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Abstract. Some air pollution datasets contain multiple vari-
ables with a range of measurement units, and combined anal-
ysis using positive matrix factorization (PMF) can be prob-
lematic but can offer benefits through the greater informa-
tion content. In this work, a novel method is devised and the
source apportionment of a mixed unit dataset (PM10 mass
and number size distribution, NSD) is achieved using a novel
two-step approach to PMF. In the first step the PM10 data
are PMF-analysed using a source apportionment approach in
order to provide a solution which best describes the envi-
ronment and conditions considered. The time series G val-
ues (and errors) of the PM10 solution are then taken forward
into the second step, where they are combined with the NSD
data and analysed in a second PMF analysis. This results in
NSD data associated with the apportioned PM10 factors. We
exemplify this approach using data reported in the study of
Beddows et al. (2015), producing one solution which unifies
the two separate solutions for PM10 and NSD data datasets
together. We also show how regression of the NSD size bins
and the G time series can be used to elaborate the solution by
identifying NSD factors (such as nucleation) not influencing
the PM10 mass.

1 Introduction

It is unquestionable that worldwide, the scientific vista of
air quality is expanding, whether it is the increasing num-

ber of observatories or the refinement of information mined
from the increasing sophistication of measurements often in-
corporated in campaign work. The number of metrics being
measured has increased from simple measurements of partic-
ulate matter (PM) mass and gas concentrations, and we can
now probe the composition of the PM mass and the size dis-
tributions with mass spectrometers, mobility analysers and
optical devices.

Studies using positive matrix factorization (PMF) as a tool
for source apportionment of particle mass using multicom-
ponent chemical analysis data are published frequently using
datasets from around the world. However, they do not always
provide consistent outcomes (Pant and Harrison, 2012), and
one means by which source resolution and identification can
be improved is by inclusion of auxiliary data, such as gaseous
pollutants (Thimmaiah et al., 2009), particle number count
(Masiol et al., 2017) or particle size distribution (Beddows et
al., 2015; Ogulei et al., 2006; Leoni et al., 2018).

Harrison et al. (2011) analysed number size distribu-
tion (NSD) data (merged Scanning Mobility Particle Sizer
(SMPS) and Aerodynamic Particle Sizer (APS) data) with
PMF using auxiliary data (meteorology, gas concentration,
traffic counts and speed). The study used particle size dis-
tribution data collected at the Marylebone Road supersite
in London in the autumn of 2007 and put forward a 10-
factor solution comprised of roadside and background par-
ticle source factors. Sowlat et al. (2016) carried out a simi-
lar analysis on number size distribution (13 nm–10 µm) data
combined with several auxiliary variables collected in Los
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Angeles. These included black carbon (BC), elemental car-
bon (EC) and organic carbon (OC), PM mass, gaseous pollu-
tants and meteorological and traffic flow data. A six-factor
solution was chosen comprising of nucleation, two traffic
factors, an urban background aerosol, a secondary aerosol
and a soil factor. The two traffic sources contributed up to
above 60 % of the total number concentrations combined.
Nucleation was also observed as a major factor (17 %). Ur-
ban background aerosol, secondary aerosol and soil, with rel-
ative contributions of approximately 12 %, 2.1 % and 1.1 %,
respectively, overall accounted for approximately 15 % of
PM number concentrations, although these factors domi-
nated the PM volume and mass concentrations, due mainly
to their larger mode diameters. Chan et al. (2011) considered
extracting more source information from an aerosol com-
position dataset by including data on other air pollutants
and wind data in the analysis of a small but comprehen-
sive dataset from a 24-hourly sampling programme carried
out during June 2001 in an industrial area in Brisbane. They
chose multiple types of composition data (aerosols, volatile
organic compounds (VOCs) and major gaseous pollutants)
and wind data in source apportionment of air pollutants and
found it to result in better defined source factors and better
fit diagnostics, compared to when non-combined data were
used. Likewise, Wang et al. (2017) report an improvement in
source profiles when coupling the PMF model with 14C data
to constrain the PMF run as a priori information.

However, while combining, for example, particle chemi-
cal composition and size distribution data in a single PMF
analysis may assist source resolution, difficulties arise if
the two datasets have different and/or ambiguous rotations
(discussed in Sect. 2). This tends to result in factors with
either mass contributions and small number contributions
or number contributions and small mass contributions and
rarely a meaningful contribution from both data types. Ex-
perimental design can of course circumnavigate this prob-
lem, for instance, using chemical data which are already size-
segregated, measured using a cascade impactor (Contini et
al., 2014). Such an approach is attractive by view of the fact
that there is no question as to whether both datasets suffi-
ciently overlap across the size bins. However, cascade im-
pactors do not offer the high time resolution of particle count-
ing instruments, with individual measurements lasting hours
or days. Even so, for the case in which two or more instru-
ments are available in a campaign to measure two or more
different metrics, e.g. PM mass and particle number (PN),
then a combined data analysis is useful. Emami and Hopke
(2017) have shown that the effect of adding variables as aux-
iliary data (with potentially different units) to a NSD dataset
is to decrease the rotational ambiguity of a solution from a
one-step PMF analysis.

In this study, we present a method for analysing simulta-
neously collected PM10 composition and NSD data. In the
work of Beddows et al. (2015), both particle composition
and NSD data from a background site in London (2011 and

Figure 1. Venn diagram showing the summary of the findings of
Beddows et al. (2015), applying PMF to PM10-only, NSD-only and
PM10–NSD datasets. Table shows the apportionment of PM10 and
NSD taken from Beddows et al. (2015).

2012) were analysed using positive matrix factorization. As
part of the methodology development, it was concluded that
it was preferable not to combine these two data types in a sin-
gle analysis but to conduct separate PMF analyses for PM10
mass and particle number. This yielded a six-factor solution
for the PM10 data (diffuse urban, marine, secondary, non-
exhaust traffic and crustal (NET and crustal), fuel oil and
traffic). Factors described as diffuse urban, secondary and
traffic were identified in the four-factor solution for the NSD
data, together with a nucleation factor not seen in the PM10
mass data analysis (see Fig. 1). When combining the PM10
and NSD data in a single PMF analysis, diffuse urban, nucle-
ation, secondary, aged marine and traffic factors were identi-
fied, but the factors were not as clearly separated from each
other as the factors derived from the separate datasets. For
example, fuel oil was now mixed in with marine and called
aged marine. This is summarized in Fig. 1. However, it would
still be useful to obtain a number size distribution for each of
the six PM10 factors and/or a chemical composition for the
four NSD factors. As a continuation of this work, we present
an alternative method for analysing the combined dataset in
a so-called two-step methodology. In the first step, we anal-
yse the mass data (PM10; units: µg m−3) according to the
methodology of Beddows et al. (2015). This results in a time
series factor G, which is carried forward into a second PMF
analysis of a combined dataset consisting of the G time se-
ries and an auxiliary dataset (i.e. NSD; units: cm−3). The first
step identifies sources and apportions the G factors to their
contribution to mass, and in the second step, an FKEY ma-
trix is chosen such that G “drives” the model and the NSD
data “follow”. This means that we have PM10 factors, each
of which is augmented by its number size distribution. Fur-
thermore, we also consider linear regression (LR) as a sec-
ond step in a PMF–LR analysis to show that although the
initial analysis is biased toward mass by analysing PM10 fac-
tors only, unseen factors influencing the NSD data (e.g. nu-
cleation) can be identified in the data.

Atmos. Chem. Phys., 19, 4863–4876, 2019 www.atmos-chem-phys.net/19/4863/2019/
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2 Experiment

With a population of 8.5 million in 2014 (ONS, 2017), the
UK city of London is the focus of study in this work; the
North Kensington (NK) site (lat.= 51◦: 31′: 15.780′′ N and
long.= 0◦: 12′: 48.571′′W) was considered. NK is part of
both the London Air Quality Network and the national Au-
tomatic Urban and Rural Network and is owned and part-
funded by the Royal Borough of Kensington and Chelsea.
The facility is located within a self-contained cabin within
the grounds of Sion Manning School. The nearest road, St.
Charles Square, is a quiet residential street approximately
5 m from the monitoring site, and the surrounding area is
mainly residential. The nearest heavily trafficked roads are
the B450 (∼ 100 m east) and the very busy A40 (∼ 400 m
south). For a detailed overview of the air pollution climate at
North Kensington, the reader is referred to Bigi and Harri-
son (2010).

2.1 Data

As alluded to, this work is a continuation of the study carried
out by Beddows et al. (2015), which analysed NSD and PM10
chemical composition data collected at the NK receptor site.
Number size distribution (NSD) data were collected continu-
ously every 15 min using a Scanning Mobility Particle Sizer
(SMPS), consisting of a CPC (TSI model 3775) combined
with an electrostatic classifier (TSI model 3080) and air-dried
according to the EUSAAR protocol (Wiedensohler et al.,
2012). The particle sizes covered were 51 size bins ranging
from 16 to 604 nm, the 15 min distributions were aggregated
up to hourly averages (when there were at least three 15 min
samples per hour) and all missing values were replaced using
a value calculated using the method of Polissar et al. (1998).
Further details of the SMPS settings are given in Table S1 in
the Supplement, and the reader is also referred to Beccaceci
et al. (2013a, b) for an extensive account of how the NSD
data were collected and quality-assured.

Accompanying the NSD data from the study of Beddows
et al. (2015) was the PMF output from the analysis of PM10
chemical composition data. The latter data consisted of 24 h
air samples taken daily over a 2-year period (2011 and 2012)
using a Thermo Partisol 2025 sampler fitted with a PM10
size-selective inlet. These filters were analysed for total met-
als, PMmetals (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mo, Na,
Ni, Pb, Sn, Sb, Sr, V and Zn), using a Perkin Elmer/Sciex
ELAN 6100DRC following hydrofluoric acid digestion of
GN-4 Metricel membrane filters. Water-soluble ions, PMions
(Ca2+, Mg2+, K, NH+4 , Cl−, NO−3 and SO2−

4 ), were mea-
sured using a near-real-time URG-9000B (hereafter URG)
ambient ion monitor (URG Corp). The data capture over the
2 years ranged from 48 % to 100 % as different sampling
instruments varied in reliability. Data gaps were filled by
measurements made on daily PM10 filter samples collected
continuously at this site using a Partisol 2025; laboratory-

based ion chromatography measurements were made for an-
ions on Tissuquartz™ 2500 QAT-UP filters. No cation mea-
surements were available from these filters, and this resulted
in a lower data capture for the cations. Again, all missing
data were replaced using a value calculated using the method
of Polissar et al. (1998). A woodsmoke metric, CWOD,
was also included. This was derived as PM woodsmoke
from the methodology of Sandradewi et al. (2008) utiliz-
ing aethalometer and EC/OC data, as described in Fuller et
al. (2014). Samples were also collected using a Partisol 2025
with a PM10 size-selective inlet, and concentrations of ele-
mental carbon (EC) and organic carbon (OC) were measured
through collection on quartz filters (Tissuquartz™ 2500 QAT-
UP) and analysis using a Sunset Laboratory thermal–optical
analyser according to the QUARTZ protocol (which gives re-
sults very similar to EUSAAR 2: Cavalli et al., 2010) (NPL,
2013). We refer to CWOD, EC and OC as PMcarbon. In addi-
tion, particle mass was determined on samples collected on
Teflon-coated glass fibre filters (TX40HI20WW) with a Par-
tisol sampler and PM10 size-selective inlet.

This aforementioned PM10 data were represented in this
work as the PMF solution for PM10-only data, derived in
Beddows et al. (2015) and consisting of six sources, namely
diffuse urban, marine, secondary, non-exhaust traffic and
crustal, fuel oil and traffic. The diffuse urban factor had a
chemical profile indicative of contributions mainly from both
woodsmoke (CWOD) and road traffic (Ba, Cu, Fe, Zn). The
marine factor explained much of the variation in the data
for Na, Cl− and Mg2+, and the secondary factor was iden-
tified from a strong association with NH+4 , NO−3 , SO2−

4 and
organic carbon. For the traffic emissions, the PM did not
simply reflect tailpipe emissions, as it also included contri-
butions from non-exhaust sources, i.e. resuspension of road
dust and primary PM emissions from brake, clutch and tyre
wear. The non-exhaust traffic and crustal factor explained a
high proportion of the variation in the Al, Ca2+ and Ti mea-
surements consistent with particles derived from crustal ma-
terial, derived either from wind-blown or vehicle-induced re-
suspension. There was also a significant explanation of the
variation in elements such as Zn, Pb, Mn, Fe, Cu and Ba,
which had a strong association with non-exhaust traffic emis-
sions. As there was a strong contribution of crustal material
to particles resuspended from traffic, this likely reflected the
presence of particulate matter from resuspension and traffic-
polluted soils. The last factor was attributed to fuel oil, char-
acterized by a strong association with V and Ni together with
significant SO2−

4 . This output comprised the first-step solu-
tion in the two-step analysis of PM10 and NSD data, and in
this study we concentrate on the analysis of the NSD data in
the second PMF step, with the aim of assigning a NSD to
each of the six PM10 factors.

www.atmos-chem-phys.net/19/4863/2019/ Atmos. Chem. Phys., 19, 4863–4876, 2019
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2.2 Methods

2.2.1 PMF

Positive matrix factorization (PMF) is a well-established
multivariate data analysis method used in the field of aerosol
science. PMF can be described as a least-squares formulation
of factor analysis developed by Paatero (Paatero and Tap-
per, 1994). It assumes that the ambient aerosol concentra-
tion X (represented by m× n matrix of m observations and
n PM10 constituents or NSD size bins), measured at one or
more sites, can be explained by the product of a source profile
matrix F and source contribution matrix G whose elements
are given by Eq. (1):

xij =

p∑
k=1

gik · fkj + eij i = 1. . .m;j = 1. . .n, (1)

where the j th PM constituent (element, size bin or auxil-
iary measurement) on the ith observation (i.e. hour) is rep-
resented by xij . The term gik is the contribution of the kth
factor (of a total of p factors) to the receptor on the ith hour,
fkj is the fraction of the j th PM constituent in the kth fac-
tor and eij is the residual for the j th measurement on the
ith hour. The residuals (i.e. difference between measured and
reconstructed concentrations) are accounted for in matrix E,
and the two matrices G and F are obtained using an iterative
algorithm which minimizes the object functionQ (see Eq. 2).

Using the data and uncertainty matrices for the model,
Eq. (1) is optimized in the PMF algorithm by minimizing
the Q value (Eq. 2):

Q=

n∑
i=1

m∑
j=1

(
eij

sij

)2

, (2)

where sij is the uncertainty in the j th measurement for hour
i. All analyses were carried out in robust mode which reduces
the impact of outliers (Paatero, 2002).

PMF is a weighted technique, and the value of Q, and
hence the model fit, is determined by the input variables with
the lowest values of uncertainty, sij , thus giving their vari-
ables a higher weighting in the analysis. Input variables with
low weight have little effect upon the value of Q, even when
their residuals are large. This can be used to the advantage of
the operator; e.g. when apportioning total PM mass in a con-
ventional one-step PMF, the total PM concentrations are nor-
mally input with artificially high uncertainty, so that they are
essentially passive in the PMF analysis and do not influence
its outcome. By doing so, the chemical composition data de-
termine the apportionment of PM mass to the source-related
factors identified by the PMF. A similar approach can be fol-
lowed in the PMF analysis of a combined dataset, whereby
higher weightings can be applied to the main dataset of in-
terest such that it drives the analysis and the auxiliary dataset
follows; i.e. the uncertainties are chosen such that the bal-
ance of total weights from the two datasets is tipped towards

the measurement of interest and highest reliability in regards
of rotational unambiguity.

To assess the PMF model, the Q value is outputted by
PMF and compared to a theoretical value Qtheory. which is
approximately the difference between the product of the di-
mensions of X and the product of the number of factors and
the sum of dimensions of X (i.e. m× n – p(m+ n)). For
a given number of factors, the whole uncertainty matrix is
scaled by a factor bscale until the ratio betweenQ andQtheory
is approximately 1 (rQ value=Q/Qtheory = 1± 0.02).

With regards to the final output from PMF, a scaling has
to be applied in order to achieve quantitative results. This is
done by scaling either G or F to unity such that the units
from X are carried over to either F or G respectively to com-
plete the apportionment. However, different routes have to
be considered depending on whether X has homogeneous or
heterogeneous units.

2.2.2 One-step method using data in the same units –
homogeneous units

Given a PMF input data matrix X, a solution GF+E can be
computed, where G represents the time series of the source
profiles F, with a residual matrix E. Often X comprises
columns of PM10 component concentrations (e.g. ICPMS
values measured from acid-digested filters collected with a
Partisol 2025), and it is common practice to also include a
total variable (e.g. column of PM10, measured using a Ta-
pered Element Oscillating Microbalance, TEOM) in the data
matrix. The resulting PM10 profile element value can then be
used to scale G and F such that G carries the units of X, with
F unitless. Note that neither G or F is scaled to unity in this
approach. Instead, scaling is done after the analysis using a
constant ak , determined by the time series of a total variable
(e.g. PM10), downweighted by applying a high uncertainty,
within the input data.

xij =

p∑
k=1

(akgik)

(
fkj

ak

)
(3)

The resulting value for the PM10 contribution for each fac-
tor within the F matrix is then used as a scaling constant ak
in Eq. (3). Such scaling results in unitless factors F which
describe the characteristics of the sources and time series G
with units of µg m−3. Apportionment can then be carried out
by averaging the G values for each source factor, or a fully
quantified time series of each factor can be presented, e.g. in
bivariate plots. Of course, the G and F can be normalized
such that G is unitless and F carries units, an approach nec-
essary when X contains heterogeneous units. This approach,
using the PMF, requires the average of each column of G to
be scaled to unity, by using the PMF setting mean|G| = 1.

Atmos. Chem. Phys., 19, 4863–4876, 2019 www.atmos-chem-phys.net/19/4863/2019/
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2.2.3 One-step method using data with different units –
heterogeneous units

If the analysis of X was to be enhanced by the inclusion of
data Z from a second instrument with different units, then
a different approach to the one-step method with homoge-
neous units would be required to analyse the joint data matrix
[X,Z] =G[X,Z] ·F[X,Z]+E[X,Z]. If the previous method
was applied where F was normalized, then it would not be
clear what units to assign to G, whether the units from X or
Z. To get around this problem, G is scaled to unity. This re-
sults in a unitless time series G and a quantified F matrix. For
each source profile the sum of the species associated with ei-
ther data type gives the average total apportionment, e.g. of
PM10 or number concentration PN. Of course, this requires
the complete mass or number closure of the elements mak-
ing up either PM10 or PN respectively, although inclusion of
measurements of total PM10 or PN can be used instead, if
available.

In the ideal case, if the individually computed factors
for both datasets result in G(X) and G(Z) being identical,
then a straightforward joint model [X,Z] is successful and
G[X,Z] =G(X)=G(Z). However, if G(X) and G(Z) are
significantly different, then the joint model will fail, identi-
fied by too large aQ value. A solution to this problem is to set
the total weights of the better dataset X significantly higher
than the total weights of the auxiliary dataset Z such that
X will drive the model and G[X,Z] will be approximately
equal to G(X), and a reasonable Q value is obtained for the
Z. However, care is required to ensure that X or Z do not con-
tain rotational ambiguity because such rotation for X may not
be suitable for Z. For such cases, equal total weights for both
X and Z are applied in the hope that the best rotation for both
X and Z can be found.

2.2.4 Two-step method using data with different units –
heterogeneous units

The method proposed in this work separates the analysis of
the two datasets X and Z into two different PMF analyses.
Dataset X is first analysed, and an unambiguous rotation is
selected, which gives computed factors G(X). These are then
carried over into a second PMF step in which G(X) are com-
bined with Z to form a joint matrix for analysis. By using
FKEY (described below) factors, G(X,Z) are forced to be
equal to G(X) from step 1. So, for example, if in the first
step we analyse PM10 data and carry forward the output
G(PM10) into a second step combined with the NSD data,
i.e. [G(PM10), NSD], this results in profiles F[G(PM10),
NSD]. In other words, we force out of the NSD data source
profiles which have the same G factors as the PM10 data and
extend the list of components of the sources identified in the
first step, thus improving characterization of the source. Note
that this is equivalent to non-negative weighted regression of
matrix Z by columns of matrix G for which other tools exist.

Furthermore, by using a two-step method, we can continue to
use the scaling method described in Sect. 2.2.2 to apportion
the sources using a quantified time series G(X) rather than
normalizing the G(X,Z)matrix sums to 1 and relying on the
summation of the elements in the rows of F(X,Z) to give the
apportionment of X and Z.

2.2.5 Application of PMF

Positive matrix factorization was carried out in this work us-
ing the DOS-based executable file PMF2 v4.2 compiled by
Pentti Paatero and released on 11 February 2010 (available
from Dr. Pentii Paatero). This is used by the author in prefer-
ence to a GUI version of PMF (e.g. US EPA PMF 5.0; Norris
et al., 2014) because of the ease with which it can be incorpo-
rated into a Cran R procedure script using shell commands,
thus facilitating automation of the analysis and any optimiza-
tion. R script can be written to manipulate and organize input
data for PMF2, run PMF2, collect the output and produce the
necessary output for consideration as text, table or plot. The
main strength of this approach is to improve the repeatabil-
ity and transference of a method between practitioners within
our group.

The two-step method is shown schematically in Fig. 2.
Matrix X yields factors 1G and 1F in the first step. The time
series 1G matrix is carried through to the second step, where
it is combined with an auxiliary dataset Z to give the step 2
input matrix [1G,Z]. This in turn is analysed to produce fac-
tors 2G and 2F. In the current example, the dataset of Bed-
dows et al. (2015) is used as a starting matrix X and com-
prises the PM10 chemical composition dataset. This yields
time series 1G and source profile 1F, and the reader is re-
ferred to Beddows et al. (2015) for a description of the anal-
ysis and output. Figure 1 shows the output from the first step
which was found to be the optimum solution after consid-
ering three- to eight-factor solutions. The scaled time series
matrix 1G from this analysis was combined with the NSD
data – concurrently measured with the PM10 data – to form
the input matrix [1G,Z] for step 2. The uncertainties of the
1G1 matrix, 11G, are transferred from the output of the
first step and entered as input uncertainties for the second
step. The hourly NSD data were aggregated into daily val-
ues to match the daily 1G factors outputted from the PMF
analysis of the daily PM10 data sampled. This reduced the
data matrix down to 590 rows by 57 columns (1G1. . .

1G6,
NSD16 nm

1 . . .NSD640 nm
51 ) for which we have a Qtheory value

of 29 748 for a six-factor solution. For the NSD data, the
uncertainties are taken as the NSD values multiplied by the
value of an arbitrary parameter bscale (see Fig. 2). Initially,
bscale was set to 4 to ensure that the model was weighted
such that it was driven by the PM10 data. However, this oper-
ation becomes somewhat redundant by the use of the FKEY
matrix discussed in the next section. However, in order to
find the optimal NSD uncertainties the value of the param-
eter bscale (typically 0.2) was optimized in Cran R so that

www.atmos-chem-phys.net/19/4863/2019/ Atmos. Chem. Phys., 19, 4863–4876, 2019
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the ratio of Q/Qtheory = 1± 0.02, indicating an relative per-
centage uncertainty in the region of 20 %. In retrospect – by
taking into account the decrease in reliability of the size bin
counts towards the edges of the size bin range – an improve-
ment would be to gradually increase the uncertainties from
5 % in the middle range of sizes to a predefined larger value,
e.g. 50 %, over the lower and upper size bins. The uncer-
tainties were entered directly into the model using the PMF
matrix T, with U and V redundant.

2.2.6 Pulling down with GKEY and FKEY

GKEY and FKEY are matrices with the same dimensions
as G and F respectively, for incorporating a priori informa-
tion into a PMF analysis. They are used in the second step of
the PMF analysis to “pull” elements of the source profiles to
zero. GKEY and FKEY indicate the location of suspected
zeros in source profiles 2F or contributions 2G (Fig. S1).
Since we are concerned with the profiles, this information
is given in the form of integer values in FKEY. The greater
the certainty that an element of a source profile is zero, the
larger the integer value that is specified. In this case, in the
second step for the input dataset [1G NSD], it is certain that
only one unique contribution will be strong for each row of
the profile 2F, outputted from the second PMF analysis; e.g.
only 1G1 and not 1G2...1G6 will contribute to the first posi-
tion in output factor 2F 1 (Fig. S1). All “non-zero” elements
within the output of 2F take a f key value of zero, whereas
all elements of 2F which are pulled to zero take a non-zero
value of fkey1. This leads to a FKEY matrix which can be
understood in two parts. The first part is a square matrix of
dimensions equal to the number of columns of 1G, with all
its entries equal to fkey1 except for the leading diagonal (set
to zero); this part ensures that 1G is the same as 2G. The sec-
ond part of the matrix consists of all the elements as zero and
represents the NSD input data. An fkey1 value of 7 to 9 is con-
sidered a medium to strong pull, and in this work, we used a
value of 24, which in comparison is very aggressive ensuring
only one rotational solution is available ensuring 1G≈2G.

To extend the analysis from six factors to seven factors, an
extra row was added to FKEY. This was done in order to in-
vestigate any factors missed in the NSD data which the first
analysis using PM10 would not be sensitive to. For example,
a nucleation mode would be detected in NSD data but not
in PM10 data. In order to give the model freedom to factor-
ize out a nucleation factor, the seventh row of FKEY values
consisted of {fkey2,...,fkey2, nsd1, nsd2... nsd51}; fkey2 = 20.
This ensured that all the 2G contributions were allocated to
the first six factors, only leaving the seventh factor to account
for the remaining unfactorized NSD data. There is no reason
why more than seven factors could not be used to investigate
possible unresolved NSD factors. However, we constrained
the scope of our investigation to reidentifying those in Fig. 1.

Figure 2. Flow diagram showing the flow of data through the two-
step PMF–PMF analysis. The PMF analyses of a single dataset X
are considered in step 1, and output is indicated by factors and un-
certainties 1G, 11G, 1F and 11F. The second PMF analysis is
carried out on the joint dataset [1G,Z] and yields factors and un-
certainties 2G, 21G, 2F and 21F. In our analysis, X and 1G are
the PM10 and resulting time series from the analysis of Beddows et
al. (2015), and Z is the auxiliary NSD data concurrently measured
using a SMPS.

2.3 Regression

As an alternative to using PMF in the second step, a regres-
sion was carried out. Each column of data for each of the 51
size bins j within the NSD was regressed against the six 1G
time series using Eq. (4):

NSDj = α0,j +α1,j
1G1+α2,j

1G2+ ·· ·+α6,j
1G6, (4)
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where α0 is the population intercept and α1−6 are the pop-
ulation slope coefficients. This results in a 7 by 51 matrix
of values. Each column represents a size bin of the NSD
data, and each row represents the slope coefficients associ-
ated with six of the factors (giving an indication of how each
size bin scales with each of the six factors) and an intercept.
When α1−6,j is plotted against the size bin, six plots showing
the dependence of each size bin j on each of the six PM10
factors are produced. It is also assumed that these (referred
to here as NSD regression source profiles) will be compara-
ble to the actual NSD PMF source profile. Similarly, the α0,j
values are expected to give a background value due possibly
to noise; however, it is more likely to yield a source (such as
nucleation) to which the PM10 mass analysis is insensitive.

2.4 Peak fitting

If it is assumed that the factors derived from the daily NSD
data are the same as those present in the hourly data, i.e. the
factors are conserved when averaging the data from hourly
to daily data before PMF analysis, then daily NSD profiles
can be fitted to the hourly NSD spectra to recover a diurnal
cycle for the factors. However, it is worth noting that the pro-
cess of aggregating hourly data to daily NSD data may cause
loss of information, implying that minor factors (e.g. due to
event episodes) might well be averaged out of the data. For
the elements of the ith number size distribution NSDij (of
dimensions m× n), the factors can be fitted using Eq. (5),
which is the difference across the size bins of the ith row of
the NSD data and the linear sum of the p NSD source profiles
(p = 7 in this case) scaled with respect to the scalar values
cik , representing the time series of each fitted NSD source
profile.

di =

N∑
j=1

{
NSDij −

∑p

k=0cik × fkj
}
, cik ≥ 0

1× 1010, cik < 0
(5)

The Cran R package non-linear minimization (nlm) (R
Core Team, 2018) was used to minimize the value of di
with respect to the scalar value cik with a non-negative con-
straint on cik placed in the function. If a negative value is re-
turned by any of the ck values, then di returns an excessively
large value. Furthermore, in order to extract an apportion-
ment to number concentration (cm−3) the fitted values were
scaled using a scalar βk . Seven values were derived for βk
by regressing the total particle number (total hourly SMPS)
against each of the fitted values ck (Eq. 6).

PN = β0+β1c1+β2c2+ ·· ·+β7c7 (6)

The resulting scaled-fitted values were then used to calcu-
late the PN concentration for each of the regression source
profiles (Eq. 7), allowing subsequent plotting of the seven
diurnal cycles.

PNk = βkck (7)

2.5 Bivariate plot

Identification of the sources responsible for the factors out-
putted from PMF can be assisted by meteorological data.
Time series of the kth factor (or gk values) can be plotted
against wind direction and wind speed using either the po-
larPlot or polarAnnulus functions provided in the Openair
package. Polar plots are simply used for plotting the fac-
tor contribution on a polar coordinate plot with north, east,
south and west axes. Mean concentrations are calculated for
wind speed direction “bins” (e.g. 0–1, 1–2 m s−1,... and 0–
10, 10–20◦, etc.) and smoothed using a generalized addi-
tive model. Each bin concentration is plotted as a group of
pixels (coloured according to a concentration colour scale)
and positioned a distance away from the origin according to
the magnitude of wind speed and along an angle from the
north axis according to the wind direction. Such plots are
useful when identifying the nature of the source. A diffuse
source will tend to have its highest concentration showing as
a “hotspot” at the origin of the polar plot, whereas a point
source will cause a hotspot both away from the origin and in
the direction pointing towards the source. On the other hand
wind blown sources tend to be recognized by their relation to
wind speed and hence do not necessarily produce hotspots.
Instead, they produce a minimum to maximum gradual gradi-
ent of colour from the origin, spreading radially out towards
the edge of the plot in the direction of the source, e.g. for
a marine source. Likewise, annulus plots plot the mean fac-
tor concentration on a colour scale by wind direction and as
a function of hour of the day as an annulus, represented by
the distance of the coloured pixels from the origin. The func-
tion is good for visualizing how concentrations of pollutants
vary by wind direction and hour of the day. For example, for
the North Kensington site – positioned west of the city cen-
tre – we might well expect most of the anthropogenic sources
(traffic, diffuse urban, etc.) to show an easterly direction with
the appropriate diurnal cycle (e.g. rush hour traffic patterns).
Similarly, we might expect cleaner air (marine, nucleation,
etc.) to occur from a westerly direction and at times of the
day when the solar strength is highest.

3 Results and discussion

The aim of this work has been to show how a given PMF re-
sult can be complemented with concurrently measured aux-
iliary data. We exemplify this using PM10 and NSD data col-
lected from the North Kensington receptor site in London and
start with the premise that we are completely satisfied with
the PM10 analysis and are using a rotation which gives quan-
tified factors (quantified G and scaled F) which best repre-
sent the urban atmosphere sampled, i.e. the output from Bed-
dows et al. (2015). For each PM10 factor we wish to assign a
NSD distribution. Rather than repeat the PMF analysis using
a combined PM10–NSD dataset which can be complicated
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if the rotations of the individual PMF analyses of PM10 and
NSD data are mismatched or ambiguous, we can carry out a
second PMF analysis or a regression.

Furthermore, because of the nature of any factor analysis,
we also have to make the assumption that each source chem-
ical profile and size distribution not only remains unchanged
between source and receptor but that they remain constant
throughout the measurement campaign. This of course limits
our capacity to fully understand the aerosol within the at-
mosphere we are considering. Chemical reactions during the
transit of the air masses will of course modify the chemical
composition. It might be assumed that a fully aged aerosol
remains unchanged and is identified as a background com-
ponent, but, for example, we would expect progressive chlo-
rine depletion within a fresh marine aerosol passing over a
city. Likewise, we also have to appreciate that different parti-
cle sizes will have different atmospheric transit efficiencies,
with large particles settling out of the air mass before smaller
ones. Similarly, particles nucleate and grow from 1 nm up to
20–30 nm over a short time period of time. It is these finer de-
tails which are missed when making an overall assessment of
the chemical and physical composition of air mass measured
over a long (e.g. 2 years) dataset using PMF.

3.1 Two-step PMF–PMF analysis

Figure 3 presents the profiles 1F k and 2F k from the first and
second PMF analysis respectively. The plots of 1F k were car-
ried over from Beddows et al. (2015) to complete the assign-
ment of the source profiles.

The time series 1Gk and uncertainties 11Gk from the first
PMF analysis of PM10 data were carried over into the sec-
ond step, where they are combined with the NSD data for
PMF analysis (Fig. 2). The uncertainties of the NSD data
are taken as an optimized multiple of the NSD values them-
selves (∼ 5 % uncertainty, yielding a Q value of 30 333 in
the robust mode; see Table S2 for PMF settings). Also in or-
der to encourage 2Gk to be proportional to 1Gk for k = 1–6
(see Table S4), the FKEY matrix is applied to pull elements
in the source matrix to zero, as described in Sect. 2.2.6. This
ensured that the PMF analysis of the NSD data was driven
by the 1G time series and resulted in a six-factor output in
which there were unique contributions from the kth factor
1Gk from the first analysis to the kth factor 2F k in the sec-
ond analysis. This is mainly due to the aggressive pulling of
the factor element in 2F applied using FKEY.

When inspecting Fig. 3 it is notable that the source profiles
are surprisingly similar to those calculated for the NSD-only
and PM10–NSD data in Beddows et al. (2015). The diffuse
urban factor has a modal diameter just below 0.1 µm, which
is comparable to the same factor in the NSD-only analysis.
The marine factor is comparable to the aged marine factor
derived from the PM10–NSD analysis. The secondary factor
is again the factor with the largest modal diameter (between
0.4 and 0.5 µm), and traffic has as expected a modal diameter

between 30 and 40 nm. The fuel oil factor appears to be a
combination of a nucleation factor and a mode comparable
to diesel exhaust seen in the traffic factor.

3.2 Two-step PMF–LR analysis

Figure S2 shows the results of the linear regression of the
NSD data and the PM10

1Gk scores, and again what is re-
markable is the similarity between these regression source
profiles and both the factors derived in Beddows et al. (2015)
and those from the two-step PMF–PMF analysis.

This PMF–LR analysis was carried out using daily aver-
aged data, and to obtain hourly information – and thus ob-
tain the diurnal patterns (Fig. S2) – the resulting regression
source profiles were refitted to the original NSD data. On
inspection of these source profiles and diurnal plots, the neg-
ative values make interpretation a struggle, reinforcing one
of the four conditions (Hopke, 1991) in the analysis if it is
to make sense. We can however fit non-negative gradients
using non-negative regression. However, the surprising con-
sequence of applying this constraint is that the same profiles
are derived, but they are clipped so that all negative values
are replaced by zero values – hence, information is lost. One
interpretation of the negative values is that these are parti-
cle sinks, but this contradicts the PMF–PMF findings, and
hence it is concluded that the PMF–LR analysis only serves
as an indication of how the PM10 factors are augmented by
the NSD data. If all profiles are shifted to above the zero
line, then comparisons to the PMF–PMF data can be made.
However, what is interesting to note in this result is the inter-
cept NSD, which is comparable in profile and diurnal pattern
to the nucleation mode identified in Beddows et al. (2015).
This is a seventh regression source profile, in addition to the
six PM10 factors and suggests that although the PMF analy-
sis of the PM10 data alone misses a nucleation factor, this can
be recovered in a second analysis as a remainder or bias in
the data. Furthermore, this result indicates that the composi-
tion of the nucleation NSD factor has no link to the chemical
PM10 composition and cannot be used to infer a composition.
This is unsurprising given the very small mass contributed by
the nucleation-mode particles.

Returning to the PMF–PMF analysis and extending the
analysis from six factors to seven factors, an extra row in the
FKEY matrix was added to pull all of the 1G7 contributions
to 2F 7 to zero in the solution (Fig. S1). The same FKEY
matrix of fkey1 and 0 values was used, but this time it was
augmented with a seventh row of fkey2 and zero values. In
this case, the fkey2 values were set to a value of 20.

The same six-factor solution is obtained with the addi-
tional seventh factor (Figs. 4 and S3), and, as expected, this
seventh factor was a nucleation factor. It was suspected that
in the six-factor solution, the nucleation factor was combined
with the fuel oil factor. This does not suggest any link be-
tween the nucleation and fuel oil factor other than that there
was an insufficient number of factors within the model for
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Figure 3. Source profiles 1F and 2F from both the first and second PMF step using six factors. (Grey bars and black line indicate the values
of F ; red lines and dots indicate the explained variations; and the grey dotted line indicates the dV /dlogDp values.)

the two to factorize out of the data, giving the fuel oil NSD
profile a more reasonable modal peak between 50 and 60 nm
rather than 20, 30 and 60 nm.

Beddows et al. (2015) applied a one-step analysis to three
different datasets: PM10-only; NSD-only and PM10–NSD.
The analyses of the PM10-only and NSD-only – both with
homogeneous units – produced quantitative time series G.
This was unlike the analysis of the PM10–NSD with hetero-
geneous units, which could not apportion its five factors us-
ing G but was able to factorize out a nucleation factor from
the data, seen also in the four sources in the PMF solution
for the NSD-only data. A PM10-only seven-factor solution
did not reveal this factor, presumably because the mass as-
sociated with nucleation-mode particles is too small to af-
fect composition significantly. Furthermore, fuel oil was not
factorized out of the PM10–NSD data and was more likely
divided across all five factors.

Another interesting observation is that although only four
factors were derived from the PMF analysis of NSD-alone
(diffuse urban; secondary; traffic and nucleation), when extra
information is included from the PMF analysis of the PM10
data, more information can be extracted from the PMF anal-
ysis of the NSD data in the form of the marine, fuel oil and
NET and crustal factors. The nucleation factor is only re-
vealed when performing a regression between the NSD size

bins and the G scores of the PM10 PMF analysis, which leads
to increasing the factor number from six to seven and in turn
yields the nucleation profile. It is also reassuring that the bi-
variate plots for the seven factors (discussed in the next sec-
tion) correspond to the bivariate plots given in Beddows et
al. (2015). Also note that there is no reason why any further
investigation might not explore this using more than seven
factors. In fact the nucleation factor appears at first sight to
be multimodal. However, we restricted our analysis to seven
factors, considering it complete in terms of identifying the
sources obtained by Beddows et al. (2015).

3.3 Diurnal and bivariate plots

The original PMF was carried out on daily PM10 data, and in
order to make diurnal and bivariate plots, a higher time reso-
lution is desirable. It is assumed that the factors derived in the
hourly NSD data are the same as those derived from the daily
averaged data; i.e. the factors are conserved when averaging
the data from hourly to daily data before PMF analysis. Then
the hourly NSD data can be fit with the PMF profiles derived
from the daily data (see Sect. 2.4). Figure 5 shows the re-
sulting diurnal profiles. The diurnal trends of the parameter
ck (Eq. 6), required to fit the seven daily NSD factors to the
hourly NSD data, are shown. These have been scaled to PN
(measured in cm−3) using the integral of the NSD (Eq. 7).
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Figure 4. Nucleation and fuel oil factors derived when extending the second PMF analysis from the six factors (shown in Fig. 3) to seven
factors. Source profiles 2F 1 to 2F 6 are given in Fig. S3. Each plot shows the output 2F k . (Grey bars and black line indicate the values of
F ; red lines and dots indicate the explained variations; and the grey dotted line indicates the dV /dlogDp values.)

The nucleation factor diurnal trend behaves as expected, ris-
ing to a maximum during the day and then falling back down
to a minimum at night. This corresponds to the intensity of
the sun during the day and the increased likelihood of nucle-
ation on clean days when there is sufficient precursor mate-
rial to form particles with a low particle condensation sink.
The marine factor is also high during the day, presumably
due to higher wind speeds. Diffuse urban, NET and crustal
and traffic factors all follow a trend which is synchronized
to the daily cycle of anthropogenic activity and traffic as in-
fluenced by greater atmospheric stability at night. The sec-
ondary factor shows a small diurnal range. Fuel oil is highest
during the evening and night and may correspond to home
heating rather than shipping emissions. The particle size dis-
tributions associated with the marine and NET and crustal
sources are of limited value as these sources are dominated
by coarse particles, beyond the range of the SMPS data, al-
though there is a sharp increase in the volume of the par-
ticles above 0.5 µm in the marine factor. As pointed out in
Beddows et al. (2015), the marine factor is identified by its
chemical profile of sodium and chloride and is accompanied
by an aged nucleation mode at around 30 nm. This can be ei-
ther viewed simply as clean marine air being “polluted” by
traffic emission and/or as the consequence of nucleation oc-
curring over at city in clean maritime air masses (Brines et
al., 2015). The key point here is that the factors derived in
this work are comparable to those factorized in Beddows et
al. (2015) using the combined dataset, and the advantage of
the two-step approach is that now we have quantified hourly
time series G.

The hourly contributions are aggregated into daily values
and plotted as bivariate plots in Fig. 5 to assist comparison
with the daily plots in Beddows et al. (2015). In that work,
the same PMF analysis of the NSD data yielded four fac-
tors which are named identically to those in the bivariate

plots. The similarity of both of the polar and annular plots
for each of the six factors supports our previous factor iden-
tification. The secondary and diffuse urban factors are back-
ground sources with strongest contributions in the evening
and morning. Traffic is strongest for all wind speeds from
the east, which makes sense since North Kensington is to the
west of the city centre of London where traffic is expected
to be most dense. Nucleation is also seen to be strongest for
wind from the west, which is expected to be cleaner and have
a lower condensation sink. NET and crustal and fuel oil fac-
tors are similar to the diffuse urban factor, suggesting a simi-
lar predominant source location in the centre of London. The
marine factor is observed to be strongest for elevated wind
speeds for all wind directions, which is consistent with the
expected strong contribution for all high wind speeds from
the south-west, as observed in the daily polar plots in Bed-
dows et al. (2015).

3.4 Composition associated with the nucleation factor

The nucleation factor was extracted from the two-step PMF–
PMF analysis, which included pulling the 1G1–1G6 values
to zero of factor 2F 7. It might be reasonable to suggest that
if the two-step PMF–PMF analysis is repeated and the order
of analysis of PM10 and NSD datasets reversed that it would
be possible to derive the chemical conditions within the at-
mosphere which were conducive to nucleation. For this, the
time series of the four NSD factors (1G1–1G4) reported in
Beddows et al. (2015) were combined with the PM10 data.
We again assume that the first PMF step has been carried
out and that we are satisfied with how the final solution
represents the urban environment of the receptor site and
that there are no rotational ambiguities. We then carry out
the second step PMF analysis on the 34× 591 input matrix
([1G1. . .

1G4], PM10[PM , PMcarbon, PM ions, PMmetals]).
The hourly output uncertainties from the first PMF analysis
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Figure 5. Diurnal cycles of the derived PNk calculated by the fitting of the daily PMF factor profiles to the hourly NSD data fitted (see
Eq. 7 and Sect. 2.4). (Left-left column – diurnal trends of PNk ; left-middle column – bivariate plot of PNk ; middle-right – annular plot
PNk ; right-right – bivariate plot of PNk , plotted using the Openair program. Polar plots show a point coloured according to the key, the
number concentration at that point on the plot whose distance from the origin represents wind speed and angle wind direction. Likewise for
the angular plots, the number concentration is shown for a wind direction at an hour of the day between 00:00 and 23:00.) Note that the
diurnal plots do not start at zero.
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of the NSD data 11G1. . .
11G4 were carried forward into

the second PMF analysis by adding them in quadrature to
give daily uncertainties. As with the analysis of the auxiliary
data in the PM10–NSD data, the measurement uncertainties
for the PM10 data (this time the auxiliary data) were naively
taken to be 4 times the PM10 matrix. Extra care could have
been taken in assigning the PM10 uncertainties, but since we
force the output using FKEY, a simpler approach was taken.
In fact, the FKEY consisted of a 4×4 diagonal matrix of zero
values, with an fkey1 of 20 for all the off-diagonal positions
joined to a 4× 30 matrix of zeros. Furthermore, the uncer-
tainty values of the PM10 were scaled untilQ/Qtheory = 0.99
using parameter bscale = 0.35 (see Table S3 for more details).

Ideally, the chemical data would be limited to the compo-
sition of the particles in the same size range as the SMPS
data. However, since we are using the PM10 composition
data, we can at best describe the composition of the aerosol
which accompanied each factor (Fig. S4). For the NSD sec-
ondary factor, with its strongest contribution (indicated by
the explained variation) ∼ 400 nm, we have a strong contri-
bution to PM10 and PM2.5 together with nitrate, sulfate and
ammonium. The diffuse urban factor, with its strongest con-
tribution at 100 nm, is accompanied by contributions from
elemental carbon and wood smoke, indicative of traffic and
recreational wood burning. There are also contributions from
barium, chromium, iron, molybdenum, antimony and vana-
dium, all indicative of non-exhaust traffic emissions and the
burning of fuel oil. Similarly, the traffic factor has a modal
diameter of roughly 30 nm, which is indicative of exhaust
emissions, and this is accompanied by contributions to alu-
minium, barium, calcium, copper, iron, manganese, titanium
and various other metals attributed to vehicles, albeit from
tyre or brake wear or resuspension.

The nucleation factor, with its peak ∼ 20 nm, was associ-
ated with marine air, as indicated by the strong contributions
to Na, Cl and Mg (Fig. S4). There are also traces of V, Cr
and Ni and a high contribution to PM10 mass, which are all
associated with marine air. This is explained by an associa-
tion with the south-westerly wind sector, which brings strong
winds and marine aerosol rather than reflecting the compo-
sition of the nucleation particles themselves. Marine air is
considered to provide the conditions required of an air mass
conducive to nucleation, i.e. cleaner air with particles with a
low condensation sink. As these air masses pass over the land
and eventually into London, anthropogenic precursor gases
are added to this air, which then nucleate particles seen at
the receptor site as a nucleation mode. This also goes some
way to explain the earlier observation of aged nucleation par-
ticles observed in the marine factor in Fig. S3. There are also
strong contributions to vanadium, which is most likely from
an unresolved fuel oil source being mixed into the marine
and diffuse urban factors.

4 Conclusions

A two-step PMF analysis method is presented, whereby ex-
isting PMF profiles can be extended to incorporate auxiliary
data concurrently measured and with different units. This is
exemplified using PM10 and NSD data.

When analysing PM10 composition data, the inclusion of
auxiliary data such as meteorological, gas and particle num-
ber data has proved to give a clearer separation of factors.
However, for a successful output, there must be no rotational
ambiguity in either the PM10 data or in the auxiliary data.
In the ideal case, the individually computed factors G(X),
G(Z) and G(X,Z) need to be similar if the joint model is
to be successful and not produce large residuals and hence
too large a Q value. In the best case, the total weight of the
PM10 data can be set higher than the auxiliary data so that
the PM10 data drive the analysis. In this work, we present an
alternative method called the two-step PMF method. In the
first step the PM10 data are PMF-analysed using the standard
approach without the inclusion of additional data. An appro-
priate solution is derived using the methods described in the
literature in order to give an initial separation of source fac-
tors. The time series G (and errors) of the PM10 solution are
then taken forward into the second step, where they are com-
bined with the NSD data. The PMF analysis is then repeated
using the combined and mixed unit G time series and NSD
dataset. In order to ensure that unique factors are obtained
for the G scores, FKEY is used to pull off-diagonal values to
zero, thus driving the NSD data. This ensures that the NSD
factors are specific to the PM10 solution and the PM10 anal-
ysis is not affected by any rotational ambiguity of the NSD
data. For our demonstration using the Beddows et al. (2015)
analysis, this results in six PM10 factors whose time series
are not only apportioned in mass, but the source profiles are
identified for the NSD data. Comparisons of the factor pro-
files, diurnal trends and bivariate plots to those of Beddows
et al. (2015) show that this technique produces one solution
linking the two separate solutions for PM10 and NSD datasets
together. This generates confidence that the NSD and PM10
factors ascribed to one source are in fact attributable to that
same source.

Hence, the process starts with a dataset which produces a
solution which is sensitive to mass, but the factors more sen-
sitive to number can be accessed using a second step. Fur-
thermore, by exploring a higher number of factors, NSD fac-
tors which are insensitive to PM10 mass can be identified as
in the case of the nucleation factor. This information can also
be extracted using a linear regression, PMF–LR, whereby the
size bins of the NSD data are regressed against the PM10
PMF time series. For this dataset, the nucleation factor pro-
file is identified as an intercept within the fitted model, lead-
ing to an increase in the number of PMF factors from six to
seven.
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