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Abstract 
 

Cold extrusion 3D food printing is an emerging technology which enables the manufacture of food in 
different shapes and structures and offers huge potential for personalised food products. This study 
investigates rheological properties and printability (shape fidelity) of food-grade hydrocolloid pastes. 
From this study, it was found that if the phase angle is in the range of  3° - 15°  and  the relaxation 
exponent is in the range of  0.03 -0.13  the paste material is printable, which means that it can support 
its own-weight if printed. As the demand for inks for 3D printing increases, rheological measurements 
can rapidly assist with the development of new ink feedstocks. 

 

 

Keywords: Food 3D printing, Cold extrusion, Rheological Characterization, Phase angle, 
relaxation exponent 
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1. Introduction 

Additive manufacturing (Truby & Lewis, 2016) often referred to as three-

dimensional (3D) printing, enables fabrication of complex structures (Murphy & Atala, 

2014). The fabrication process is digitally controlled and the three-dimensional objects are 

constructed through a layer-by-layer deposition (Chia & Wu, 2015; Guvendiren, Molde, 

Soares, & Kohn, 2016). This technology has also recently found its way in food applications 

(Lipton, Cutler, Nigl, Cohen, & Lipson, 2015; Sun, Peng, Yan, H Fuh, & Soon Hong, 2015; 

Fan Yang, Zhang, & Bhandari, 2017). Among the current 3D printing methods for food 

applications (Chia & Wu, 2015; Guo & Leu, 2013), extrusion is a prevailing technique 

because it is easy to develop and it has the broadest set of “inks”(Guvendiren et al., 2016; 

Tan, Toh, Wong, & Lin, 2018). Inks can be divided into three groups depending on the 

extrusion techniques (Godoi, Prakash, & Bhandari, 2016): cold extrusion, hot-melt extrusion, 

and gel-forming extrusion. Both hot-melt and gel-forming extrusion must possess gel-

forming mechanisms (Kirchmajer, Gorkin III, & in het Panhuis, 2015; Sun, Zhou, Huang, 

Fuh, & Hong, 2015). In hot-melt extrusion, semisolid ink is extruded at a relatively high 

temperature from the nozzle and it needs to solidify almost immediately after extrusion and 

welds to the previous layer (Sun, Zhou, Yan, Huang, & Lin, 2018). It has been widely applied 

to create customized 3D chocolate products (Godoi et al., 2016).  If the gel-forming 

mechanism is based on chemical cross-linking the reagents are often harmful and are unlikely 

to be used for food design. In case of ionotropic cross-linking and complex coacervate 

formation (Godoi et al., 2016) , the number of edible materials that can be used as inks is 

limited (Sun et al., 2018) .   However, the ink is made of a self-supporting material in cold 

extrusion and the extrusion is generally conducted at room temperature (Sun et al., 2018).    

In order for an ink to be used in cold extrusion-based printing, in general or in food 

applications for the purpose of this paper, numerous considerations need to be addressed. 

Besides processing parameters, such as nozzle dimensions, printing speed, extrusion rate 

(Liu, Zhang, Bhandari, & Wang, 2017; Murphy & Atala, 2014) infill percentage and layer 

height (Severini, Derossi, & Azzollini, 2016), the ink should display shear thinning behaviour 

(Ribeiro et al., 2018).  This determines if it can be extruded from the nozzle (Ouyang, 

Highley, Rodell, Sun, & Burdick, 2016). Also, it should be deposited into well-formed 

geometric shapes without slumping, spreading or bridging (Puttlitz, Stalter, & Faulkner, n.d.).  

Shape fidelity indicates how much the printed structure is matching the original design. In the 

case of food materials, the printed structure may go through post-printing process such as 
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baking for which it is necessary that the printed structure retains its shape (Sun et al., 

2018).There is no consensus on approaches to assess or predict shape fidelity, let alone 

printability (Ribeiro et al., 2018). However, in order to estimate printability (shear thinning 

and shape fidelity), rheological properties of the material, including viscosity, yield stress, 

shear moduli and shear recovery should be determined and studied. Although the correlations 

between the rheological properties of different materials, especially hydrogels, have been 

studied (Ding & Chang, 2018; Habib, Sathish, Mallik, & Khoda, 2018; Severini, Azzollini, 

Albenzio, & Derossi, 2018), to date the rheological property or properties and their 

quantitative limits that dictate 3D printability have not been univocally identified (Kyle, 

Jessop, Al-Sabah, & Whitaker, 2017). 

In one of the earlier reports, Smay et al (Smay, Cesarano, Lewis, & Iii, 2002)  used 

concentrated colloidal gels to form self-supporting mesoscale periodic structures. They have 

reported the minimum ink elasticity required to assemble a given periodic structure. This 

value was directly related to the ink specific weight.  

M´Barki et al (M’Barki, Bocquet, & Stevenson, 2017) studied the printability of relatively 

dense suspensions of Boehmite. They have defined a dimensionless parameter that is a 

function of material properties (dynamic yield stress, surface tension and density) as well as 

of printing parameters (nozzle radius and printing height). They have shown that Boehmite 

inks reach a printed shape fidelity higher than 90% when the defined dimensionless 

parameter is higher than 1. However, they have determined only a lower limit but not a 

higher limit for the defined dimensionless number. Kim et al (Kim, Bae, & Park, 2017) have 

selected methyl cellulose at different concentrations as the reference material. They have 

classified the printability of different methyl cellulose concentrations based on their shear 

modulus. They have reported that all the materials with a shear modulus higher than 500 �� 

can be 3D printed (Table 3) (Kim et al., 2017).  

There are several studies that have reported the key role of flow consistency (�) and flow 

behaviour index (�) in determining the printability. Paxton et al (Paxton et al., 2017) have 

developed a mathematical model and have determined a printability window (printing 

pressure vs needle radius). They have reported that the size of the window of printability is 

entirely depending on the shear thinning coefficients, � and � (Power-Law model). However, 

no significant difference between the printability of their samples can be observed, despite 

considerable difference between their reported flow consistency and flow behaviour indices 
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and yield stress values (Figure 3, Table 3 and Table 4) (Paxton et al., 2017).  Liu et al (Liu, 

Zhang, Bhandari, & Yang, 2018) studied the 3D printing of mixtures of mashed potato and 

potato starch. They have concluded that yield stress (��), elastic modulus (�′) , �  and �  

(Herschel-Bulkley equation) are the rheological parameters that play an important role in 

determining the printability. They have reported if  �� = 312.16	�� ,  �� ≈ 4000	�� at the 

frequency of 1Hz, � = 118.44	��. �� and � = 0.63 the printed objects have good 

mechanical strength and the material can be easily extruded (Liu et al., 2018).   

Vancauwenberghe et al (Vancauwenberghe et al., 2017) and Azam et al (Azam, Zhang, 

Bhandari, & Yang, 2018) have identified �� and tan � (where � is phase angle) as the 

parameters that play the key role in material printability. Vancauwenberghe et al 

(Vancauwenberghe et al., 2017) assessed the printability of a series of pectin gels by visual 

observation of the deposition of the material and the 3-D shape stability during and after 

printing. They reported that if �� was much higher than 1000 �� and tan � at the frequency 

of 0.1 rad. s-1 was 0.09 then irregular extrusion would happen.  If �� was higher than 1000 �� 

and tan � at the frequency of 0.1 rad. s-1 was 0.21 then the syringe pump would stall 

automatically. However, when �� was higher than 100 �� and tan � at the frequency of 0.1 

rad. s-1 was 0.36, partial spreading happened.   Azam et al (Azam et al., 2018) studied the 3D 

printing of  the blend of Vitamin D, orange concentrate , wheat starch (15% wt.) and different 

gums (1% wt.). They have printed three different geometric shapes, hollow cylinder, 

triangular and square and have evaluated the printability by comparing only the height of the 

printed objects to the target height in the design. A correlation is observed between their 

reported rheology and printability results. Their inks containing xanthan gum and guar gum 

have the same rheological properties (��(��	1��) ≈ 6000 − 7000	�� and tan � ≈ 0.22). 

The reported printability for these two inks are almost equal. The best printability that they 

have obtained is for ink containing κ-carrageenan (��(��	1��) ≈ 5000�� and tan � >

0.22). 

Lille et al (Lille, Nurmela, Nordlund, Metsä-Kortelainen, & Sozer, 2018) have utilized 

various protein, starch and fibre-rich food ingredients and their mixtures for 3D printing of  

ten layers of squares filled with diamond-like structures. They have assessed the printing 

quality visually and assigned a value of 1(very bad) to 5 (very good) based on the shape-

stability of the printed structures. The interesting point in their paper, lies in Table 4. Except 

one of the formulations (60 % SMP) which was not printable, ��, �′′ (at the frequency of 

0.1��)  and the yield stress can be different up to one order of magnitude but their assigned 
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printability can be the same (10% starch and 35% OPC) . However, the value of their phase 

angle is not so different. The best printability has been obtained for a formulation with the 

phase angle of ≈ 11° which corresponds to tan � ≈ 0.19 

In this paper, hydrocolloid pastes printability was investigated. It is argued that the phase 

angle could provide a swift way of assessing the printability of paste materials. This shows 

that through careful paste design, rheology can be controlled and modified to better suit 3D 

printing applications. 

2. Materials and methods 
 
2.1. Materials 

Xanthan gum from Xanthomonas campestris, locust bean gum from Ceratonia siliqua 

seeds, carrageenan (predominantly κ and lesser amounts of λ carrageenan), pectin (70-75% 

esterification), agar (congealing temperature <38 °C (1.5% in H2O)), sodium alginate, guar 

gum, gum Arabic , gelatin (gel strength 300 bloom), maltodextrin (dextrose equivalent 4.0-

7.0), iota-carrageenan (commercial grade, type II) were purchased from Sigma-Aldrich 

Company Ltd Marketplace (Dorset, UK). Gellan gum, methyl cellulose (viscosity 400 cPs) 

and lecithin (refined) were purchased from Alfa Aesar Marketplace (Lancaster, UK). Isomalt 

was a product from MSK specialist food Ingredients. All materials, (non-food grade), were 

used as received. 

2.1.1. Preparation of samples 

The hydrocolloid powders were dispersed in deionized water and mixed (L5M, Silverson 

Machines Ltd., UK) at 10000 rpm for 5 min or longer (until full homogeneity observed) at 

room temperature. Samples were put in the refrigerator at 4 °C for 48 hr before experiment. 

2.2. Methods 
 

2.2.1. Rheology 

Rheological characterization of the materials was performed on a Kinexus Rheometer (Pro or 

Pro+, Malvern panalytical, Malvern, UK) using different geometries (cone and plate, parallel 

plates sand blasted or serrated, cup and vane) depending to the materials physical state. All 

measurements were repeated at least three times. 

2.2.1.1. Amplitude sweep  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 
 

In order to determine the linear viscoelastic region, oscillation amplitude sweep (strain 

controlled) measurements were performed in the range of 0.01-100% at the frequency of 1 

Hz at 25 °C (at 20 °C for gelatin samples)  

2.2.1.2. Frequency sweep  

In order to get the mechanical spectrum of the sample, frequency sweep (at the shear strain of 

0.1%) measurements were performed in the range of 10-0.1 Hz at 25 °C (at 20 °C for gelatin 

samples) 

2.2.1.3. Amplitude sweep  

In order to measure the yield stress of the samples, oscillation amplitude sweep (strain 

controlled) measurements were performed in the range of 0.01-100% at the frequency of 1 

Hz at 25 °C (at 20 °C for gelatin samples). The yield point was defined as the intersection 

point between two linear regressions at the plateau-region and viscosity-drop regions of the 

viscosity-shear stress diagrams, indicating the point at which the material first started to flow. 

2.2.1.4. The shear and recovery test  

This test comprises of three steps; the first step is a single frequency (1Hz) strain controlled 

oscillation for 60s , then the sample is exposed to a steady shear rate of 344.8 s-1 for 60 s 

before reverting back to oscillation mode (the same strain value as the first step at 1Hz) to 

follow structural recovery for 27 min. The measurements were conducted at 25 °C (at 20 °C 

for gelatin samples) 

2.2.2. 3D Printing 

A custom built food 3D printing system was used in this study. Printing parameters were 

adjusted for each sample to get the optimum printability. 3D digital design of cube was 

generated with the Cura 15.04.6 (Ultimaker B.V., Netherlands). The cubes were printed on a 

sandpaper (3M™ Utility Cloth Sheet 314D, R.S. Components Limited Marketplace, Corby, 

UK) at room temperature. For printable materials, three cubes were printed and used for 

image analysis. Printing time could be as long as 20 min. A 22G needle (inner diameter 0.413 

mm) was used for all samples except for agar (4%1 and 8%) and carrageenan 4%, where an 

18G needle (inner diameter 0.838 mm) was used. Moreover for carrageenan 8% and for agar 

16% a 2-200 µL pipette tip (inner diameter 0.52 mm) was used because of its conical shape. 

For all samples a 10 mL syringe was used except for agar (4, 8 and 16%) and carrageenan (4 

                                                           
1
 The numbers in front of the sample names, show the concentration in w/v %. 
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and 8%) where a 5mL syringe was used.   All samples were printed at the flow level (Derossi, 

Caporizzi, Azzollini, & Severini, 2018) of 40%, however following samples were printed at 

different flow levels to obtain better printability; carrageenan 2% at 50%, xanthan 4% - 

gelatin 0.5% at 70%, xanthan 4%-gelatin 2.0% at 55%, guar gum 4% at 50%, agar 4,8 and 

16%  and carrageenan 4% at 80% and carrageenan 8% at 100 %. 

 

 

2.2.3. Time-Domain NMR (TD-NMR) 

These experiments were conducted using TD-NMR, Minispec 20 Hz, (Bruker BioSpin 

GmbH, Karlsruhe, Germany). T2 values were recorded using the software application 

“t2_cp_mb” a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence provided by Bruker. For 

each measurement 200 data points were collected. Pulse separation between the 90° and the 

180° pulse was 0.5 ms and the recycle delay was set to 2 s. Data were accumulated with 8 

scans. For each measurement sample was placed in a small glass tube and then in an NMR-

glass tube (outside diameter 10 mm) at 25 °C. Three samples were prepared and each sample 

was measured once.  

3. Results  

Routine rheology measurements were performed to characterise the shear moduli, phase 

angle within the linear viscoelastic region and yield stress (Supporting information, Table 

S1). A series of gels were examined and were divided into four groups based on their phase 

angle value (Table 1).   

 

 

 

 

 

 

Table 1  Different groups of hydrocolloids based on their measured phase angle. The numbers in front of the sample names, 
show the concentration in w/v %. 

Phase δ (°) at Property Samples 
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angle 1	'( 

High 45-90 liquid and non-self-supporting 

Gum Arabic (2, 4, 8 and 16%), Isomalt (2, 4, 8 
and 16%), Lecithin (2, 4, 8 and 16%), Locust 
bean (2%), Maltodextrin (2, 4, 8 and 16%), 

Methylcellulose (2 and 4%), Pectin (2, 4 and 
8%), Sodium alginate (2, 4, 8 and 16%) 

 

Medium 15-45 Semisolid but  non-self-supporting 

Guar gum (2 and 4%), Locust bean (4%), 
Xanthan (2%, 4%), Xanthan (4%)-Gelatin 

(0.5%) 
 

Medium-
Low 

3-15 Semisolid  and self-supporting 

Agar (2%, 4%, 8% and16%), Carrageenan 
(2%,4% and 8%),  i-Carrageenan (2% and 4%),  
Gellan (2 and 4%), Xanthan (4%)-Gelatin (1%), 

Xanthan (4%)-Gelatin (2%), Xanthan (8%), 
Xanthan (8%)-Gelatin (0.5%), Xanthan (8%)-

Gelatin (1%), Xanthan (8%)-Gelatin (2%) 
 

Low 0-3 Hard to extrude Gelatin (2, 4, 8 and 16%) 

 

All the samples with high phase angle are liquid and non-self-supporting. Samples with low 

phase angle proved to be too hard to be extruded. Other samples with medium, medium-low 

and gelatin (2%) (low phase angle) were used to print cubes of 1.5 × 1.5 × 1.5 cm3 for 

comparison and characterization. The products were designed to have a cubic shape, 

however, in practice they did not form perfect cubes and as such were irregularly shaped. The 

degree of shape irregularity of products from that of a perfect cube was quantified by two 

parameters; shape inconsistency factor and deformation factor. In order to calculate the shape 

inconsistency factor, the area of each face of each cube (six area) was measured using image 

analysis. Each measured area was divided by its theoretical value and the average of the 

standard deviation of these values multiplied by 100 is defined as shape inconsistency factor 

(Lipton et al., 2015) (Figure 1). The deformation factor is the ratio of the area of the top to the 

bottom faces.  
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Figure 1 Calculating shape inconsistency factor; the area of each face of each cube (six area) was measured using image 

analysis. Each measured area was divided by its corresponding value of PLA cube and the average of the standard deviation 

of these values multiplied by 100 is defined as shape inconsistency factor. The area of the 6
th

 side was calculated from the 

same image as the 5
th

 area. These images are the printing results for gellan 2% 

The results are shown in Figure 2. The image analysis is based on the pictures taken just after 

printing. The samples were preserved at room temperature overnight and all of them (except 

guar gum 4%) retained the shape for a few hours. However, their shape change by time was 

not recorded. For guar gum 2%, locust bean 4%, xanthan 2 and 4% and agar 2%, no defined 

geometric shape was formed at the end of printing. The samples with the shape inconsistency 

factor of < 60 and the deformation factor of >0.4 were assigned as printable.   An image of 

printed cubes for each sample is supplied in supporting information (Table S2) 
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Figure 2 Printability of hydrocolloids with medium, medium-low and low phase angle.  

For all the samples, the frequency dependence of  ��  in the linear viscoelastic region was 

fitted by a power-law equation (�� ≈ �)*
+		)	 , where * is the angular frequency (Martin & 

Adolf, 1991). The average value of coefficient of determination (,-) for all samples was 

higher than 0.94 except for methyl cellulose where it was 0.84. The relaxation exponent,	. 

was calculated and plotted against the phase angle in Figure 3.  

 

Figure 3 The calculated power law index m in �� ≈ �)*
+ for different hydrocolloids for the whole range of phase angle (0-

90°). The inset shows the corresponding m values for those with phase angle in the range of (0-45°) 
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A three-step shear rate rheometry test was performed on samples with, medium, medium-low 

and low phase angle, to evaluate the rate and extent of samples recovery following extrusion. 

During this process the sample passes from a structured state, to a non-structured state and 

then it is re-structured to a new state (Abu-Jdayil, 2003). In order to quantify the recovery of 

the samples after a high shear step, the recovery index was defined as the following 

,/012/34	5�6/7 =
89 − 8:;<=>
8� − 8:;<=>

× 100 

where 8�is the initial apparent viscosity at the end of the first step (structured state, low 

oscillation), and 89 is the equilibrium apparent viscosity at the end of the last step (re-

structured state, low oscillation). 8:;<=> is the apparent viscosity at the end of the high shear 

step. The graph of recovery index against the phase angle of the sample (re-structured state) 

is brought in Figure 4. It was not possible to conduct this test for gelatin samples, because 

samples were ejected out of the geometry during the high shear step. 

T2 (spin–spin relaxation time) was also recorded as an indicator for gel strength and water 

binding strength and the results are presented in Figure 5. 

 

Figure 4 Recovery index vs phase angle for the re-structured sample 
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Figure 5 Relaxation time as indicator for gel strength and water binding strength of hydrocolloid samples measured by 
NMR analysis 

 

4. Discussion 

Yield stress materials encompass a broad range of materials from colloidal assemblies and 

gels to emulsions and non-Brownian suspensions (Bonn, Denn, Berthier, Divoux, & 

Manneville, 2017). Each of these materials appears capable of flowing only when a 

sufficiently large stress has been applied to it (Baudez & Coussot, 2004). A gel is an 

intermediate between a solid and liquid possessing both elastic (solid) and viscous (liquid) 

characteristics (Nazir, Asghar, & Aslam Maan, 2017). Soft gels, including simple water 

based gels, can be considered as simple physical models for foods (Vilgis, 2015). For a few 

of the polysaccharides, after being dispersed in water and after complete hydration, the 

polymer strands are cross-linked. Beyond a certain concentration (packing fraction), the 

dispersion turns into a gel (jammed systems) (Bonn et al., 2017; Conrad et al., 2011; Nazir et 

al., 2017). 

To function properly as 3D printing ink, the sample must combine liquid-like characteristics 

to flow under the shear in the extruder and solid-like characteristics to form a self-supporting 

structure once the applied shear is removed. Pasty materials (gels) are capable of flowing 

only when a sufficiently large stress has been applied to it, a characteristic feature associated 

with their ‘‘jammed’’ structure (Baudez & Coussot, 2004).  
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The phase angle (or loss angle) is the inverse tangent of viscous modulus to the elastic 

modulus (��′/��)(Coussot, 2005). Generally, the phase angle,	� lies between 0° (purely 

elastic, solid) and 90° (purely viscous, liquid)(Schultz & Struble, 1993). For gels 1.2° < � < 

64° (Dong & Lakes, 2012) and for elasticity dominant gel-like structures � is less than 45° 

(Lille et al., 2018). The phase angle below 10 ° in the linear viscoelastic region is 

characteristic of viscoelastic solids (Patel, Cludts, Sintang, Lesaffer, & Dewettinck, 2014).  

Here, Figure 2, we have shown that if the phase angle of the shear thinning sample is in the 

medium -low range, it will be self-supporting and extrudable.  The same factors that give rise 

to syneresis in carrageenan and agar, interfere in printing as well. By using low flow levels 

(Derossi et al., 2018) or narrow needles only the aqueous phase goes out of the syringe but 

not solid material. The flow level that was used to print agar and carrageenan samples is 

twice that of used for printing iota-carrageenan. This may be one reason for their low 

printability. Although for agar, two batches were used (with the same catalogue number from 

the same supplier). They had very different colours (white and beige), for agar 2 and 4% the 

phase angles were very different for the two batches (70.78 ± 2.39 and 33.88 ± 2.47 for white 

coloured sample and 5.25 ± 0.16 and 7.24 ± 0.27 for the beige coloured sample). Other 

parameters (shear banding or radial viscous fingering (Philippe Coussot, Personal 

communication) are likely involved in the rheology of agar (and carrageenan) samples that 

lead to non-realistic phase angle values. 

For the medium phase angle samples, the yield stress changes over four orders of magnitude 

and �� changes over three orders of magnitude. However, none of them proved to be 

printable into self-supporting structures. For medium-low range of phase angle, yield stress 

mainly varies in the range of 1-150 Pa and �� is in the range of 150-40000 Pa, which overlay 

those of medium phase angle range. But the latter shows some degrees of shape fidelity. 

However, the former does not form any finite geometric shape. Moreover, no correlation 

between elastic shear modulus, yield stress and shape inconsistency or deformation factor 

was observed (Supporting information, Figure S1). 

For gels, in the linear viscoelastic region, �� (and ���) can be represented by a power law 

function of angular frequency ( �� ≈ �)*
+) (Kavanagh & Ross-Murphy, 1998). The 

exponent, . , should have some value between 0 (typical elastomeric solid) and 2 (ideal) 

(Muller, Gérard, Dugand, Rempp, & Gnanou, 1991). A notable feature of ., is that it varies 

among different materials and continuously but rather weakly for a single material type  
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depending on its formulation (for example its solid fraction) (Chen, Wen, Janmey, Crocker, 

& Yodh, 2010; Muller et al., 1991).  Here, it has been shown that if 0.03 < . <0.13, the 

material can support its own weight (Figure 2). A question might arise that  .  for agar (2 

and 4%) is 0.03 but they proved to be non-printable. As it was explained earlier it is very 

likely that some instabilities are involved in agar rheology experiments (Gonuguntla, Sharma, 

& Subramanian, 2006). Even so, it does not contradict our design rule. Because the . value 

for agar 2 and 4% (0.03) lies over the lower extreme of this range. 

Therefore, the dependence of �′  and �′′ on frequency (mechanical spectrum) can be used to 

characterize viscoelastic properties (Brummer, 2006) or to classify the dispersion (Morris, 

Nishinari, & Rinaudo, 2012).  If  �′  and �′′  are weakly dependent to the frequency and �′  is 

considerably higher than �′′  , the gel is considered as  self-supporting , demouldable, strong 

or true gel (Kasapis & Bannikova, 2016; Morris et al., 2012).  Among medium and medium –

low phase angle samples, only guar gum (2 and 4%) and locust bean (4%) are not “true gels”. 

In the mechanical spectrum (Supporting information, Figure S2) for guar gum 2%, a cross-

over of �′  and �′′  can be observed at the frequency of ~ 0.2 Hz. However, for guar gum 4%, 

no cross-over observed in the range of 0.1-10 Hz ( �′  > �′′  ), but it is seen that it can occur 

below 0.1 Hz. For locust bean 4%, a cross-over is observed at the frequency of ~ 1.3 Hz. If 

the curves of �′  and �′′ pass a cross-over point, the sample is categorized under a semi-dilute 

solution of entangled polymer coils (Morris et al., 2012).  Based on these definitions, among 

medium and medium –low phase angle samples, only guar gum (2 and 4%) and locust bean 

(4%) are not “true gels”. However, being a “true gel” cannot be interpreted as being printable 

or self-supportive. Agar (4%), xanthan (2% and 4%) and xanthan 4%-gelatin 0.5% are true 

gels but they are proved to not to be able to retain the shape. 

Pastes are thixotropic fluids, which means that they show shear thinning behaviour combined 

with a time dependency. Their viscosity drops when subjected to a constant shear rate for a 

period of time, but it  recovers substantially over a period of time after the shearing forces 

have been removed (Coussot, 2005, 2007). The major difference between colloidal systems 

and polymeric liquids is that polymer solutions have much higher elastic recovery than 

colloidal systems. Due to short range of interparticle forces, colloidal dispersions show less 

elastic recovery (Russel, Saville, & Schowalter, 1989). Here, the recovery of the samples 

after being subjected to a shear rate of 344.90 s-1 was evaluated. It is the shear rate that 10 ml 

of a non-Newtonian fluid with the flow behaviour index of 0.1 is subjected to when passing 

through a tube with a diameter of 1 mm during 2min.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 
 

All samples’ viscosity decreased significantly at high shear rate and recovered rapidly at low 

shear rate, and quickly reached a stabilized state. The thixotropic behaviour for two of the 

samples, as an example, is shown in Figure S3.  The mechanism of gelation of food 

hydrocolloids are well-studied (Banerjee & Bhattacharya, 2012). For example, the 

mechanism of gelation of κ-carrageenan is reported as a process divided into several stages; 

starting from random coil conformation to the formation of a helical dimer and finally to 

aggregation of helical dimers, upon increasing the concentration (Tecante & Nez Santiago, 

2012).  The recovery index is lower than 100 for most of the samples. It shows that the 

equilibrium configuration after restructuring is different than that of before breakage as a 

result of the shear.  Khabaz et al.(Khabaz, Liu, Cloitre, & Bonnecaze, 2017), using 

computational simulations, have shown that the microstructure and shear rheology of highly 

concentrated, jammed suspensions of soft particles depends on polydispersity and shear rate 

and glassy suspensions with a low degree of polydispersity evolve to face-centred cubic and 

hexagonal close-packed structures at low and high shear rates, respectively. However, these 

soft matter systems are diverse structurally, highly complex rheologically and contain 

hierarchical structures in a wide range of macro- to nano-scale (Stokes & Frith, 2008). 

Moreover, experimental complications, such as shear banding, non-uniform deformation 

might arise during rheology measurement (Coussot, 2007; Stokes & Frith, 2008). 

It is observed, Figure 4, that the phase angle (a function of �′′/	�′) plays a more important 

role than the recovery index in determining the printability of the sample. It is seen that guar 

gum 4% and locust bean 4% are recovered as 80 and 100%. However, they are not printable. 

Gellan 2% has a very low recovery index, but a very high printability. 

The gel- and water binding strength of the hydrocolloid samples was investigated by NMR 

analysis. The value of the relaxation time (T2) was used as indicator for water binding 

capacity and gel strength. A small T2 indicates a small degree of moisture freedom in the 

sample and strong binding with solid components. While a large T2 indicates a large degree 

of moisture freedom (Fanli Yang, Zhang, Bhandari, & Liu, 2018). A seen in Figure 5, these 

samples show very different of gel strength and water binding. However, no direct 

relationship is observed with their printability. Gellan 2% and iota-carrageenan 2% have very 

similar printability but their T2 are very different. There is very weak interaction between 

gelatin samples and water compared to other samples. But they proved to be very hard to 

extrude and only gelatin (2%) was printable. 
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5. Conclusion 

The viscoelastic behaviour (rheological properties as well as thixotropic behaviour) and the 

printability of food grade hydrocolloid pastes were investigated in this study. The results 

from the study shows that the phase angle and the relaxation exponent could be used to 

understand the solid and liquid characteristic of the paste behaviour during the cold extrusion 

3D printing process. The results show that if 3° < � < 15° and 0.03 < . <0.13, the ink is self-

supporting. Since measuring phase angle in the viscoelastic region is straight forward, the 

phase angle could be used as quick and effective means of studying the printability of the 

formulation. The obtained knowledge can be used as a design rule for food (hydrocolloids) 

printing processes to develop new feedstocks for food 3D printing. 
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Highlights 
 

• 3D printing of hydrocolloids is influenced by their rheological properties 
 

• Thixotropic hydrocolloid systems were used as a model for food 3D printing 
 

• Over 50 combinations (concentration/type) of hydrocolloids were analysed and their 
shear moduli, viscosities and the relaxation parameters were reported 
 
 

• Phase angle and relaxation exponent are used to get insight on 3D printing of 
hydrocolloids 
 

• This design rule can be used to identify food formulations with tailored made 
properties for use in food 3D printing 


