
that only super-strong indistinguishability satisfies it. According to this role, identity is (or

11 Proof sketch. Suppose the Curry sentence for conditional proof: T(⟨C⟩) > ϕ. By the truth-
intersubstitutability: T(⟨C⟩). So by modus ponens: ϕ. Discharging the supposition and applying conditional
proof, this establishes the Curry sentence: T(⟨C⟩) > ϕ. So by the truth-intersubstitutability: T(⟨C⟩). And
finally by modus ponens: ϕ
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at least entails) the most demanding relation of sameness of properties: identical objects
are not differentiated in any way by their properties. Since weakly and strongly indistin-
guishable objects can be differentiated by their properties, those relations cannot satisfy
this role. Only super-strongly indistinguishable objects are not differentiated in any way
by their properties.

One could respond by rejecting this role for identity. Unless debate about identity
is to be merely terminological, an alternative identity-role is then required. What might
this alternative be? One cannot appeal to II’s connection between identity and indistin-
guishability; for the present issue concerns which notion of indistinguishability should be
employed in II. And one cannot appeal to the prevalence of weak indistinguishability in,
and absence of super-strong indistinguishability from, previous literature; for the previous
literature presupposes classicality, which renders those notions equivalent. So although
one could in principle reject my role for identity and then use weak indistinguishability
in II, that would raise a significant challenge: explain why weak indistinguishability de-
serves the label ‘identity’ when other more demanding relations of sameness of properties
do not. I see no way of meeting this challenge.

Dialetheism itself provides no reason to reject my theoretical role for identity (I return
to this shortly). Both dialetheic and classical metaphysicians should therefore find my ar-
gument suasive. Since my conclusion entails the validity of both SI and TI, even dialetheic
metaphysicians should reject the metaphysical argument for dialetheism outlined in §1.
Although not a direct threat to dialetheism per se, this shows that dialetheism and II do not
jointly deliver a non-transitive identity relation, and thereby undermines the new meta-
physical argument for dialetheism. Dialetheic and classical metaphysicians alike should
regard super-strong indistinguishability as a better satisfier of the identity-role than weak
indistinguishability. Since super-strong indistinguishability is both transitive and substi-
tutional, theoretical work for non-transitive identity does not motivate dialetheism, even
by dialetheic lights.

With these preliminaries complete, let’s continue to the argument.
There is a deep connection between numerical identity and objecthood. Reality com-

prises, at least in part, an array of objects instantiating properties and standing in relations.
This supply of objects determines how fine-grained reality’s distinctions can be. Given a
collection of many objects, there can be distinctions amongst them. For example, the red
ones on one side and the rest on the other. If many red objects remain, further distinc-
tions can be made within them. And so on. But when the collection comprises just one
single object, no more fine-grained distinctions can be made. When a is identical to b, no
distinction treats them differently, whatever the supply of distinctions may be. Identical
objects fall on exactly the same side(s) of each distinction; that’s what it is for no more
fine-grained distinction to be possible between them. Numerical identity thus limits how
fine-grained reality can be.
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Let me be clear about exactly what this connection between identity and fineness of
grain requires, to emphasise its compatibility with dialetheism. It does not require—at
least, not without additional assumptions incompatible with dialetheism—that identical
objects never lie on opposite sides of the same distinction. Dialetheists should reject that
idea because whenever a is both F and not F, a lies on opposite sides of the F/non-F distinc-
tion from itself. Rather, what’s required is that whenever a is identical to b, any distinction
with a on a given side also has b on that side. That’s what it is for no distinction to differen-
tiate between a from b, or to cut more finely than them. Dialetheism is entirely compatible
with that.

This connection between objecthood, identity, and fineness of grain generates a core
theoretical role for numerical identity: it is the most demanding and restrictive form of
indistinguishability. A relation that permits differences of any sort between the proper-
ties of its relata is not numerical identity because it does not prevent there from being
more fine-grained distinctions between its relata. Weak and strong indistinguishability
both permit distinctions between their relata over which properties they possess and lack.
When a is only weakly indistinguishable from b, a may both have properties b does not
and lack properties b does not. When a is only strongly distinguishable from b, amay lack
properties b does not. In both cases, the pattern of possession and lack differentiates a
from b, showing that they are not numerically identical in the sense just outlined. Super-
strong indistinguishability permits no such differences between its relata. Of the relations
we’ve examined therefore, only super-strong indistinguishability can occupy the identity-
role. Assuming that identity is indistinguishability, the proper treatment of identity in
dialetheic metaphysics is as super-strong indistinguishability.
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