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Sustainable manufacturing is a global front-burner issue oriented to the sustainable development of humanity and society. In 
this context, this paper takes the human-robot collaborative disassembly (HRCD) as the topic on its contribution to economic, 
environmental and social sustainability. In addition, a detailed enabling systematic implementation for HRCD is presented, 
combined with a set of advanced technologies such as cyber-physical production system (CPPS) and artificial intelligence (AI), 
and it involves five aspects which including perception, cognition, decision, execution and evolution aiming at the dynamics, 
uncertainties and complexities in disassembly. Deep reinforcement learning, incremental learning and transfer learning are 
also investigated in the systematic approaches for HRCD. The demonstration in the case study contains experiment results of 
multi-modal perception for robot system and human body in hybrid human-robot collaborative disassembly cell, sequence 
planning for an HRCD task, distance based safety strategy and motion driven control method, and it manifests high feasibility 
and effectiveness of the proposed approaches for HRCD and verifies the functionalities of the systematic framework.  
Keywords: sustainable manufacturing; human-robot collaboration; product disassembly; cyber-physical production system; 
artificial intelligence 
 
 
1. Introduction  
So far, the focus and discussion on sustainability and sustainable development have been in existence for nearly 50 years 
(Haapala et al. 2013), make them pillars of smart manufacturing (Kusiak 2018). Sensing, smart and sustainable elements 
have become essential for enterprises facing global challenges (Miranda et al. 2017). As the backbone of industries, 
sustainable manufacturing has shown greatly influence in economy, environment and society. In economy, sustainable 
man-ufacturing promotes innovation and change in business modes, creates new space for economic growth, makes 
business services face at the whole life cycle of production and accelerates development of diversified economic modes 
and markets. For the environment, sustainable manufacturing reduces the use and waste of raw materials, increases the 
utilisation of resources, and slows down pollution and emissions. For society, sustainable manufacturing creates new 
human capital and provides more and better work (Jovane, Westkämper, and Williams 2008; Jovane et al. 2008).  

In sustainable manufacturing, disassembly as the main production mode of remanufacturing is of great significance for 
economic and environmental benefits such as resource recycle, energy saving and emission reduction. On the other hand, due 
to the development and deployment of industrial robotics, society factors reflect in the replacement of the heavy-loaded, 
repetitive and dirty jobs which were held formerly by human operators in disassembly. However, under many existing 
disassembly environments, robots are not able to fully replace human operators due to the individual difference of recycled 
products which need a high-level of human intelligence. To cope with this, human-robot collaboration (HRC) is one solution 
aimed to assist, not replace, the workers engaged in a wide variety of applications (Djuric, Urbanic, and Rickli 2016). One way 
to future manufactures is to let humans and robots work closer together (Ore et al. 2016).  

Before HRC was introduced into the manufacturing area, human-robot interaction (HRI) in robotics had been an 
extremely extensive and diverse R&D activity (Tsarouchi, Makris, and Chryssolouris 2016). This is mainly embodied in the 
design and development of collaborative robots, and collaborative capability for traditional ones. In human-robot 
collaboration, the combination of humans, robots and products result in the requirements of the connection of different 
systems such as human sensing systems, robot control systems, product status sensing systems and process control sys-tems. 
Information systems witnessed a long history in manufacturing technologies (Sanchez and Nagi 2001), but things get  
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different when taking multi-modal sensors, robots and intelligent algorithms into consideration. All the elements in the 
phys-ical world and information systems in the cyber world make up a typical cyber-physical production system 
(CPPS). This system is based on the progress of computer science, information and communication technology, sensor 
technology and network technology. It includes information systems and hardware resources (Lee, Bagheri, and Kao 
2015), and supports the communication between human, machine and production (Monostori 2014). Undoubtedly, 
human-robot collaborative manufacturing (HRC-Mfg) related R&D work has already occurred in CPPS (Wang et al. 
2017). CPS, on the other hand, also become one powerful booster for HRC applications (Nikolakis, Maratos, and Makris 
2019).  

However, even though HRC has been widely applied in the fields of industry, it is still in the user experience stage 
with intelligence need to be improved, especially in the application of disassembly. It is mainly caused by the difficulties 
of perceiving the status of human intention, robot motion and product. Besides, the decision making of HRC should be 
in a position to consider both the real-time dynamics and the recorded knowledge of humans, robots and products which 
bring challenges to existing decision systems. Fortunately, due to the rapid development of artificial intelligence and 
computing power, it is now foreseeable to utilise these powerful new technologies to promote the efficiency of HRC 
which is also a new trend in manufacturing. Moreover, intelligent algorithms should be deployed in CPPS because of 
the lack of computing power in robot systems just like gathering all data from all kinds of sensors to the cloud in 
Internet of Things. On the other hand, it is also a supplement for the concept and the function of CPPS.  

In this paper, a systematic development framework called PCDEE-Circle is proposed towards human-robot 
collaborative disassembly (HRCD) in sustainable manufacturing. Artificial intelligence methods towards perception, 
cognition, decision making and knowledge formation and evolution are also proposed in this paper to meet the special 
requirements of HRCD in sustainable manufacturing. From the unique view of innovative information technologies, this 
paper also delivers numerous advanced intelligent methods and analyses why they could and should be implemented in 
HRCD. The case study verifies the feasibility of the proposed framework on the perception, decision making and control 
of it, that is the implementation of a multi-modal perception platform for industrial robot system and human body, a 
bees algorithm based sequence planning method for an HRCD task, one safety assurance strategy and one motion 
driven control method. As for the cognition and knowledge formation and evolution, this paper discusses workflow 
combined with the characteristics and requirements of HRCD but remains the deployment in the future work. 
 
 
2. Related work 
 
HRC is a comprehensive research area and it is also known as human-robot cooperation and interaction. With the rapid 
development of robotic and AI technologies, it has become one desire of human beings to work with robots. The pioneer work 
can be traced to articles in the 1980s (Awad, Engelhardt, and Leifer 1983). In 1985, researchers started to conclude the factors 
in the design and development of human-robot interactive workstation (Holloway, Leifer, and Van der Loos 1985). However, 
due to the limitation of enabling technologies in the last century, researches on HRC came to a halt in basic design (Rahimi 
and Karwowski 1990; Kobayashi 2000). At the beginning of the twenty-first century, key technologies for HRC have been 
designed and tested, such as the perception of human gestures (Waldherr, Romero, and Thrun 2000).  

The application of HRC-Mfg was introduced around 2010 (Kato, Fujita, and Arai 2010; Tan and Arai 2010). Based 
on almost 30 years’ study on HRI and HRC, the application of HRC-Mfg including the perception of industrial robots 
and human at the very beginning has taken a multitude of aspects into account. Safety as the top priority of HRC has 
been studied by a number of researchers. Methods for collaborative zone design, robot speed limitation and vision-based 
human motion monitoring has been investigated in (Tan et al. 2012; Wang 2015). Safety-related ISO standard and 
metrics have been reviewed in (Hu et al. 2013; Zanchettin et al. 2016) and they have proved the feasibility of RGBD 
camera applications in HRC. Estimation and the evaluation of injuries in human-robot collisions are also researched to 
min-imise the consequences of collisions (Robla-Gómez et al. 2017). Path planning is another topic that has been 
explored by many investigators, which need to combine with human factors especially in mixed HRC-Mfg 
environments (Zanchet-tin and Rocco 2013). Task allocation and procedure arrangement are crucial and special parts in 
HRC-Mfg comparing with common HRC applications, such as Rahman’s method (Rahman, Sadrfaridpour, and Wang 
2016) of a trust-based optimal subtask allocation in HRC-Mfg as well as the optimised scheduling using integer linear 
programming in (Bogner et al. 2018). Evaluation and assessment in HRC are the basis of strategy making. Researched 
in this topic mainly includes manufacturing capability assessment through data fusion (Cheng et al. 2017), mental strain 
evaluation using physiological parameters (Kato, Fujita, and Arai 2010) and analytic hierarchy process based evaluation 
for multiple criteria (Tan and Arai 2010).  

In the industrial area, the number of industrial robots deployed in the manufacturing environment is growing at an 
overwhelmingly high rate, and significantly facilitate the development of intelligent manufacturing. In recent years, the 
concept of collaborative robots has appeared and been adopted in practical industry, and the new collaborative industrial 



 
robots, e.g. KUKA iiwa, ABB YuMi, Rethink Baxter and Rethink Sawyer (Weber 2014; Han et al. 2016) have been 
gradually put into the industrial market. For disassembly, 3D safety sensors based intuitive programming environment 
for HRCD has been researched and implemented in the disassembly of Lithium-Ion Batteries (Gerbers et al. 2018). 
Nevertheless, psychological and social factors of HRC-Mfg need to be addressed and embedded in the development to 
make robot actions become acceptable and comfortable for the human (Sadrfaridpour, Saeidi, and Wang 2016).  

Currently, there is still no standard paradigm of implementation in HRCD. Although HRC has been concerned in 
the manufacturing industry, however, since the uncertainty and complexity of disassembly are much higher than that of 
assem-bly, the research of HRC and HRC-Mfg is relatively rare in product disassembly. (Abdullah, Popplewell, and 
Page 2003) concluded that for tasks like assembly, methods implementation should not only consider factors of product 
technology, but also the industrial environment where task occurs. Methods of perception, cognition, task allocation 
and assessment need to be modified according to the characteristics of disassembly. Besides, artificial intelligence is 
rapidly utilised in machine vision, automatic drive, games and primitive HRI. But for HRC in manufacturing especially 
HRCD, the lack of implementation even well-designed framework is obvious. 
 
 
3. Human-robot collaborative disassembly within CPPS: PCDEE-circle framework 
 
Although modern manufacturing devices are constantly being introduced, fully automated disassembly is still 
impractical. HRCD makes up for the gap between the full manual operation and the full automation in sustainable 
manufacturing. Based on the design ideas of CPPS, this paper presents an HRCD framework named PCDEE-Circle, 
which is shown in Figure 1. The PCDEE-Circle is divided into five phases including perception, cognition, decision, 
execution and evolution, reflecting in one external circle and two internal circles.  

Since HRCD is obviously a complex production model containing human, robot, multiple products and background 
environments, it requires all kinds of sensor and interfaces of multiple modalities. Multi-modal perception is an 
integration of sensing technology. Aiming at the dynamics (human behaviour, robot motion, product delivery, etc.), 
individual differ-ences (different human individuals, different cases of damage of recycled products, etc.) and 
uncertainties (human intention, impacts on programme and time delay caused by long term usage of products, etc.) in 
HRCD, multi-target is built for the content analysis in that. Decision and execution are to realise the physical 
interaction of different individuals in HRCD while knowledge formation and evolution supports backwards the whole 
framework.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. PCDEE-circle: an HRCD framework. 
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The first internal circle is a human-in-loop circle (PCDE-Circle), it contains multi-modal perception, multi-target 
cog-nition, strategy and decision making and control. Though robot and human participate together in this PCDE-
Circle, the human is the main factor in this internal circle. In this circle, human factors are the key to decision making 
and guide the control and execution of robots and programmes. The next internal circle is a robot-in-loop circle (DEE-
Circle). It embodies the last three aspects of the whole external circle. From Figure 1, we can see that the intersection of 
these two internal circles include the decision and execution aspects which are exactly the kernel to realise physical 
HRC. External PCDEE circle is from a macroscopical view of the whole process of HRCD. It is a product-in-loop circle 
which represents the human-robot collaboration here serves the production.  

For logic in PCDEE-Circle, multi-modal perception technology connects the parameters of the industrial robot 
system and the action behaviour of human beings in the process of HRCD. After that, it utilises multi-target cognition 
technology to recognise industrial robot body, human behaviour, disassembly objects, disassembly tools, background 
environment and disassembly tasks, so as to support strategy and decision making. Intelligent decision-making based 
on reinforcement learning (RL) or swarm intelligence is trained through continuous training in the CPPS to satisfy the 
requirements of HRCD. Finally, knowledge formation and evolution based on incremental learning (IL) and transfer 
learning (TL) can accumulate knowledge generated during the process of HRCD, and achieve knowledge sharing 
through industrial cloud robot system and other related technologies.  

Comparing with the systems in the published literature, the PCDEE-Circle framework has an original view of 
human-in-loop, robot-in-loop and product-in-loop characteristics in the implementation of HRC in disassembly. Not 
only do we integrate perception, cognition, decision making and control into a holistic architecture, but for the first time 
put up with the knowledge formation and evolution and the idea of using knowledge to support decision making which 
is rarely seen in published frameworks. 
 

 
4. Systematic approaches 
 
4.1. Multi-modal perception 
 
In order to achieve HRCD, how to integrate the real-time state of the industrial robot, human worker, manufacturing 
cells and tasks is the key problem to be solved (Liu et al. 2017). In the PCDEE-Circle, the multi-modal perception in 
CPPS is the key technology to it. As shown in Figure 2, the multi-modal perception architecture for HRCD includes 
four aspects: the physical layer, the transport layer, the cyber layer and the application layer.  

The physical layer consists of industrial robots, robot controllers, multi-modal sensor group and other electronic equip-
ment. Among them, the industrial robot with high programming capability can be equipped with different tools to cooperate  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Multi-modal perception in HRCD. 



 
Table 1. Multi-modal data in cyber modules.   
 Data name Source Data type Units 
     

Industrial robot Joint angles Robot controller Array ◦ 
 Position of the tool Robot controller Array cm 
 Torque Robot controller Numerical value N·m 
 Payload Robot controller Numerical value kg 
 Task Robot controller String / 
 Programme Robot controller String and files / 
HMI Inputs HMI I / O Boolean 
Vision towards the human body RGB Microsoft Kinect Image / 
 Infrared Microsoft Kinect Image / 
 Depth Microsoft Kinect Image / 
 Skeleton Microsoft Kinect Array cm 
 Point cloud Microsoft Kinect Array cm 
Vision towards disassembly products RGB Industrial camera Image / 
 Colour Industrial vision software String / 
 Shape Industrial vision software String / 
 Position of product Industrial vision software Array cm 
 Type of product Cognition system String / 
 Damaged condition Assessment system String or numerical value / 
PLC & IPC Triggers PLCs & IPCs I / O Boolean 
Detailed human factor Hands Leap Motion Array cm 
 Fingers Leap Motion Array cm 
 Forearms Leap Motion Array cm 
Energy consumption Voltage Energy metre Numerical value V 
 Current Energy metre Numerical value A 
 Power Energy metre Numerical value W 
 Cost Energy metre Numerical value kW·h or $ 
Alternative modules Laser Laser radar Numerical value or image cm 
 Ultrasonic Ultrasonic sensor Numerical value cm 
 Touch Touch sensor Numerical value or I / O cm or Boolean 
 Voice Microphone Audio / 
 Metal Detection Metal sensor I / O Boolean 
     

 
with human operators to handle different disassembly tasks. The sensor group includes the energy metre, industrial 
cameras, RGBD cameras, human factor sensors. Additionally, there also exist basic electronic equipment such as 
human-machine interfaces, programmable logic controllers (PLCs) and industrial personal computers (IPCs).  

The transport layer is based on the industrial fieldbus and the factory network, which can realise the data 
transmission of multi-modal perception sensors, to provide different data interfaces for different cyber modules.  

The cyber layer accepts various data from the physical layer through the transport layer and constructs different 
cyber modules according to its source. As shown in Figure 2, cyber modules are incorporated in the cyber layer 
according to specific perception source like industrial robots, cameras, energy meter, human-machine interface (HMI), 
PLCs, IPCs and so on. For different disassembly tasks and sensing needs, the cyber layer needs to be elastic, which 
means that it can freely build cyber modules for alternative sensors. All the perception information in HRCD is shown 
in Table 1.  

The application layer is the transition from the cyber layer to the specific HRCD tasks. Most directly, operators and 
managers can manage data from the cyber layer in the applications, and conduct remote monitoring of HRCD tasks. 
Besides, the application layer also provides interfaces for other intelligent system and computing sources, such as 
Hadoop, Spark and other big data processing architecture, or Tensorflow, Keras and other training systems.  

On the other hand, data fusion is definitely one crucial and large-scaled problem in HRCD. However, since cyber 
modules change along with different HRCD tasks, data fusion methods cannot be constant. A general solution towards 
the data fusion problem is extremely hard to be given but should be replaced by a set of specific methods combined with 
specific HRCD tasks and cyber modules. 
 
 
4.2. Multi-target cognition 
 
Different from the traditional CPPS applications, the objects of HRCD are highly complex ones, such as disassembly 
products, human behaviour, manufacturing environment and so on. This makes the process from the perception to the 
application cannot be realised directly. 
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Figure 3. Multi-target cognition in HRCD. 
 

 
Multi-target cognition is an artificial intelligence technology which is built on machine learning (ML) and pattern 

recog-nition. It takes various data formats as input, and outputs the cognitive results for different cognitive targets. As 
shown in Figure 3, in the hybrid human-robot collaborative manufacturing cell, human-robot collaborative 
manufacturing system (HRCMS, an aggregation of multiple sub-systems) needs an overall sense of human workers, 
industrial robots, disassembly tools, disassembly objects and the background environment.  

The cognition of human workers mainly takes RGB images and point cloud images as the main data sources, and 
establishes human skeleton models by using human physiological structure. After that, we can get the human skele-ton 
point cloud model including real-time location and space occupancy. Combining the human skeleton point cloud model 
with the safety assessment system and the minimum safe distance calculation in ISO (Matthias 2015), a human dynamic 
security model can be obtained for the safety in HRCD. Force, coordinate and gesture of industrial robots can be 
calculated using the joints angle and torque data from multi-modal perception based on kinematics, dynamics and pre-
designed programme. It is unnecessary to cognise it by vision information, which greatly reduces the difficulty of 
modelling. For disassembly products and tools, the traditional way is tantamount to place them to a fixed position in a 
fixed order. This method has obvious limitations. Firstly, it requires the robot to encode and initialise the location of the 
tool in the programme. At the same time, the staffs are required to undergo a complex process of training to adapt to a 
specific disassembly task. Secondly, the collaboration between human and robot will bring more uncertainty to HRCD. 
Consequently, it is arduous to ensure that the needs and usage of tools in disassembly tasks are unchanged. Therefore, it 
is indispensable to recognise the types and status of disassembly products and tools by multi-target cognition. In this 
process, it is required to combine the characteristics of the products and the data format, select the appropriate learn-ing 
network, and use the well-designed sample set to train. The cognition of the background environment is the final part of 
the multi-target cognition in HRCD. However, it is still a paramount part of the cognition in the manufacturing 
environment (Christensen 2016). Through the cognition of the background environment, the HRCD cell and 
production line can recognise more folks, industrial robots, AGVs and other manufacturing equipment in the 
environment, as well as their behaviours and intentions. This makes the intelligence of the collaborative manufacturing 
system improved as a whole. 



 
4.3. Strategy and decision making 
 
Studies in automated disassembly decision-making and recovery planning have always been a key area in 
remanufacturing research (Tao et al. 2018). In the traditional task decision-making and scheduling, the capacity and the 
responsible pro-cedures of each manufacturing device are generally fixed, which can be regarded as a static scheduling 
process. As for HRCD, the decision-making environment is obviously dynamic, unstructured and uncertain. Machine 
learning or swarm intelligence (Tang et al. 2017; Liu et al. 2018) can be adopted for sequence planning in HRCD.  

RL is a kind of ML method in the field of AI. In RL, the decision-makers and all the external effects that may influ-
ence decision-makers to become the decision environment, while RL uses value functions to represent the sum of future 
rewards and punishments (Kulkarni 2012). For any action in the environment, the decision-makers will receive rewards 
and punishments from the environment according to the corresponding action results. Through constant testing and 
correction, the decision-makers will learn the most likely strategy to solve the problem. This method originated in the 
late twentieth century and demonstrated a major breakthrough in Project AlphaGo in 2015–2016, which made 
intelligent system able to defeat many professional players in the go game (Mnih et al. 2015; Silver et al. 2016). Since 
then, research of RL and deep reinforcement learning has become a hot spot in the academic and industrial sectors and 
has gradually revealed its application prospect in intelligent manufacturing (Zhao et al. 2016).  

However, from the perspective of CPPS, unlike the Go game that is fully running in the cyber world, HRCD occurs 
completely in the physical world. Accordingly, HRCD must be transformed into a model in the cyber world so as to 
apply RL to carry out decision-making training. This is because RL training needs to accumulate experience in 
mistakes, but HRCD does not allow errors. Any minor mistakes can bring safety risks to humans. Therefore, simulation 
and reproduction of HRCD in the cyber world have become the precondition for the implementation of RL. Digital twin 
(Tao et al. 2017) is one possible paradigm solving this problem. The definition of digital twin given by NASA 
(Glaessgen and Stargel 2012) is that digital twin is a simulation process integrated with multiple physical quantities, 
dimensions and probability. It builds a simulation model completely reflects the physical structure and describes the full 
life-cycle of the physical object by historic and real-time data. From this perspective, we propose multiple twin models 
for human, industrial robots and manufacturing tasks. These models can be applied to carry out RL training, so as to 
ultimately improve the decision-making ability of the system.  

As shown in Figure 4, in the cyber world, digital twin models of the human and industrial robot are built based on multi-
modal perception data and robotics and ergonomics theories. These models are not single but a combination of various ones. 
The digital twin model of human is composed of the kinematics model, the point cloud model and the skeleton model, which 
can represent the movement and the space occupancy of the human body. For the industrial robot twin model, it should 
include the kinematic, dynamic and visual model. These models can be specially designed according to the types of industrial 
robots, such as the size and shape of them. Besides, we also need to establish mathematical models for the operation 
mechanism, disassembly tasks and the safety assessment of HRCD to reflect production uncertainty. In the cyber world, 
production uncertainty and error models are represented by probability functions and models. These models mainly express 
the contents of safety assurance, task decomposition, sequence planning and scheduling evaluation. Finally, the twin models of 
human, industrial robots and manufacturing tasks form a virtual hybrid human-robot collaborative manufacturing cell in the 
cyber world, which can further become a virtual production line.  

Take safety assurance as an instance, the virtual industrial robot, as the decision-maker, performs a disassembly task 
in a shared environment and tries to ensure that it does not collide with people. Obviously, if a collision occurs, the 
decision-maker will be punished. Otherwise, if there is no collision and the cooperative disassembly task is successfully 
completed, the decision-maker will be rewarded. With the iterations in RL, the decision-maker will change their 
strategies to maximise the value function. After a large number of repeated training, an optimal collaborative 
disassembly strategy is formed on the premise of safety. When one strategy is repeatedly verified in the cyber world, it 
can be downloaded to the physical world. Finally, it drives the industrial robot to collaborate with human according to 
strategy, and ultimately achieve a safe and efficient way of collaboration. In addition, in the process of RL, the value 
function should be adjusted according to specific disassembly needs, so as to meet sustainable manufacturing 
requirements such as ‘completing the task in the shortest time under the premise of ensuring safety’ or ‘minimising 
energy consumption under the premise of ensuring safety.’ 

 
4.4. Execution and control 
 
Device control and command execution are the key threads in transforming the decision of the cyber world into the 
actions of the physical world. However, there remain quite a few challenges to be solved.  

First of all, even the same brand of industrial robots also has different operating systems and software architecture. 
In addition, due to the requirements of business secrets and industrial stability, the structure of contemporary industrial 
robot 
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Figure 4. Strategy and decision making in HRCD.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Execution and control in HRCD. 
 
 
controllers is mostly closed. Secondly, HRCD requires various types of sensors, which often come from different 
manufac-turers with different design patterns. In a word, closed industrial systems and limited sensor adaptation bring 
developing challenges to HRCD in the phase of executive control system design. In view of this, we put forward a 
device control and command execution architecture for HRCD, as shown in Figure 5.  

Hardware including robot controllers and sensor drivers occupies the bottom layer of this architecture. Inside, it 
saves the firmware written by the industrial robot and sensor manufacturers as the basic drivers. Above hardware, there 
exist 



 
industrial robots and sensor groups. However, software modules, such as perception, cognition and decision-making, 
have to be implemented into HRCMS on the computer operating system. For this reason, first of all, the multi-modal 
perception data from the industrial robot system and the sensor group are required to be introduced into the operating 
system through interfaces. These interfaces could be official SDKs (such as ABB PC SDK, PC Interface Option or 
Microsoft Kinect 2.0 SDK) or packages in ROS-Industrial (Edwards and Lewis 2012). They are running respectively on 
Windows and Linux Ubuntu. At the top is the control and execution layer with HRCMS as the core. After strategies 
are made in HRCMS, it will be sent back to robot controllers, finally realise the device control and command execution. 
 
 
4.5. Knowledge formation and evolution 
 
The formation and evolution of knowledge can be based on the previous experience of HRCD to guide the disassembly 
tasks in the future. It mainly relies on IL, TL and other techniques.  

With the continuous operation of HRCD, data from sensors, manufacturing execution systems, quality assurance systems 
and human resources feedback is growing rapidly in manufacturing enterprises. A manufacturing system without the ability to 
learn gradually will lose a lot of knowledge and efficiency for decision-making, and waste the potential value of industrial big 
data. But considering the growth rate of data, the traditional ML method that training and discarding previous learning 
results not only need more learning time but also limit their learning efficiency and knowledge retention ability.  

IL enables the HRCD to accumulate knowledge gradually which is shown in Figure 6. It not only allows knowledge 
accumulation, but also can update knowledge according to the emergence of new events, and it does not lose the useful 
knowledge that has been established in this process. Discovering and updating knowledge is the key factor of the next 
generation of the HRC system. Making new decisions requires making use of acquired knowledge, and a new decision will 
bring new knowledge, which makes the decision system have the characteristics of learning in order to practice. Obviously, 
learning takes place in every aspect of HRCD. The new data and new learning materials generated in each stage have led to 
the need for IL. Knowledge formation and evolution in HRCD are mainly embodied in the following three aspects. 
 

• IL for human behaviour. It enables HRCMS to drive industrial robots to respond to human actions more 
clearly and can learn and accumulate knowledge for different individuals’ behaviour habits.  

• IL for disassembly tasks. It enables HRCMS to record and analyse the characteristics of different tasks and further 
deduces the special needs of specific tasks, finally provides support for the optimisation of decision making. 

• TL for knowledge migration oriented to similar behaviour and tasks. It makes it possible for multiple 
industrial robots to share knowledge in clouds. 

 
Knowledge in (1) and (2) need to be stored in the knowledge base so that they can be retrieved at any time. With the 
progress of HRCD under different disassembly tasks, HRCMS can realise the collection, integration, expression and 
expansion of knowledge, and finally establish a complete knowledge base. It could be utilised with constantly updated 
knowledge to realise the catalysis of new knowledge to the old knowledge, the formation of new knowledge and the 
evolution of the whole knowledge system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Knowledge formation and evolution in HRCD. 
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5. Case study and implementation analysis 
 
In order to realise the multi-modal perception of hybrid HRCD cell in Figure 7, a self-designed software (RobotCube) 
was developed to percept the information from ABB IRC5 robot controller. Besides, we utilised the Microsoft Kinect 2.0 
to generate the infrared point cloud of the human body and built it with human skeleton from Microsoft Kinect 2.0 
SDK. Furthermore, one diaphragm coupling disassembly task was designed for the case study. Based on the multi-
modal perception results, we developed and implemented a simple safety strategy mechanism and designed a motion 
driven control mode in HRCD. 
 
 
5.1. Perception for robot system 
 
Our software is based on ABB PC SDK 6.00.01 and runs on a PC platform. We had tested it with both ABB IRB1200 
industrial robot (with RobotWare 5.15.13) and virtual robot in ABB RobotStudio 6.00.01. Functions and experimental 
results are illustrated in Figure 8.  

In Figure 8, module 1 is the network scanner for robot systems. It links all ABB robot systems through a network in 
our lab. From the scanner, we had gotten the information of the robot controller such as IP address, ID, availability, 
virtual status, system name, firmware (robotware) version, controller name, execute level, station name and MAC 
address. Module 2 is the event log of the robot controller. It contains the log, message and alerts of the robot system. 
Module 3 is the database interface and the data table is shown in Figure 8(h). Module 4 and module 5 are controller and 
task information respectively. Module 6 embodies the real-time tool central point (TCP) position, joints angle, 
quaternion and speed data of the robot. Multi-modal data under different tasks are shown in Figure 8(e) to Figure 8(g). 
Module 7 and module 8 make two kinds of telemanipulation mode for our robot. Module 9 processes the kinematic data 
of the robot. 
 
 
5.2. Perception for human body 
 
For building the infrared point cloud model of human body, the software processing data flow was implemented on a PC 
group (3 PCs with 3 Kinects) with master-slave architecture to realise the fusion of multi-source data (Yang et al. 2018). 
The Microsoft Kinect 2.0 is the XBOX edition with a PC adapter linking to the USB 3.0 port. Experimental results are 
illustrated in Figure 9.  

In Figure 11(a), the red dot in the red circle represents the TCP of the industrial robot. Snapshots from (b) to (j) 
demon-strate a distinct movement of the worker, and it is obvious that the red dot can move being dependent on the 
direction of the human’s hand. In (h) and (j), there are snapshots from other views to demonstrate the tridimensional 
character of the infrared point cloud model. Due to the large size and high frequency of data from three Kinect sensors, 
the processing speed for point cloud registration is limited. To solve this problem, we only extracted the depth data and 
RGB images and deployed the downsampling algorithm. Finally, we could achieve data transmission above 20 frames 
(20 sets of point cloud in one minute) and ensured the real-time performance of the point cloud model. 
 
 
5.3. Sequence planning for diaphragm coupling disassembly 
 
A diaphragm coupling disassembly task in Figure 10(a) was deployed for the sequence planning in HRCD. This product has 
37 independent procedures with symmetric structure. Therefore, if half of the procedures have been planned, the remaining  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The case study scenario. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Results of robot system perception. 
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Figure 9. Results of human body perception. 

 
part can be handled in the same way. In Figure 10(a), we also illustrate just half of the procedures with serial numbers 
but in Figure 10(b) we show the structure and priority of all the procedures.  

The sequence planning method was based on bees algorithm which had been illustrated in our former work (Tang et 
al. 2017). In this process, one diaphragm coupling had been snapshotted and analysed in the virtual explosive model, 
delivering the disassembly hybrid graph in Figure 10(b). Besides, Figure 10(c) indicates the variation trend of the 
solution of this algorithm, and Figure 10(d) demonstrates the result of sequence planning. Time-consuming of every 
procedure is assumed with disassembly unit time which is also illustrated in Figure 10(c). 
 
 
5.4. Safety strategy and motion control demonstration 
 
This demonstration combines a safety strategy based on the distance between human and robot and a motion driven 
control mode.  

In (a) to (b) of Figure 11, when human were far away from the industrial robot, the robot was running at full speed. 
When human gradually moved towards the cell in (c) to (d), the industrial robot first detected the proximity of human, 
and then reduced the speed so as to decrease the safety risk. When human entered the shared space of the cell in (e), the 
robot first tentatively stopped the current task and stood by. Then it settled in the pre-set target point and started the 
motion driven control mode. From (f) to (j) of Figure 11, the TCP of industrial robots followed the movement trend of 
the human hand in a shared space. At the end of the collaboration in (k) and (l), the human left the shared space 
backwards, then the industrial robot gradually increased the speed of operation and restored the task before the 
collaboration.  

Traces of TCP and hand are illustrated in Figure 12(a). From point 1–2, the robot was executing tasks at full speed. 
At point 2, the robot stopped which is paralleled with Figure 11(e). Point 3 in Figure 12(a) is the pre-set target point. 
After point 3, the robot was driven by the hand motion of human, representing the collaboration process. It can be 
noted that traces of TCP and hand are basically coincided, manifesting the accuracy of the motion driven control 
method. In order to observe the time delay during hand following, we selected seven key points. They are the start 
point (point 1), the end point (point 7) and the points at veers (point 2 ∼ 6). The time delay of these points is illustrated 
in Figure 12(b). In this figure, we can find that the sensitivity of the hand movement tracing is not constant. The time 
delay from the motion of human to the movement of robot varies from about 100 ms to nearly 1000 ms, which is caused 
by not only the point cloud processing but also the robot system. Figure 12(c) and Figure 12(d) manifests the time delay 
of the whole trace launching from blue to red. Points and lines in the same colour represent that they occurred at the 
same time. Because of the closed industrial robot system, an industrial robot cannot achieve real-time sensitivity 
strictly. This assumes that industrial robots will have to be under a delay up to one second when the speed of human 
motion is faster. Numerical comparison with (Du and Zhang 2014) on the time delay of motion control is given in Table 
2.  

The related work in Table 2 used Microsoft Kinect v1 as the depth camera with a depth resolution of 320*240. They 
utilised the arm motion of human to control a dual arm robot in a virtual environment. However, they recorded a relatively 
long phase of motion up to 60 s. The step value in their figures is much larger than ours, so we have to enlarge their figure 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Results of sequence planning. 

 
to get an estimated value of the time delay between the paths of ‘Hand’ and ‘End-Effector’ using a pixel ruler. Similarly, 
we select 7 different points randomly at veer in the start, middle and end phase of the movement.  

From Table 2, we can see that the average time delay in our work is less than the result of the related work. One 
possible reason is the advanced performance of the newer generation of sensor. Besides, the purpose of the related work 
is to make the position and rotation error as little as possible without considering too much about the time delay while 
we adopt algorithms such as downsampling to control the data size. However, there are 3 sensors in our system and the 
resolution is much higher which means our work could bring more detail and scope of depth vision.  

To discuss the time delay of the proposed system, Figure 13 shows the architecture difference between typical 
Kinect SDK (single-sensor) and our 3-sensors network. Our system sacrifice 10 frames per second to obtain a much 
wider view of human point cloud comparing with a single-sensor solution. As for the total time delay of robot reacting 
to human motion, it contains processing time for 20 frames in one second and the time delay on signal transmission 
resulting in the numerical indication of 100–1000 ms.  

In order to address the time delay problem, we consider improve the data format, sampling algorithms as well as 
opti-mising the structure of the software such as using ROS 2.0 (“ROS 2”) and improving the sampling rate of the 
industrial robot system. Moreover, different brands of industrial robots are running under different hardware and 
software architecture which mean a great challenge for satisfying the requirement of international standards. 
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Figure 11. Demonstration of safety strategy and motion control.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. Results of trace and time delay in collaboration. 



 
Table 2. Numerical comparison on the time delay of motion control.   
     Resolution        
     (depth        
  Number Initial Output image)        
  of frame frame (Skarredghost        
 Sensor sensors rate (fps) rate (fps) 2016) Robot Algorithms   Time delay (ms) 
             

Related Microsoft 1 30 N/A 320*240 Virtual dual Over damping . Estimated   
work in Kinect     arm robot    value from   
(Du and v1         (Du and   
Zhang          Zhang   
2014)        No. 2014) Our work 

            

         1 1327 101  
        2 1264 850  
        3 1801 714  
Our work Microsoft 3 30 20 512*424 Real ICP and 4 1043 785  
 Kinect     Industrial Downsampling 5 1106 739  
 v2     robot  6 1043 991  
        7 1264 796  
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Analysis of frame output and total time delay. 
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6. Conclusion and future work 
 
HRC is currently a hot topic in robotics and artificial intelligence, which represents one direction of robotic 
development.  
HRCD is a quintessential application of HRC and has multiple contributions for sustainable manufacturing.  

In this paper, a systematic development framework named PCDEE-Circle was presented. The key technologies that 
are perception, cognition, decision, execution and evolution were further discussed. At the same time, it lays a 
foundation in the field of disassembly and intelligent manufacturing, manifesting the application prospect of AI 
technology, such as DL, RL, DL and TL. In the case study, we demonstrated the multi-modal perception for ABB 
industrial robots and human body and sequence planning for an HRCD task, finally realised a distance based security 
strategy and motion driven control mode. It manifests high feasibility and effectiveness of the proposed approaches for 
HRCD and verifies the functionalities of the systematic framework.  

Future work is summarised as follows. Firstly, we will establish an integrated industrial robot perception system for 
more kinds of industrial robots. Secondly, we will go deep into the work of digital human modelling. Thirdly, we will 
implement the twin models of industrial robots and the digital human body in the cyber world, and use RL to make 
intelligent strategies. Fourthly, we will work through the bottom-up control and command execution architecture to 
realise the omni-directional control of one HRCD production line. Finally, we will develop human-robot collaborative 
knowledge formation and evolution software based on IL and TL.  
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