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Bird Species Recognition using Unsupervised

Modelling of Individual Vocalisation Elements
Peter Jančovič* and Münevver Köküer

Abstract—This paper investigates acoustic modelling for recog-
nition of bird species from audio field recordings. First, the
acoustic scene is decomposed into isolated segments, correspond-
ing to detected sinusoids. Each segment is represented by a
sequence of the frequency and normalised magnitude values
of the sinusoid. The temporal evolution of these features is
modelled using hidden Markov models (HMMs). A novel method
for an unsupervised modelling of individual bird vocalisation
elements is proposed. The element models are initialised using
HMM-based clustering and then further trained using an itera-
tive maximum likelihood label re-assignment procedure. State
duration modelling, performed in a post-recognition stage, is
explored. Finally, we developed a hybrid deep neural network
– hidden Markov model (DNN-HMM). The developed acoustic
models are employed for bird species identification, detection of
specific species and recognition of multiple bird species vocal-
ising in a given recording. The detection system employs score
normalisation. Recognition of multiple bird species is performed
based on maximising the likelihood of a set of segments on
a subset of bird species models, with penalisation based on
Bayesian information criterion applied. Experimental evaluations
are performed on over 37 hours of sound field recordings,
containing vocalisations of 48 bird species, plus over 16 hours
of non-bird sound recordings. Using 3 seconds of the detected
signal, the best system achieved: identification accuracy of 98.7%,
detection with the equal error rate of 2.7%, and recognition
accuracy of 97.3% and 95.4% when vocalisations of multiple
bird species are present, with the number of bird species known
and estimated, respectively.

Index Terms—bird species recognition, hidden Markov model,
DNN-HMM, vocalisation element, unsupervised, multiple bird
species, segmentation, sinusoid, field recording.

I. INTRODUCTION

Over the last few decades, a lot of research efforts have been

devoted to automatic analysis of speech, and more recently

music and audio in general. However, research in automatic

analysis of vocalisations from animals, such as birds, has

intensified only recently.

The identification of birds, the study of their behaviour, and

the way of their communication is important for ornithology

research and in the context of environmental protection [1],

[2], [3]. Birds are good indicators of the general health of

an ecosystem [4], [5]. They play an important role in a

wide range of ecosystems, as they control insect populations,

disperse plant seeds, and pollinate plants. As most birds use

vocalisations as their primary communication method [2], [6],

the use of acoustic signal for monitoring of bird species

offers an effective approach. Acoustic sensors left on site

can continuously capture the acoustic activity and as such

P. Jančovič and Münevver Köküer are with the Department of Electronic,
Electrical and Systems Engineering, University of Birmingham, UK, E-mail:
{p.jancovic, m.kokuer}@bham.ac.uk.

provide many benefits over the use of field observers, such

as collecting data at large spatial area and temporal scales [7].

The greatest challenge with automated recordings though is

to find the sounds of bird species of interest within these

extensively long recordings. Therefore, there is an imperative

need to develop automatic techniques for recognition of bird

species in audio field recordings.

Bird vocalisations can be considered to be composed of a

set of elementary units, referred to as elements or notes [4].

An element can be defined as a continuous sound trace

in between silent intervals [8], [2]. Like humans compose

elementary sounds into words and sentences, birds assemble

vocalisation elements into calls or more elaborate songs. The

knowledge of the repertoire of elements and songs of bird

species is important for studies of their communication and

behaviour [4], [2], [9]. Another aspect of categorising bird

vocalisations is the acoustic character of the sound. Some

birds produce sounds of a noisy broadband character, but most

produce a tonal sound, which may consist of a pure tone

frequency, several harmonics of the fundamental frequency,

or several non-harmonically related frequencies [10].

A. Related works

This section reviews techniques which have been used for

analysis of bird vocalisations and bird species recognition,

with also some points to relevant connections from speech

recognition research. We split the section into four parts: i)

acoustic scene decomposition, ii) feature representation, iii)

acoustic modelling, and iv) multiple bird species recognition.

However, note that some techniques do overlap across parts.

1) Acoustic Scene Decomposition: Field recordings of bird

vocalisations may often contain various background noise or

other birds/animals vocalising concurrently. Before passing

the audio to further processing stages, the audio scene could

be decomposed into individual sources, or time-frequency

components, by techniques based on computational auditory

scene analysis [11] or blind source separation [12]. Audio

scene decomposition could be performed using a bottom-

up process based on, for instance, continuity and proximity,

or a top-down process based on learned patterns of sound

sources. Many works in bird sound processing employed

an energy-based detection, either requiring an estimate of

noise levels or exploiting sharp changes in energy, which was

then followed with a filtering and continuity assessment to

smooth the decisions to arrive at temporal or time-frequency

segments [13], [14], [15]. When we are concerned with tonal

vocalisations, an alternative approach is to decompose the

acoustic scene into sinusoidal components. The works in [13],
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[16], [17] employed the sinusoidal decomposition method

proposed in [18], which considered all spectral peaks as sinu-

soids and used a threshold-based assessment of frequency and

amplitude continuity of peaks over adjacent frames to obtain

isolated segments. We introduced in [19] a pattern recognition

approach which performs detection based on modelling local

short-time spectrum around the peaks. This method does not

require any estimate of noise and it can detect concurrent si-

nusoidal components occurring in different frequency regions.

We employed this method in our recent works on bird sound

processing, e.g., [20], [21], and also here.

2) Feature representation: Various approaches to extract

features from audio for analysis of bird vocalisations have

been explored. Some earlier studies employed statistical de-

scriptors to characterise the entire detected time-frequency

segments [13], [17], [14]. This was also used recently as

a baseline approach in [22]. This provides a single feature

vector, usually of a low dimensionality, which can then be

employed in various static classifiers, such as support vector

machine (SVM). However, such representation may not be

able to describe well more complex types of vocalisations

and may be susceptible to variations in bird vocalisation

and to errors in segmentation caused by presence of noise.

Inspired by features used in speech processing, many works

employed Mel-frequency cepstral coefficients (MFCC), e.g.,

[23], [13], [24], [25]. As MFCCs capture the entire frequency

band, they are affected by background noise and presence of

concurrent vocalisations from other birds/animals located in

other frequency regions. Moreover, the frame length used for

extraction of MFCCs (or spectrogram) was often considerably

large (20–45 ms), which may not allow to represent well fast

varying vocalisations.

Feature representation could be learned from data by em-

ploying machine learning techniques – see [26] for a review.

Neural networks (NNs) and convolutional NNs (CNNs) have

been employed as a non-linear feature extractor in speech and

audio processing. Features derived from the output layer or

various intermediate hidden layers of NNs have been used in

speech recognition, e.g., [27], [28], [29]. The input to NNs and

CNNs is typically a temporal segment of spectrogram-based

features, such as, logarithm filter-bank energies or MFCCs,

although some works also employed directly the time-domain

signal [30], [31]. CNNs have been employed in many recent

works in bird sound processing, usually by taking as input a

considerably large temporal segment of a spectrogram-based

representation – we describe these works in the following

acoustic modelling sub-section, as they extend over these two

parts. While learning the representation from data is an attrac-

tive direction, it typically requires large amount of training

data, with good quality annotations, and considerable care in

configuration design and parameter tuning, and interpretation

of the obtained features.

A prior knowledge of signal properties, obtained, for in-

stance, based on the bird sound production mechanisms, may

be exploited in the design of the feature extraction or within

data-driven feature learning. Following this line, several works

aimed at exploiting the sinusoidal content of bird tonal vocal-

isations. The use of sinusoidal representation, extracted using

the short-time Fourier analysis, for bird species identification

was explored in [13], [32], [20], [21]. We demonstrated in [20]

that such representation performed considerably better than

MFCCs in recognition of bird sounds in noisy background

conditions. Several studies have recently explored the use

of other time-frequency analysis techniques than the Fourier

transform to analyse bird vocalisations, for instance, the use of

Chirplets in [33] and Wigner-Ville distribution in [34]. The use

of Chirplet transform in the lower layers as a pre-training step

for CNN was explored in [35]. While these techniques may

provide improved results for analysis of subtle structural dif-

ferences of vocalisations or vocalisations with rapid frequency

or amplitude modulations, they are more computationally

demanding and the interpretation of the analysis in terms of

feature representation for a classifier may be more difficult.

The sinusoidal modelling can offer a very low-dimensional

representation, which also offer physical interpretation.

3) Acoustic modelling: A variety of acoustic modelling

approaches for bird vocalisations have been explored. Some

studies did not attempt to model explicitly the temporal

sequence of features. This included earlier works on the use of

Gaussian mixture modelling (GMM) to model the distribution

of the feature space as in [13], [20] and the use of discrim-

inative methods, such as, SVMs in [36] and more recently

in [25], NNs in [37], and decision trees in [38]. The use of

SVMs, NNs and decision trees requires to employ a fixed-

length vector representation of the entire detected segment,

which has limitations and disadvantages as mentioned earlier

in this section.

Many recent works, in particular those involved in re-

cent bird classification [39] and bird audio detection evalu-

ations [40], have focused on the use of CNNs. Many of the

works participating in the evaluations, e.g., [41], [42], [43],

used a spectrogram-based representation of an entire audio

recording, which was of several seconds long, as a single static

image that was input to the CNN. The works in [6], [42], [44]

performed the analysis in a continuous manner by splitting the

entire audio recording into temporal segments (also referred to

as receptive field, or context in the field of speech processing),

which were passed as input to the CNN, and receiving output

for each segment. The output of the CNN is then interpreted

as a detection function and the detection decision is obtained

based on peaks above a fixed threshold [6], [42], [44] or

by performing a pooling over required time duration [42].

The receptive field, or context, used in the above studies

was of several seconds, with the exception of [44] that used

around 50 ms context due to detection of short flight calls.

However, as bird vocalisations may often be localised in

only a small section of a recording, the use of such a large

context may cause that the CNN is learning a variety of

non-relevant information, such as, background noise and the

temporal position of the bird vocalisations. These CNN-based

systems have shown to perform well on the above mentioned

evaluations (although there have been limited comparisons

with other approaches). However, it was also reported by many

of the above works that these systems require considerable

tuning of parameters and of the training procedure and usually

data augmentation, which may include adding of background
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Fig. 1. An overview of the proposed approach for bird species recognition.

noise, performing frequency shifts and temporal shifts and

stretching. Many of these data augmentation requirements in

CNNs are due to modelling non-related information and not

being able to model explicitly temporal variability of data.

Other stream of works have aimed at explicitly modelling

bird vocalisations as temporal evolution of sequences. Au-

dio signal is treated as a continuous sequence of features,

but a sound activity detector may be employed to discard

silent/noise parts. This approach allows for a fine modelling of

vocalisations and it can also provide the temporal location of

bird sounds in the audio. Dynamic time warping (DTW) was

earlier employed for recognition of bird song units in [45], [23]

and more recently for discovery of vocalisation elements [46]

or classification of phrases [47]. Conventional hidden Markov

models (HMMs), employing a probability density function at

each state to model the features, were employed for recog-

nition of bird species [13], [32], [48], [21] by constructing a

single model for each species. We have demonstrated in [49]

that using a set of HMMs, each modelling an individual type

of vocalisation element, provides considerable improvements

over the single model per species approach. Recent progress in

speech recognition has been driven by the use of hybrid deep

neural network – hidden Markov models (DNN-HMM) [50].

To the best of our knowledge these models have not been

explored for bird audio and this is one of the part we present

in this paper, in combination with the use of unsupervised

element-based modelling.

4) Multiple bird species: Recordings made in the field often

contain vocalisations of multiple bird species. This issue has

been addressed only in few works. The authors in [14] dealt

with the problem of having the training data associated with

multiple class labels by employing a multi-instance multi-

label (MIML) approach. This required a single fixed-length

feature vector representation of a segment. On a similar task

and data, there were two bird classification challenges, with

contributions summarised in [51], [52]. In both challenges,

most of the contributions were based on using MIML approach

or a variety of pattern recognition techniques that did not

model the temporal evolution of segments.

B. Proposed approach

In this paper, we extend our recent studies on automatic

bird species recognition from audio field recordings. Our work

focusses on temporal modelling of bird vocalisations obtained

from continuous audio field recordings. The novel contribu-

tions of this paper are, in particular, the unsupervised HMM-

based modelling of individual bird vocalisation elements and

the employment of hybrid deep neural network – hidden

Markov models (DNN-HMMs). We also extend the frequency

track feature representation of tonal bird vocalisations. The

developed acoustic models are employed in three scenarios:

i) the identification of bird species from a finite set, ii)

detection of specific bird species in a given recording, and iii)

recognition of multiple bird species. The proposed approach

is designed with the capability to perform diarisation of an

audio in terms of providing the bird species which vocalised

in the recording, the temporal (and frequency) location of their

vocalisations, and also the type of vocalisation element from

their repertoire.

The overall diagram of the proposed approach is depicted

in Figure 1. We split the entire system into three main parts

and these are briefly introduced below, with a reference to the

corresponding section in the paper.

The first part decomposes the acoustic scene into sinu-

soidal components by employing the method we introduced

in [19]. This provides isolated time-frequency segments, each

corresponding to the temporal sequence of a detected sinu-

soidal component. We explore representation of the detected

segments as a temporal sequence of frequency values and

normalised magnitude values of the detected sinusoid and

also the effect of incorporating local temporal context. This

is presented in Section II.

In the second part, indicated as ‘acoustic modelling’ block

and described in Section III, the temporal evolution of ex-

tracted features is modelled in several different ways using

hidden Markov models (HMMs). The top branch depicts the

use of a single HMM for each bird species, which represents

our baseline. The bottom branch represents the proposed ap-

proach of unsupervised discovery and modelling of individual

bird vocalisation elements. This is performed directly within

the HMM framework, unlike our previous work in [49] which

employed DTW and clustering. This provides a dictionary,
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or repertoire, of vocalisation elements for each bird species,

which could be exploited, for instance, in studies of bird

communications [2]. We employ it here to obtain improved

acoustic modelling and demonstrate its effect in terms of bird

species recognition accuracy. We also explore an incorporation

of state duration modelling, performed in a post-recognition

stage. In addition to conventional HMMs, we also develop

DNN-HMM system in which the state output PDF modelling

is replaced by the use of DNN.

The third part in the overall diagram in Figure 1 is ap-

plication specific and it is presented in Section IV. It builds

on the probability output from the acoustic modelling part and

performs further steps, depending on the specific task. The first

application is bird species identification from a finite set of bird

species. The second is the detection of presence of a specific

bird species in an audio recording. And the last application

is the recognition of multiple bird species vocalising in a

recording.

Experimental evaluations and analyses of results are pre-

sented in Section V. We perform evaluations on over 37 hours

of audio field recordings from 48 bird species provided by

the Borror Laboratory of Bioacoustics [53] plus nearly 16

hours of non-bird audio recordings from [54] which we used

in the detection task. We first use the species identification

scenario and perform thorough evaluations of the effect of

different feature representation and acoustic modelling. Large

improvements are achieved by the following components in

the recognition system: the use of magnitude and frequency

for feature representation, modelling of individual vocalisation

elements, and DNN-HMM system with the use of context. The

best system achieved identification accuracy of 96.4% when

using only 1 second of the detected signal and this increased to

98.7% when using 3 seconds. We then use the best developed

model for the remaining two tasks. The detection of specific

bird species performed best with t-norm score normalisation

and achieved 2.7% equal error rate (EER) when the impostor

trials consisted of both non-target bird vocalisations and non-

bird sounds. Experiments with multiple bird species present

in an utterance of recording showed that recognition accuracy

of 95.4% is achieved when a varying number of bird species

is present in 3 seconds of the detected signal.

II. ACOUSTIC SCENE DECOMPOSITION INTO SINUSOIDAL

COMPONENTS – SEGMENTATION AND FREQUENCY

TRACKS FEATURE EXTRACTION

The first step in our proposed system (see Figure 1) is

to decompose the acoustic scene into isolated time-frequency

segments. This is based on detecting sinusoidal components

in the signal. We perform this by employing the method we

introduced in [19], but modify the window function and frame

length/shift. The same procedure was used in [21] and our

following bird species recognition research. As the sinusoid

detection method is based on using localised spectral features,

it enables to separate acoustic events occurring concurrently

in time but at different frequency regions. Each detected time-

frequency segment is then represented as a temporal sequence

of features. The following sub-sections give details of the

segmentation of the acoustic scene based on the sinusoid

detection and feature representation of detected segments.

A. Detection of sinusoidal components

The detection of sinusoidal components is performed in the

short-time spectral domain based on each signal frame. It is

tackled as a pattern recognition problem.

The short-time Fourier spectrum of a signal consisting of

a number of sinusoidal components can be expressed as the

summation of the scaled and shifted versions of the Fourier

transform of the frame analysis window, each centred at the

frequency of each sinusoid and scaled by the amplitude of the

sinusoid. We consider that the signal may consist of an un-

known number of sinusoidal components. As such, each peak

in the magnitude spectrum of signal frame is considered as a

potential sinusoidal component. A given peak is represented

by a vector of local spectral features extracted from around

the peak. A statistical model is built for peaks corresponding

to sinusoidal signals and to noise and maximum likelihood

assessment is made to classify peak as sinusoid or noise.

1) Local magnitude and phase spectral features: Let us

denote the short-time spectrum of the lth frame of the signal

obtained using the discrete Fourier transform (DFT) by Sl(k).
Let us consider there is a peak in the magnitude spectrum

at the frequency index kp. The peak is represented using a

multivariate feature vector y = (ym,yφ), capturing the spec-

tral magnitude shape y
m and phase continuity information y

φ

around the peak. The magnitude shape features are obtained by

using a normalised spectral magnitude values over the range

of frequency bins from kp −M to kp +M , i.e.,

y
m =

( |Sl(kp −M)|

|Sl(kp)|
, . . . ,

|Sl(kp +M)|

|Sl(kp)|

)

(1)

where M denotes the number of bins considered around the

peak. The phase continuity features are obtained by using the

spectral phase difference between the adjacent signal frames

over the range of frequency bins from kp−M to kp+M , i.e.,

y
φ = (∆φl(kp −M), . . . ,∆φl(kp +M)) (2)

where the phase difference between the current and previous

signal frame is defined as ∆φl(k) = φl(k) − φl−1(k) −
2πkL/N , with L being the shift between the adjacent frames

in samples and N the number of DFT bins. Note that the above

considers that the kp is within the range (M, . . . , N −M) but

cases when kp falls below or above this range can be handled

by using a partial feature representation.

2) Probabilistic modelling: A variety of techniques could

be employed to perform the classification of a given spectral

peak based on the multivariate feature vector y. In this paper,

we employ Gaussian mixture modelling (GMM). Artificially

generated white noise and sinusoids corrupted by white noise

at various SNRs are used to train the parameters of the GMM

corresponding to spectral peaks of the noise signal and of sinu-

soidal signals, denoted by λn and λs, respectively. In the case

of sinusoidal signals, separate models are built for sinusoids

corrupted at various SNRs. Moreover, as bird vocalisations

are typically chirps, we build separate models for sinusoidal
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Fig. 2. An example of a spectrogram (a) of an audio field recording and the corresponding estimated initial (b) and final (c) frequency tracks.

signals of various level of linear frequency modulation. In

the testing stage, the decision whether a spectral peak at kp
corresponds to a sinusoidal signal or not is based on the

maximum likelihood criterion, i.e., the peak is detected as a

sinusoid if p(y|λs∗) > p(y|λn). The λs∗ is a GMM from the

set of GMMs representing sinusoidal signals that achieved the

maximum likelihood.

3) Parameter setup: We explored various setups of the

parameters and the below was found suitable in our scenario.

The signal, sampled at 48 kHz, is divided into frames of 256
samples with a shift of L=48 samples between the adjacent

frames. This, corresponding to 5.3 ms frame length and 1 ms

frame shift, is considerably shorter than used in most other

studies on processing bird vocalisations. This was found to

be a good compromise between the temporal and frequency

resolution. While most current studies in audio pattern process-

ing use Hamming window, our evaluations of the sinusoidal

detection demonstrated that the use of rectangular window

provides better performance. This reflects that the maximum

likelihood estimation of a single tone requires rectangular

window [55]. This has also an advantage of the main-lobe

being narrower and as such has a potential to deal better with

sinusoids of similar frequencies. The DFT size is set to 512

points, i.e., the signal is appended by 256 zeros in order to

provide a finer sampled DFT spectrum. The parameter M is set

to 6 frequency bins. To obtain models for sinusoidal signals,

the signal was corrupted by noise at SNRs of -5 dB, 5 dB

and 15 dB but negligible differences were observed by using

only -5 dB conditions. Modelling is performed using GMMs

of 32 mixture components for each sinusoidal model and noise

model.

B. Segmentation of the acoustic scene

The above provides a set of detected sinusoidal components

at each signal frame. We consider a continuous temporal

sequence of a sinusoid longer than 4 frames (i.e., 8.3 ms)

to form a detected time-frequency segment. This provides an

initial time-frequency segmentation of the acoustic scene. The

following sequence of steps is performed to further refine this

segmentation result. First, two segments whose ending and

starting points are separated by up to 2 frames (i.e., 2 ms) and

2 frequency bins from each other are connected into a single

segment using a linear interpolation for the missing points.

This is performed in order to avoid accidental split of a seg-

ment due to a couple of missed detections. Next, all segments

whose length is less than 14 frames, corresponding to 18.3 ms,

are discarded as it is unlikely to have bird vocalisations of such

short lengths. Finally, all segments whose median frequency is

below 2 kHz are discarded. This is to avoid detection of human

speech segments, which are present in some of our recordings.

It does not compromise the detection of bird vocalisations as

these are above this region in our data.

Depending on the application, it may be useful to employ

an additional step that would omit segments whose average

energy is low, i.e., vocalisations in the background. As our

dataset consists of field recordings, with co-vocalisations of

other birds and animals present in the background, and as

there is no label information available that would indicate

the time and frequency location of the vocalisations of the

bird of interest, we employ this step in order to avoid these

background co-vocalisations to be present in experimental

evaluations. Based on our informal assessment of several

recordings, we use only those of the detected segments whose

average energy is not more than 15 dB below the highest

average segment energy in a given recording.

Figure 2 depicts, from left to right, an example of a spectro-

gram of an audio field recording, the initial detected sinusoidal

components at each signal frame, and the final frequency

track segments. The middle figure demonstrates that even faint

sinusoidal signals can be well detected, for instance, see the

sinusoidal component around time of 800 ms and frequency

of 3.5 kHz. Note that due to the reasons mentioned in the

previous paragraph, we exclude faint sinusoidal segments in

the final outcome (right figure). Overall, it can be seen that

frequency tracks detected correspond well to vocalisations of

birds.

C. Feature representation of detected segments

Each detected segment is characterised as a sequence of

feature vectors. This consists of the frequency value of the

detected sinusoidal component at each frame time. In order

to include information about how the features vary over time,
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we calculate temporal derivatives of these features, which we

refer to as delta and acceleration features. These are obtained

as in [56] with the window set to 3 and 2, respectively, and

appended to the frequency values, resulting in sequence of 3

dimensional feature vectors.

We also explore the effect of including the magnitude value

of the detected sinusoids. To avoid the effect of different

loudness, magnitude values at each frame are normalised by

the maximum magnitude in the detected segment. Temporal

derivatives of the magnitude values are again appended simi-

larly as above. This resulted in a sequence of 6 dimensional

features.

III. ACOUSTIC MODELLING OF BIRD VOCALISATIONS

The following subsections present details of different acous-

tic modelling approaches we explored to model the temporal

evolution of frequency tracks of the detected segments.

A. A single model for each bird species

Each bird species could be represented by a single acoustic

model. An example of a basic such model could be a GMM,

which models only the distribution of the features, without

taking into account the temporal structure. The temporal

modelling could be incorporated by using a single left-to-right

HMM to represent each bird species. The parameters of a such

model would be estimated using the entire collection of the

detected segments from all training recordings of that species.

In the case of HMM, the probability density function (PDF) at

each state needs to be modelled with a mixture of Gaussians

in order to account for the variety of vocalisation patterns and

variations of individual instances of vocalisations.

B. Unsupervised HMM-based modelling of individual bird

vocalisation elements

While the use of Gaussian mixture PDF at each state of a

single HMM per bird species can enable to better model the

variability in vocalisations it also reduces the discriminatory

power of the model since at each HMM state it allows to

use a mixture component that may represent different type of

vocalisation. As such, an incorrect model is less constrained

and thus could more easily produce a high likelihood for a

segment which does not belong to that bird species vocali-

sations. An example of this is illustrated in Figure 3 – this

considers two mixture components at each HMM state, each

component corresponding to a type of vocalisation element

(Voc 1, Voc 2). A vocalisation from other species, depicted on

the right top of the figure, may then use mixture component

corresponding to element type 1 in the first few states while

use component corresponding to element type 2 for the further

states. This could not happen if we had two separate HMMs,

each modelling a particular type of vocalisation element.

This section describes an approach of building such a

system consisting of a set of individual models for each bird

species, each model corresponding to a type of vocalisation

pattern. Since there is no information about the set of bird

Voc 1 Voc 2

Voc 1 Voc 2

Voc 1 Voc 2 Voc 2 Voc 1

Voc 2 Voc 1

Voc 1
instance

Voc 2
instance

Voc (other species)
instance

Fig. 3. An illustration of the drawback of using a single HMM per bird
species, with GMM at each state.

vocalisation elements nor any label information at the element-

level available, we are facing the problem of an unsuper-

vised discovery and training of individual element models.

In our previous research [46], we employed dynamic time

warping (DTW) to perform initial unsupervised clustering

of the detected vocalisation segments. Although this worked

reasonably well, it required careful parameter tuning and

was computationally demanding as the DTW needed to be

performed between each pair of segments. Here, we present a

novel approach that performs the unsupervised clustering and

modelling directly within the HMM framework.

1) Unsupervised HMM-based clustering: To perform the

clustering of segments, we first need to obtain a distance (or

similarity) measure between the individual segments which are

of a variable length. This could be obtained by performing a

DTW between each pair of segments, as in our previous re-

search [57]. Alternatively, we could convert the variable-length

segments into a fixed-dimensional representation, with the dis-

tance calculation then being straightforward. The conversion

to a fixed-dimensional representation could be performed in

various ways. For instance, we could employ the supervector/i-

vector methodology used in recent speaker recognition re-

search [58], [59], [60], with the consideration that different

types of vocalisations are seen as different speakers. In this

way, GMM would be used to model the feature space of

each, or all, bird species vocalisations and then the features of

each segment would be used to adapt the GMM parameters

and create a supervector representation of each segment. The

high-dimensional supervector representation could be further

reduced to a low dimensional i-vector representation [59]. In

this paper, we take a different approach – we base on the

trained single HMM of each bird species (as described in

Section III-A) and use the GMM components associated with

HMM states to express a similarity between segments.

Let us consider two detected segments and denote by

Y = (y1, . . . ,yT ) and Y ′ = (y′1, . . . ,y
′

T ′) the sequence of

T and T ′ feature vectors corresponding to each segment. We

use the Viterbi algorithm to obtain the state-time alignment

of each of the sequence on the single HMM corresponding to

the bird species of the segments. This provides an association
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of feature vectors from Y and from Y ′ to each HMM state s.
The obtained state-time alignment gives a way of quantising

the sequence of features over time and this could be used

to obtain a fixed-dimensional representation of each segment.

However, we employ an approach which makes use of the

already trained GMM components at each HMM state to

characterise the similarity between segments. This is described

in details below.

Given the alignment, we can calculate for each state s the

average distance between the Gaussian mixture components,

weighted by the posterior probabilities of the mixture compo-

nents given the feature vectors from Y and Y ′ associated with

the state s as

Ds =
∑

i

∑

j

ds(mi,mj)Ki,j (3)

where the i and j denote the indices of the mixture components

and ds(mi,mj) denotes a distance between the Gaussian

component mi and mj at the HMM state s. Here we employ

the Bhattacharyya distance. The Ki,j , acting in Eq. 3 as a

weighting factor, reflects with what probability the particular

feature vector from the sequence Y and Y ′ belong to particular

GMM components. It is calculated as

Ki,j =
∑

t

∑

t′

P (mi|yt, s)P (mj |y
′

t′ , s) (4)

where the summations are over the feature vectors from Y
and from Y ′ associated with the state s. The P (mi|yt, s)
is the posterior probability of the mixture component mi at

the state s for the feature vector yt and it is calculated as

P (mi|yt, s) = p(yt|s,mi)P (mi|s)/
∑

l p(yt|s,ml)P (ml|s).
Note that there is often only one mixture component whose

posterior probability is largely dominating over the other

components. As such, we have observed that without any

significant effect, the Ds in Eq. 3 could be approximated by

using only the distance between the Gaussian components with

the highest posterior probability.

The overall distance between a pair of segments is cal-

culated by accumulating the distance Ds over the states.

However, the use of only the Ds could result in a small

distance for two very different segments because the segments

could have a very different occupancy at each state. As

such, we also incorporate the state duration information into

the overall similarity measure calculation. Let qs denote the

difference between the number of frames stayed at the state s
for the two segments. In order to combine these two aspects

into the overall similarity measure, we use sigmoid function

to convert the Ds and qs into the range (0, 1). This also

allows us to easily control the effect of each term in the

overall similarity measure between the two segments, denoted

by L(Y, Y ′), which is then calculated as

L(Y, Y ′) =
∑

s

1

1 + e−α1(Ds−β1)

1

1 + e−α2(qs−β2)
(5)

where αi and βi are constants defining the slope and the shift

of the sigmoid function, respectively, and values for these were

set experimentally. The similarity score L is calculated for

each pair of the detected segments.

The final step is to perform a clustering of the segments

based on the similarity scores L to arrive at a set of clus-

ters of vocalisation patterns, which reflect the elements of

vocalisations. We use an agglomerative hierarchical clustering.

Initially, each segment is assumed to be a distinct cluster. At

each clustering level, two clusters with the highest similarity

score are merged into a new joint cluster. The similarity score

for the new joint cluster is calculated as the average similarity

score over all the segments from each of the clusters.

The clustering process is stopped after the similarity score

of a cluster reaches a specified threshold value, resulting

in a number of clusters. The decision on the number of

individual element models to be used for each bird species

can be determined in various ways; for instance, based on

the cumulative percentage of segments being assigned to

individual clusters or the relative cluster occupancy. We have

found that this decision is not critical. As only a given number

of individual models is used, there will be remaining clusters

whose segments are not assigned to any of the individual

models. Thus, in addition to the individual element models,

we also create a single ‘general’ model for each bird species

to model all these remaining segments.

2) Refining the Individual Vocalisation Element Models:

The outcome of the unsupervised clustering is a set of clusters

of vocalisation patterns for each bird species. Consequently,

this also provides the label information for each detected

segment of data. Thus, based on this label information, the

conventional Baum-Welch algorithm can be employed to train

the individual element HMMs and the ‘general’ HMM of each

species. As the obtained clusters of vocalisation patterns are

expected to be homogenous, we set the state output PDF of the

individual element HMMs to consist only of a single Gaussian

distribution. The state output PDFs of the ‘general’ HMM

for each bird species consists of several Gaussian mixture

components in order to cover the variety of the remaining

segments not assigned to individual models.

The above trained individual element and general models

are so far entirely based on the outcome of the unsupervised

clustering. However, clustering results may contain some in-

accuracies, e.g., some segments may be accidentally assigned

to a cluster they actually do not belong to or some segments

may be left in the general model while they actually should be

assigned to one of the clusters. To mitigate the effect of such

errors on the quality of the trained individual element HMMs

and the general HMM, we perform further the following

iterative training procedure. We consider the above trained

individual and general models as being initial models. These

models are then used to calculate the likelihood of each

detected segment of a given bird species to belong to each

of the individual element HMM and the general HMM of

that species. This likelihood can be obtained using the Baum-

Welch or the Viterbi algorithm. The label assigned for each

segment is then modified according to the model achieving the

highest likelihood. This is performed for all segments of the

training set. The individual and general models for each bird

species are then re-trained based on the new label information

using the Baum-Welch algorithm. We have observed that few

iterations of this procedure led to convergence in terms of
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small amount of changes in the label assignments of segments

or small change of the overall likelihood.
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Fig. 4. The mean values of the state output Gaussian PDFs, modelling
frequency track features, for twelve trained element HMMs of bird species
Carolina Wren. The x- and y-axis denotes the HMM state and frequency
index, respectively.

A variant of this procedure could also be used to modify the

number of individual models. For instance, if a given segment

achieves similar likelihood on several individual models, it

may be assigned a label not of the model achieving the

maximum likelihood but of the model whose likelihood is

close to the maximum and whose occupancy was largest at

the previous iteration. Models with a very low occupancy

could then be discarded with the remaining segments being

assigned elsewhere. We have observed that this did not change

significantly the number of individual element models and as

such this procedure is not used in this paper.

An example of the mean values of the Gaussian PDFs at

each state of twelve trained individual element HMMs of

Carolina Wren bird species is depicted in Figure 4. It can

be seen that each model provides a distinctive pattern.

C. Incorporating duration modelling

The duration is a key aspect of the structure of bird

vocalisations. The underlying model of state duration in con-

ventional HMMs follows geometric distribution, which is not

well suited to modelling bird vocalisations. This could be

improved by using explicit state duration modelling, which

however requires the use of a modified decoding instead of

the conventional Viterbi algorithm and this would be compu-

tationally expensive. An alternative approach is to employ the

duration modelling in a post-recognition stage [61], [62]. We

explore this approach in this paper.

The alignment of each segment of the training data on the

corresponding individual element or general model, obtained

using the Viterbi algorithm, provides the duration of staying

in each state, which we denote by R = (r1, . . . , rS), where S

is the number of states. State durations are collected for each

individual element and general model of each bird species over

the whole training set and used to estimate the state-duration

probability distributions. A variety of distribution functions

could be employed, for instance, in the context of speech

processing, Gamma and Poisson distributions have often been

used [63]. We have observed that the state occupancies may

not follow well a single Poisson distribution. As such, we

use a mixture of Poisson distributions, whose parameters are

estimated using the Expectation-Maximisation algorithm.

We first considered modelling the duration rs at each state

s individually. However, this may not be robust against inac-

curacy in the frame-state alignment. This could be improved

by considering the duration within several adjacent states, i.e.,

the duration rs at state s will be the sum of the durations

within the range of states (s, s + τ). We explored a range of

values for τ in our experiments. Examples of the estimated

state duration Poisson mixture distributions for τ set to 0 and

2 are depicted in Figure 5.
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Fig. 5. Examples of the state duration models for several states of a bird
element model when τ = 0 (a) and τ = 2 (b).

We also explore modelling of the entire state duration vector

R. This enables to explicitly account for the relationship

between the duration at each state. Due to the complexity

in estimating parameters of a mixture of multivariate Poisson

distributions, we employ here a mixture of Gaussian PDFs and

perform modelling of the logarithm state durations.

D. DNN-HMM acoustic modelling

In addition to the conventional HMMs, which model the

state output PDFs using a mixture of Gaussians, we also

develop a hybrid DNN-HMM system, which is the state-of-

the-art in speech recognition [50].

In the DNN-HMM system, the modelling of state output

PDFs is replaced by the use of a DNN. The DNN is trained

to estimate the posterior probability of each individual vocal-

isation element model or general model of each bird species

and the HMM state based on the given data alignment. The

alignment is initially obtained from the conventional HMM-

based system. The obtained posterior probabilities from the

DNN are converted to likelihoods and then used within the

HMM framework.

In this system, we also explore incorporation of temporal

context into the input feature representation. This is typically
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referred to as splicing and is common to use in DNN-HMM

systems [64]. For a given value of the splicing, ∆, the current

frame is then represented by a feature vector consisting of

features within frame range (t−∆, t+∆).

IV. IDENTIFICATION, DETECTION AND MULTIPLE BIRD

SPECIES RECOGNITION

The acoustic modelling is employed for the task of iden-

tification of bird species from a finite set, detection of bird

species in an open set scenario and recognition of multiple

bird species present in a recording.

We consider the recognition decision to be based on an

utterance of the detected signal of a given length. Let us

consider that the utterance contains a set of J detected

segments Y={Y j}Jj=1. Each segment j is represented by

a sequence of feature vectors Y j=(yj
1, . . . ,y

j
Tj
), where Tj

is the number of frames in the segment j. Each detected

segment is treated individually. For each segment j and bird

species b, the Viterbi algorithm is used to obtain the probability

p(Y j |λb, s
∗), where λb denotes the acoustic model of bird

species b and s∗ the optimum state sequence. In the case

of using individual element modelling, this probability is

obtained as the maximum over all the individual element

models and the general model, i.e.,

p(Y j |λb) = max
i

Tj
∏

t=1

p(yj
t |λb(i), s

∗) (6)

where the index i goes through the set of general and individ-

ual element models. The overall probability of the utterance Y
on the bird species b is obtained as p(Y |λb) =

∏

j p(Y
j |λb).

When the duration modelling is also employed, the duration

vector Rj is obtained based on the optimal state sequence

s∗. It is then used to calculate the duration probability of

the segment j, p(Rj |γb), where γb denotes the duration

model. The overall probability p(Y |λb) is then calculated as

p(Y |λb) =
∏J

j=1 p(Y
j |λb)p(R

j |γb)
β , where the parameter β

is weighting the contribution of the duration probability to the

overall probability as the acoustic and duration probabilities

are of a different scale. The value for the weight parameter β
can be set based on recognition experiments on training data.

A. Identification of bird species

In the identification task, the recognised bird species, de-

noted by b∗, is obtained as b∗ = argmaxb p(Y |λb).

B. Detection of bird species

The objective in bird species detection is to determine

whether a particular bird species of interest b is present in

a given utterance of recording.

The general approach used in detection is to base the

decision on the likelihood ratio of the test utterance Y against

the target bird species model λb and the non-target model λb̄,

i.e., p(Y |λb)/p(Y |λb̄). The bird species b is then detected if

the ratio is above a given threshold. The decision threshold is

set to adjust the trade-off between rejecting the true target bird

species utterances, i.e., false rejection errors, and accepting

non-target bird species utterances, i.e., false acceptance errors.

The calculation of the likelihood p(Y |λb) is clearly defined,

as the model λb is available from the training stage. It is less

so for the likelihood p(Y |λb̄). The model λb̄, usually referred

to as ‘world’ or ‘background’ model, is built using non-target

bird species sounds. This can be constructed as a single model

or a collection or cohort of background models.

In verification systems, it is common to perform a normali-

sation of the log-likelihood scores in order the same threshold

could be applied across different classes and test conditions.

We have explored a number of ways to normalise the score,

which have been extensively employed in the area of automatic

speaker verification. This included the use of cohort of non-

target bird species to build the non-target model λb̄, scaling of

the likelihood values [65] and the use of zero-normalisation

(z-norm) and test-normalisation (t-norm) [66]. As similar

performance was obtained with most of the normalisation

techniques, we present only the t-norm. In the t-norm, the test

utterance Y is scored against a cohort of non-target (impostor)

models to obtain a set of impostor scores. The normalised

score on the target bird species b, Λnorm(Y ;λb), is then

computed as

Λnorm(Y ;λb) =
log p(Y |λb)− µnorm

σnorm
(7)

where the µnorm and σnorm are, respectively, the mean and

standard deviation of the impostor log-likelihood scores.

C. Recognition of Multiple Bird Species

This section describes two approaches, majority voting and

maximum likelihood, we developed to perform recognition in

situations when a given recording contains vocalisations of

multiple bird species.

The majority voting method considers that for each segment

only the information about the best bird species model is

used. The recognition is then performed based on counting

the number of segments or the accumulated length of segments

classified to each bird species.

The maximum likelihood method, we proposed in [67],

partitions the entire set of segments Y into C subsets and

assigns each partition to a bird species model bi in a way that

the overall likelihood of the set is maximised. The calculation

of this likelihood can be split into two steps. First, for a given

subset of models {b1, . . . , bC}, calculate the likelihood of the

best partitioning of Y , which we denote by p∗b1,...,bC . This can

be obtained simply by assigning each segment j, j=1, . . . , J
to a model from the subset {b1, . . . , bC} that achieves the

highest likelihood. The calculation of the likelihood p∗b1,...,bC is

then repeated for all C model combinations out of the number

of bird species and the final likelihood, denoted by p(C), is

obtained as

p(C) = max
b1,...,bC

p∗b1,...,bC . (8)

The above procedure does not allow to incorporate constraints

on the minimum length of signal assigned to each bird species.

This can be performed using binary linear programming or

using a more computationally efficient approximation as pre-

sented in [67]. The parameter C, corresponding to the number
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of bird species present in the utterance, can be estimated based

on the Bayesian information criterion (BIC). Increasing the

value of K effectively means that we are allowing a more

complex model to fit the data. As such, the likelihood p(C)

needs to be subjected to a penalisation. The estimated C∗ can

be obtained as

C∗ = arg max
C∈<1,...,Cmax>

log p(C) − α(C) (9)

and the set of recognised bird species {b1, . . . , bC}
∗ is then

obtained as corresponding to p(C
∗). There have been vari-

ous ways proposed for setting the penalisation factor α(C),
e.g., [68], [69]. We use the segmental BIC as it can account

for different amount of signal assigned to each model. The

penalisation is calculated as α(C) = ψ(C)
∑C

i=1 log T (i),
where T (i) is the number of signal frames assigned to the ith

model and ψ(C) is a tuning factor whose value can be obtained

based on experiments on training data simulated mixture.

V. EXPERIMENTAL EVALUATIONS

A. Data description and experimental setup

Experimental evaluations are performed using audio field

recordings from Borror Laboratory of Bioacoustics [53]. Fur-

ther audio recordings not containing bird vocalisations are

used for the bird species detection task – these are de-

scribed later in Section V-C1. The Borror audio recordings

were made in real world natural habitats of birds, mostly in

the western United States, and were collected over several

decades. Each bird species contains several audio files, each

file being typically several minutes long. The recordings are

encoded as mono 16-bit wav files, with sampling rate of

48 kHz. As these are field recordings, the audio contains

also background environmental noise, vocalisations of other

birds/animals and human speech. For each recording, there is

a label indicating the single bird species vocalising but there

is no label information that would indicate the start and end

times of each bird vocalisation.

We arbitrarily extracted a subset of 48 bird species (mainly

passerines), for which sufficient amounts of data were avail-

able, and whose vocalisations were considered to be tonal. The

list of bird species and the audio recordings used is available

under the additional material supplied with this paper. The

used dataset of recordings contains in total 37.5 hours of audio,

with between 28 to 95 minutes per bird species. The total

length of detected and used frequency track segments is over

3.9 hours.

For experimental evaluations, each recording is split into

training and testing part in proportion of two to one, respec-

tively. The data used for testing are further split into utterances,

where each utterance consisted of signal containing approxi-

mately a given length of detected segments, which is set to 1,

2 or 3 seconds. In total, there is 210265 detected segments in

13586 utterances of 1 second length. The utterances of one,

two, and three seconds of the detected segments contained by

average 13, 20, and 40 segments, respectively.

In all experiments, the number of states in HMMs for all

bird species is set to 13. This value is chosen based on an

overall informal visual assessment of temporal complexity

of the segments across bird species. Note that our earlier

experiments, with a smaller subset of bird species, presented

in [21] showed that while the recognition accuracy improved

in absolute terms by over 11% when the number of states

increased from 5 to 9, it improved by less than 2% when

going from 9 to 13 states. The chosen value also reflects the

minimum allowed length of detected segments. In addition to

our source code, we used the Hidden Markov Model Toolkit

(HTK) [56] to build the GMM-based and HMM-based systems

and KALDI toolkit [64] to build the DNN-HMM systems.

B. Experimental results of different acoustic modelling

This section presents experimental evaluations of different

ways of acoustic modelling and feature representation. Re-

sults are presented on the task of bird species identification.

Experiments throughout this section, except for the last sub-

section, are performed using the utterances of 1 second length

and 3-dimensional temporal sequence of frequency values as

features.

1) Evaluations of incorporating temporal modelling: Our

first experiments aim to demonstrate the effect of modelling

the temporal structure of bird vocalisations. This is performed

because models that do not attend to the temporal struc-

ture have often been used in recent bird species recognition

research and also in some state-of-the-art research in other

areas, e.g., speaker recognition. We compare the performance

when using Gaussian mixture model (GMM) versus a single

HMM per bird species. The GMM contained 260 mixture

components and the HMM had 20 mixture components per

state. This provides the same number of mixture components

available for modelling the feature space for both systems. The

identification accuracy achieved by the GMM-based system

is 67.5% while by the HMM-based system is 75.4%. This

demonstrates that the incorporation of temporal modelling is

beneficial for bird species recognition.

We also performed experiments with varying the number of

mixture components in the HMM-based system. The perfor-

mance improves gradually to 78.8% when using 70 mixture

components per state, with no change beyond this.

2) Evaluations using individual element models: This sec-

tion presents results obtained by using models of individ-

ual vocalisation elements for each bird species, which were

obtained in an unsupervised manner. In order to perform a

comparison to the use of a single HMM per bird species, we

aimed for models to have the same complexity in terms of state

output PDF modelling. Based on the results presented in the

previous section, the number of Gaussian mixture components

per state is set to 70 in the case of single HMM approach. For

the element HMMs, we have explored the two criteria for

deciding the number of models for each species, specifically,

the cumulative percentage of segments being assigned to

individual models and the relative occupancy of individual

models. The latter was observed to perform slightly better

but both results differed only little from the case of having

the same number of models for all species when the number

of models is higher. As such, the presented experiments are

obtained using the same number of models for all bird species.
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Note that this also provides a comparable setup to the single

HMM system, in which the complexity of models was the

same for all bird species. Then, each individual element HMM

is set to use only a single Gaussian distribution for each state

output PDF. The additional ‘general’ model, used to cover the

segments not assigned to any of the individual models, uses

GMM at each state with the number of mixture components

set in a way that the overall total number of parameters is the

same for both the element-based HMM system and the single

HMM system.

Results are presented in Table I. These were obtained with

three iterations of the label-reassignment training procedure,

presented in Section III-B2. It can be seen that the use of

element modelling provides considerable identification accu-

racy improvements over the use of a single model with the

same model complexity. A large improvement is seen when

increasing the number of models from 10 to 20 and then also to

30. This seems to indicate that 30 element models may cover

the core of the vocalisation vocabulary in our data. Smaller

but steady improvements are still observed as the number of

element models increases up to 60, achieving identification

accuracy of 89.8% compared to 78.8% when using the single

model approach. These results demonstrate that restricting the

freedom of competing bird species models to account for data

which do not belong to them provides substantial benefits.

TABLE I
Bird species identification accuracy (Acc) obtained by the HMM-based

system employing individual models of bird vocalisation elements compared

to the use of a single HMM. Utterances of 1 second length used.

Single Element HMMs
HMM Number of individual element models /

mixture components for general model
10/60 20/50 30/40 40/30 50/20 60/10

Acc (%) 78.8 79.0 84.0 86.9 87.6 88.8 89.8

Using the system with 60 individual element models, we

analyse the effect of the iterative label-reassignment training

procedure. Figure 6(a) shows an example demonstrating the

effect of the training on the model parameters. The full and

the dashed-dotted line depict, respectively, the mean values

and one standard deviation around the mean of the Gaussian

PDFs at each state of an individual element HMM from the

bird species Carolina Wren. The lines with and without the

triangle markers denote the parameters before and after three

iterations of the training, respectively. It can be seen that

the variance of the model decreased considerably after the

iterative training. This indicates that there were some segments

originally assigned to this model which did not fit well and

their assignments are modified as a result of the iterative

training. Figure 6(b) presents the amount of segments being

assigned to the ‘general’ model as a function of the number

of iterations. It can be seen that there is 16% of all the

segments assigned to the ‘general’ model before application of

the iterative training procedure. This is reduced considerably to

only 2.7% after the first iteration. Further two iterations have

only a very minor effect, reducing it further down to 2.4%.

These results would suggest that the first iteration will have

the most significant effect during the recognition experiments.

The identification accuracy of 85.1% is achieved without the

iterative training procedure and this improves to 88.5% after

the first iteration, then to 89.4% after the second iteration and

to 89.8% after the third iteration of the label-reassignment

procedure.
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Fig. 6. The effect of the iterative label-reassignment training procedure on
the HMM state output Gaussian PDF parameters (a) and on the number of
segments assigned to the ‘general’ model (b).

Finally, Figure 7 depicts, in descending order, the relative

occupancy of individual bird element models for each bird

species. Note that the figure is in log-log scale. Interestingly,

the shape of the curves, in general, seem to follow the Zipf-

Mandelbrot law that is used to model word frequencies in

human language [70], [71].
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Fig. 7. Frequency distribution of the ranked individual bird element models.

3) Evaluations of the state duration modelling: Next we

analyse the effect of incorporating the HMM state duration

modelling. We have experimented with various setups for the

parameter values and modelling and observed that this resulted

only in marginal differences in identification accuracy. The

best setup achieved an increase of identification accuracy from

89.8% to 90.7% when the state duration was incorporated.

This was achieved by setting the parameter τ to 2, modelling

the logarithm of the duration using GMM with 4 components

and full covariance matrices, and setting the duration model

weight parameter β to 5.
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4) Evaluations using DNN-HMM: Results obtained by the

DNN-HMM system based on using individual vocalisation el-

ement models are presented in Table II. The DNN is set to have

2 hidden layers. We explored different number of neurons,

from 100 to 1300, at each layer but only minor identification

accuracy differences were observed. The presented results are

obtained using 300 neurons at each hidden layer. Experiments

were performed without and with incorporation of temporal

context into the feature representation, i.e., the parameter

splice in Table II that indicates the number of proceeding and

following frames appended to features. It can be seen that

the DNN-HMM system only slightly outperformed the HMM

system when no context is used. However, it should be noted

that the DNN-HMM system was built using KALDI while

the HMM system was built using the HTK. The HMM-based

system built using KALDI achieved identification accuracy of

only 86.5%. As such, the use of DNN could be seen to provide

an improvement when considering KALDI implementation.

Analysing the effect of incorporating the temporal context, it

can be seen that there is a considerable accuracy improvement

when the context of ±2 frames is used as opposed to no

context. Further modest improvement is obtained when the

context is increased to 4 frames but then only small improve-

ment when further increased to 6 frames. This indicates that

the most important context is covered by around ±4 frames,

which corresponds to approximately 13 ms, or in fact 17 ms

when taking into account the delta features calculation. We use

the system with splicing of 4, which results in 27-dimensional

input vector, in the following experiments.

TABLE II
Bird species identification accuracy (Acc) obtained by the individual

element-based HMM system and DNN-HMM system with different temporal

context (splice). Utterances of 1 second length used.

HMM DNN-HMM
no context with temporal context (splice)

2 4 6

Acc (%) 89.8 89.9 91.8 92.6 92.9

5) Evaluations with incorporated magnitude into the fea-

ture representation: This section presents experiments when

using feature representation that contains for each frame not

only the frequency value of the detected sinusoid (as used in

previous sub-sections) but also the normalised value of the

magnitude of the sinusoid. The temporal derivatives of both

features are also appended. These experiments are presented

with the element-based DNN-HMM with splice set to 4.

Utterances of different length, specifically, 1, 2, and 3 seconds,

were used. Results are presented in Table III. It can be seen

that incorporating magnitude into the feature representation

provides significant identification accuracy improvements –

more specifically, it provides over 50% error rate reduc-

tion. The identification accuracy increases with increasing the

length of the detected signal used for recognition and 98.7%

accuracy is achieved when using 3 seconds long utterances.

TABLE III
Bird species identification accuracy (%) obtained by the element-based

DNN-HMM system for different length of utterance when also the magnitude

is incorporated into the feature representation.

Utterance Feature representation
length (sec) Frequency only Frequency & Magnitude

1 92.6 96.4
2 95.5 97.9
3 97.1 98.7

C. Experimental evaluations for bird species detection

This section presents results obtained on the task of bird

species detection.

1) Experimental methodology: Experiments were per-

formed using the Borror data plus nearly 16 hours of record-

ings from ‘freefield1010’ collection used in the Bird Au-

dio Detection challenge [54]. The ‘freefield1010’ collection

contains audio with ‘field-recording’ tag selected from the

Freesound audio archive. From these data, only recordings

marked as not-containing bird vocalisations were used as

impostor trials. From the set of 48 bird species from the

Borror dataset, a sub-set of 24 bird species was used for

the ‘background’ model. The remaining sub-set of 24 bird

species was used in a leave-one-out methodology – at a time,

one bird species was used as the target bird species and data

of the other 23 bird species were used for impostor trials.

Performance is evaluated using detection error trade-off plots,

which have been used as the main performance measure for

speaker verification tasks in NIST evaluations [72].

2) Results: We analysed the effect of cohort selection,

likelihood weighting, and the z-norm and t-norm score normal-

isation. Similar performance was obtained by all the employed

normalisation techniques, except for the z-norm which gave

worse results. Figure 8 presents results obtained using the t-

norm when using utterances of 1 second from the Borror bird

vocalisation data (full line) and non-bird sounds (dashed line)

as impostor trials and when using utterances of 3 seconds

containing the mixture of both types of impostor trials (dash-

dotted line). It can be seen that the achieved results are very

similar for different types of impostor trials, with the equal

error rate (EER) being 3.6% for both cases. When using utter-

ances of 3 seconds containing a mixture of bird vocalisations

and non-bird sounds as impostor trials, the EER drops from

3.6% to 2.7%. In terms of employing the presented detection

system for a long-term automatic acoustic monitoring of bird

species, the total impostor trials consisted of over 34 hours

of recordings. Out of this, the sinusoidal detection algorithm

found around 204 mins of potential vocalisation segments. As

such, using the presented detection system with, for instance,

2% false acceptance error rate setup would mean that less than

3 minutes of audio would be incorrectly detected as target bird

species in 24 hours of continuous field recordings, while only

4% of target bird species vocalisations would be missed.

D. Experimental results for multiple bird species recognition

This section presents results when there are vocalisations

of multiple bird species present in a given utterance. The per-
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Fig. 8. Bird species detection results obtained by the DNN-HMM bird element
modelling system, employing t-norm score normalisation.

formance is now evaluated in terms of the recognition correct

and recognition accuracy, which are defined as 100·Nc/N and

100 ·(Nc−Ni)/N , respectively, with Nc, Ni and N being the

number of correctly recognised, inserted and the total number

of bird species in utterance.

First, we consider separately the case with one, two, or

three bird species present, each species with 2 seconds of

the detected segments and we assume that the number of

bird species is known. Experiments were performed using the

element-based DNN-HMM system with magnitude features

and context incorporated. Table IV presents results obtained

by using the conventional majority voting method and the

maximum likelihood method. In the majority voting method,

the cumulative length criteria performed little better than

segment counting when more than a single bird species were

present. The proposed maximum likelihood method provides

considerable improvements over the majority voting method,

for instance, from 93.1% to 96.9% in the case of 3 bird species

present. We have also explored incorporation of constraints

within the maximum likelihood method. While the use of con-

straints showed relative recognition performance improvement

of over 18% in our earlier research [67] which used less-

powerful acoustic models, the relative improvement achieved

now was negligible (below 0.1% absolute). This indicates that

the constraints may be omitted when the acoustic models

achieve a high recognition accuracy performance for the case

of single bird species.

TABLE IV
Bird species recognition correct (%) as a function of the number of species

present achieved by the majority voting and the maximum likelihood

method. Each species contained 2 seconds of the detected signal.

Number of bird Score combination method
species present Majority Maximum-likelihood

count length

1 species 95.1 94.0 97.3
2 species 93.0 93.4 97.0
3 species 91.8 93.1 96.9

We now present results achieved for the scenario when a

given length of the detected signal may contain vocalisations

of a various number of bird species. The number of bird

species was generated from a uniform distribution in the range

from 1 to 3 and data then contained vocalisations of around

3 seconds of the detected signal as follows: either 3 sec from

1 bird species, 1.5 sec from 2 bird species, or 1 sec from

3 bird species. The constraint on the minimum length of the

signal assigned to a bird species model is set to 800 ms. The

value of the tuning factor ψ(C) is set to 0 for C being 1
and to 75 and 85 for C being 2 and 3, respectively, with

similar results obtained within the range (70, 90). Results are

presented in Table V. For reference, the first row gives the

performance when the number of bird species is known. When

the number of bird species is estimated, the recognition correct

drops only by 0.7%, from 97.3% to 96.6%. The recognition

accuracy, affected by the number of insertions, is 95.4%.

This demonstrates a very high performance for recognition

of multiple bird species.

TABLE V
Bird species recognition correct and accuracy achieved by the maximum

likelihood method when one, two, or three bird species are present in a

given utterance of 3 seconds of the detected signal.

Number of bird Maximum Likelihood score combination method
species Rec. Corr. (%) Rec. Acc. (%)

Known 97.3 97.3
Estimated 96.6 95.4

VI. CONCLUSION

A. Summary

In this paper, we presented a comprehensive analysis of

different acoustic modelling techniques for recognition of bird

species from audio field recordings. Experimental evaluations

were performed on audio field recordings made in real-world

natural habitats of birds, mostly in the western United States

and collected over several decades. Over 37 hours of audio

recordings from 48 bird species were processed. In addition to

this, we used another nearly 16 hours of audio field recordings

not containing bird vocalisations for the bird species detection

task.

The proposed system first employed a method for detection

of sinusoidal components to decompose the acoustic scene

into isolated time-frequency segments. The sinusoid detection

was based on probabilistic modelling of local spectral features

extracted around peaks in the short-term spectrum. As only

local spectral information is used, the method can deal with

bird vocalisations occurring simultaneously in time but at

different frequencies. A possible frequency modulation of

sinusoids was accounted for in the modelling. This method

does not require any estimate of noise.

A detected time-frequency segment was represented as a

temporal sequence of feature vectors. We explored the use

of features containing the value of the frequency and also

normalised magnitude of the detected sinusoid and their local

temporal derivatives and direct use of local temporal context.

We investigated several approaches to acoustic modelling

of the temporal evolution of frequency track features by



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 15

employing HMMs. We started with a conventional single

HMM per bird species that had a number of Gaussian mixture

components per state to account for variety of bird vocalisa-

tions as well as their variations. This achieved the bird species

identification accuracy of 78.8%. We then introduced an un-

supervised modelling of individual bird vocalisation elements.

A HMM-based clustering was employed to discover an initial

set of vocalisation patterns produced by each bird species. The

individual vocalisation element models were then trained using

an iterative procedure that aimed to maximise the likelihood

by re-assigning data to models. The use of individual element

HMMs improved the identification accuracy significantly in

comparison to the single HMM per bird species with the same

complexity, to 89.8%.

Next, we explored an incorporation of HMM state duration

modelling. This was performed in a post-recognition stage. A

modest performance improvement was achieved, to 90.7%.

We then employed a hybrid DNN-HMM approach. This

alone gave very small improvement but the incorporation of

context into the feature representation resulted in considerable

improvement, to 92.6%. The use of context larger than 17 ms

was observed to give only minor improvements to recognition

results.

Finally, we extended the feature representation by also

including a normalised magnitude of the detected sinusoids.

This provided further significant recognition performance im-

provements to 96.4%. Evaluations with the detected signal of

length 2 and 3 seconds gave identification accuracy of 97.9%

and 98.7%, respectively.

The final element-based DNN-HMM system with magni-

tude features and context was then employed for the task of

detection of specific bird species. We explored several score

normalisation techniques, all except of the z-norm showing

similar performance. Experiments were performed using de-

tected bird vocalisations from other bird species and from non-

bird audio data as impostor trials. In both cases, the EER of

3.6% was achieved when using utterances of 1 second and this

dropped to 2.7% when utterances of 3 seconds were used.

In the final part, we presented an extension of the recogni-

tion system to deal with situation when multiple bird species

are vocalising concurrently in a given recording. The acoustic

scene decomposition approach we used naturally allowed to

handle such situations. Instead of recognising each detected

segment separately, we employed method based on finding

a subset of models that achieved maximum likelihood ag-

gregated over all the detected segments in the recording. To

arrive at the decision on the number and identity of bird

species, the obtained likelihood was penalised, according to

the number of models considered to account for the data,

based on the principles of Bayesian information criterion.

Experimental results demonstrated that the proposed method

considerably outperformed conventional majority voting ap-

proach. For instance, when one, two or three bird species

are present in a given 3 seconds of recording, the method

achieved recognition accuracy of 96.6% when the number of

bird species was known and 95.4% when this was estimated.

B. Discussion

Here we make few final discussion notes in relation to our

presented work.

The sinusoidal representation we used to characterise bird

tonal vocalisations, i.e., frequency and normalised amplitude

of the sinusoid, is very low-dimensional and physically inter-

pretable. This contrasts with the input feature representation

used for CNN-based systems, which is typically very high-

dimensional. Due to various factors, such as environment,

background noise or other birds vocalising in the area, birds

often systematically modify their vocalisations, for instance,

by introducing a frequency shift [2]. The use of a low-

dimensional and interpretable features, such as the sinusoidal

representation we used, allows for an easy adaptation of the

recognition system to particular conditions.

While experimental evaluations, due to the segmentation

and feature representation we considered here, are performed

on only tonal bird vocalisations, the acoustic modelling tech-

niques (Section III), including the proposed unsupervised

element modelling, are general and could be employed for

dealing with both tonal and non-tonal vocalisations.

The processing of non-tonal bird vocalisation could be

also performed by employing different signal processing and

machine learning approaches than those used to handle tonal

vocalisations. Such approaches could be employed in various

components in the system, i.e., different way of performing

acoustic scene decomposition (if any), feature extraction, and

acoustic modelling.

From the perspective of ornithology, it would be interesting

to employ and evaluate the proposed unsupervised element

modelling technique for estimation of the repertoire of bird

element vocalisations and how this could be exploited further,

for instance, for analysis of bird communication.
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APPENDICES

List of bird species used in experimental evaluations:

Carolina Wren, Indigo Bunting, Lark Sparrow, Canada War-

bler, Chipping Sparrow, Fox Sparrow, Hermit Thrush, House

Finch, Louisiana Waterthrush, Nashville Warbler, Northern

Waterthrush, Pine Warbler, Purple Finch, Baltimore Oriole,

Common Yellowthroat, Eastern Meadowlark, Eastern Wood

Pewee, Gray Catbird, Green Tailed Towhee, Hooded Warbler,

House Wren, Marsh Llong Billed Wren, Northern Cardinal,

Ovenbird, Rose Breasted Grosbeak, Scarlet Tanager, Summer

Tanager, Swamp Sparrow, Vesper Sparrow, Yellow Warbler,

Prothonotary Warbler, Magnolia Warbler, Kirtlands Warbler,

Kentucky Warbler, American Goldfinch, American Redstart,

Blue Grosbeak, Wilsons Warbler, White-eyed Vireo, Warbling

Vireo, Savannah Sparrow, Northern Yellow Shafted Flicker,

Field Sparrow, Slate-colored Dark-eyed Junco, Willow Fly-

catcher, Winter Northern Wren, Western Meadowlark, Yellow-

throated Warbler.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 16

REFERENCES

[1] T. Caro, “Behavior and conservation: a bridge too far?,” TRENDS in

Ecology and Evolution, vol. 22, no. 8, pp. 394–400, 2007.

[2] C.K. Catchpole and P.J.B. Slater, Bird Song: Biological themes and

variations, Cambridge University Press, 2008.

[3] P. Laiolo, M. Vgeli, D. Serrano, and J. Tella, “Song diversity predicts
the viability of fragmented bird populations,” PLOS ONE, vol. 3, no. 3,
pp. 1–5, 3 2008.

[4] P. Marler and H. Slabbekoorn, Nature’s Music: The science of birdsong,
Elsevier Academic Press, 2004.

[5] R.D. Gregory and A. van Strien, “Wild bird indicators: using com-
posite population trends of birds as measures of environmental health,”
Ornithological Science, vol. 9, no. 1, pp. 3–22, 2010.

[6] E.C. Knight, K.C. Hannah, G. Foley, C. Scott, R.M. Brigham, and
E. Bayne, “Recommendations for acoustic recognizer performance as-
sessment with application to five common automated signal recognition
programs,” Avian Conservation and Ecology, vol. 12, no. 2, 2017.

[7] A. Digby, M. Towsey, B.D. Bell, and P.D. Teal, “A practical comparison
of manual and autonomous methods for acoustic monitoring,” Methods

in Ecology and Evolution, vol. 4, pp. 675–683, 2013.

[8] D.A. Nelson, “Feature weighting in species song recognition by field
sparrow (spizella pusilla),” Behaviour, vol. 106, pp. 158–181, 1988.

[9] L.Z. Garamszegi, S. Zsebök, and J. Török, “The relationship between
syllable repertoire similarity and pairing success in a passerine bird
species with complex song,” Journal of Theoretical Biology, vol. 295,
pp. 68–76, 2012.

[10] N.H. Fletcher, “A class of chaotic bird calls?,” The Journal of the

Acoustical Society of America, vol. 108, no. 2, pp. 821–826, Aug. 2000.

[11] A.S. Bregman, Auditory scene analysis: the perceptual organization of

sound, The MIT Press, Cambridge, USA, 1990.

[12] G.R. Naik and W. Wang, Blind Source Separation: Advances in Theory,

Algorithms and Applications, Springer-Verlag Berlin Heidelberg, 2014.
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