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We derive a quantum limit to the sensitivity of laser interferometric gravitational-wave detectors
from optical-loss-induced dissipation, analogous to the sensitivity limit from the mechanical dissipation.
It applies universally to different interferometer configurations and cannot be surpassed unless the
optical properties of the interferometer are improved. This result provides an answer to the long-standing
question of how far we can push the detector sensitivity given the state-of-the-art optics.

DOI: 10.1103/PhysRevX.9.011053 Subject Areas: Gravitation, Optics, Quantum Physics

I. INTRODUCTION

Advanced gravitational-wave (GW) detectors are long-
baseline interferometers with suspended mirrors which act
as test masses for probing spacetime dynamics. Quantum
noise, arising from quantum fluctuations of the optical
field, is one of the sources of noise that limits the sensitivity
of such instruments. In particular, the phase fluctuation
gives rise to the shot noise, while the amplitude fluctuation
exerts a random force on the test masses and induces the
quantum radiation pressure noise. These two types of
quantum noise, when uncorrelated, lead to the standard
quantum limit (SQL) [1,2] of which the power spectral
density is

SSQLhh ðΩÞ ¼ 8ℏ
MΩ2L2

; ð1Þ

where Ω is the angular frequency of the GW signal, M is
the mass of the test-mass mirror, and L is the interferometer
arm length.
Despite its name, the SQL is not a true limit: It can

be surpassed with a wide class of so-called quantum-
nondemolition (QND) schemes (cf. review articles [3–5]).
These techniques usually involve modifications to the
optical configuration of current-generation GW detectors
by introducing extra optical filters. These filters can be a
cascade of both passive Fabry-Perot cavities and active
cavities that have external energy input [6–8]. For example,

together with a squeezed light source, a passive filter cavity
can be used for producing the frequency-dependent squeez-
ing [9–11]. The general scheme is illustrated in Fig. 1.
The quantum Cramér-Rao bound (QCRB) [12,13] is

a sensitivity limit that, unlike the SQL, is inviolable. In
the context of GW detection with laser interferometers,
the QCRB is also called the energetic or fundamental
quantum limit [14,15]. The spectral representation of the
QCRB is

SQCRBhh ðΩÞ ¼ ℏ2c2

2SPPðΩÞL2
; ð2Þ
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FIG. 1. Illustration of the general QND scheme with optical
filters added to the typical configuration of advanced GW
detectors—a dual-recycled Michelson interferometer. (ETM:
end test mass; SRM: signal-recycling mirror.)
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in which SPP is the spectral density of the power fluctua-
tions in the interferometer arms. As shown in Ref. [16], the
QCRB can be approached in a lossless system with optimal
frequency-dependent homodyne read-out, which can be
realized with proper output filters [9]. This result has been
generalized to laser interferometers with multiple carrier
frequencies [17].
According to the QCRB, the sensitivity is ultimately

bounded by the power or, equivalently, energy fluctuation
inside the arm cavities. This can be intuitively understood
from the fact that we want to measure the phase or timing
difference between the two interferometer arms accurately,
and a large uncertainty in the photon number or energy is
needed, due to the number-phase or energy-time uncertainty
relation. Note, however, that increasing SPP is only advanta-
geous if a minimum uncertainty state, or at least nearly
minimum uncertainty state, can be maintained. Minimum
uncertainty states are, however, very delicate and easily
destroyed by optical losses which lead to decoherence.
The power fluctuation SPP can be enhanced, and thus the

QCRB can be reduced, with a variety of approaches. The
most obvious approach is to increase the optical power in
the interferometer, but this is limited by thermal lensing
[18], alignment stability [19], and parametric instabilities
[20,21]. A second approach is to introduce squeezed states
of light generated by nonlinear optical processes [11] at
the read-out port (cf. Fig. 1). In addition to squeezing the
vacuum fluctuations that enter the interferometer, the
radiation pressure coupling between the optical field and
the test masses produces squeezing internally. This process,
known as “ponderomotive squeezing” [9,22], is actually the
cause of the radiation pressure noise. We can turn it into a
resource for enhancing the detector sensitivity by detuning
the signal-recycling cavity (SRC) formed by input test mass
(ITM) and SRM away from the perfect resonance. This is
the so-called optical spring effect that was studied exten-
sively by focusing on the dynamics of the test masses [23].
In Appendix A, we illustrate an equivalent picture men-
tioned in Ref. [16] from the perspective of the internal
ponderomotive squeezing.
In principle, we can combine the above-mentioned

approaches to increase SPP and make the QCRB vanish-
ingly small, which implies an unbounded sensitivity.
A clear example of this would be the injection of a very
strongly squeezed state, which could increase SPP by more
than an order of magnitude. In the presence of optical
losses, a highly squeezed state will cease to be a minimum
uncertainty state due to decoherence, and the QCRB in the
lossless case will not be a relevant bound.
In this paper, we present a new general limit to GW

detectors, which cannot be surpassed and is more con-
straining than the QCRB for realistic interferometer con-
figurations with optical losses. As we will show, the optical
losses lead to the following sensitivity limit, to the first
order of the loss parameter ϵ:

Sϵhh ¼
ℏc2

4L2ω0P

�
ϵarm þ

�
1þ Ω2

γ2

�
T itmϵsrc

4
þ αTsrcϵext

�
:

ð3Þ

Here, P is the optical power inside each arm (assumed to be
equal); ω0 is the laser frequency; ϵarm quantifies the internal
loss of the arm cavity (e.g., ϵarm ¼ 10−6 for 1 ppm loss); ϵsrc
quantifies the optical loss inside the SRC, including addi-
tional intracavity filters if any; ϵext denotes the external loss,
which includes the loss in the output chain and also the
quantum inefficiency of the photodetection; γ is the
bandwidth of the arm cavity and is equal to cT itm=ð4LÞ,
with T itm being the power transmission of ITM; α is equal
to 1 if we use the internal squeezing to maximize the power
fluctuation and α is equal to 1=4 if instead the internal
squeezing is negligible, which has to do with the effect of
internal squeezing on the signal response [24,25]
[cf. Eq. (20) and also Appendix A]; Tsrc is the effective
transmissivity of SRC, which may be frequency dependent.
The arm-cavity loss sets a flat limit across different

frequencies, as the additional vacuum fluctuation is directly
mixed with the signal inside the arm. The SRC loss is
suppressed by ITM transmission at low frequencies.
However, due to a finite arm-cavity bandwidth, which
reduces the signal response, this effect becomes important
at high frequencies. The effect of the external loss depends
on the transmission of SRC, which can be frequency
dependent. For Advanced LIGO, ϵarm is of the order of
10−4 (100 ppm), ϵsrc is around 10−3, which mainly comes
from the beam splitter, and ϵext is around 0.1 (coming from
the mode mismatch to the output mode cleaner and
photodiode quantum inefficiency [26]). Given T itm ¼
0.014 and Tsrc ≈ 0.14 in the default broadband detection
mode, we show the resulting sensitivity bound imposed by
current loss values in Fig. 2.
We can map this result to the one obtained in the

quantum metrology community [27–31] with a few sim-
plifications. The quantum metrology result considers the
effect of optical loss on the optimal phase estimation in
Michelson or equivalent Mach-Zehnder interferometers.
We can match this if we ignore the internal squeezing or
focus at high frequencies where the internal optomechan-
ical squeezing is weak, such that α ¼ 1=4, and also ignore
the SRC loss. The corresponding sensitivity limit from the
arm-cavity loss and the external loss is reduced to

Sϵhh ¼
ℏc2

4L2ω0P

�
ϵarm þ Tsrc

4
ϵext

�
: ð4Þ

The extra factor of Tsrc=4 in front of ϵext can be intuitively
understoodas the suppressionof the loss effect from the signal
recycling. Furthermore, the impact of the losses discussed
here is regularly included in the numerical computation of
quantum noise in GW detectors [32,33]. These numerical
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computations clearly show that losses limit the detector
sensitivity, but they do not provide insight into the configu-
ration-independent limit these losses impose. Equation (3)
goes beyond the case-by-case approach followed thus far to
provide a general loss limit for GW detectors.

II. DERIVATION

Here, we show the details behind the main result, Eq. (3).
We use the two-photon formalism developed by Caves and
Schumaker [34]. In particular, we adopt the approach by
Kimble et al. [9], which is based upon this formalism and
especially tailored to the context of laser interferometric
GW detectors. In this formalism, the optical field at
different locations is fully described by its amplitude
quadrature â1 and phase quadrature â2:

ÊðtÞ ¼ â1ðtÞ cosω0tþ â2ðtÞ sinω0t: ð5Þ

Moving into the frequency domain, â1;2ðΩÞ are labeled by
the frequency Ω, which is also called the sideband

frequency and coincides with the GW signal frequency.
Because the system is linear and time invariant, different
frequency components are independent of each other.
At each frequency, the effects of different optical elements
on the quadratures can be quantified by 2 × 2 matrices,
which act on the vector â ¼ ðâ1; â2Þ0. In particular, a
passive element without external energy input is described
by a rotation matrix:

Mrot ¼
�
cosΘ − sinΘ
sinΘ cosΘ

�
: ð6Þ

For example, the Fabry-Perot filter cavity used for fre-
quency-dependent squeezing (or read-out) leads to a
frequency-dependent rotation angleΘðΩÞ for the amplitude
and phase quadratures. The angle can be tuned by changing
the cavity bandwidth and detuning [9,10]. In general, there
will be an additional phase factor eiΦðΩÞ in front of the
rotation matrix for the full description of a passive element.
For a phase-sensitive active (squeezing) element [35],

the corresponding matrix is

Msqz ¼ MrotðθÞ
�
er 0

0 e−r

�
Mrotð−θÞ: ð7Þ

where r is the squeezing factor and θ is the squeezing angle:
r ¼ 1 and θ ¼ 0 correspond to about 9 dB of phase
squeezing. In the most general cases, the relevant param-
eters are frequency dependent, namely, θ ¼ θðΩÞ and
r ¼ rðΩÞ. For example, the internal ponderomotive (opto-
mechanical) squeezing from the test-mass-light interaction
inside the arm cavity can be described by the following
matrix:

Mopt ¼
�

1 0

−κ 1

�
; ð8Þ

where κ ¼ 16Pω0=ðMc2Ω2Þ. It can be decomposed into
the rotation matrix MrotðϕÞ followed by the general
squeezing matrix Msqzðr; θÞ, with

ϕ ¼ − arctanðκ=2Þ; θ ¼ arccotðκ=2Þ=2;
r ¼ −arcsinhðκ=2Þ;

as shown explicitly in Refs. [9,38].
In Fig. 3(a), we show a simplified representation of the

general scheme in Fig. 1 when only looking at the differ-
ential mode, which contains the GW signal, and the
corresponding input and output fields at the differential
(dark) port. We include the optical loss inside the arm
cavity and the SRC and at the output. Depending on the
configuration of the intracavity filters, the SRC loss can
come from several lossy channels. Each introduces a
frequency-dependent loss ϵiðΩÞ. To derive the lower bound

FIG. 2. This plot shows the quantum-noise (QN) sensitivity
limits resulting from optical loss in an interferometer as given in
Eq. (3) (blue, green, red, and dashed-black curves). For illus-
tration, we assume a set of parameters similar to those of
Advanced LIGO (aLIGO) and show the aLIGO QN for reference
(upper light grey curve). To demonstrate the limited nature of the
QCRB, the QN of aLIGO with a highly squeezed input state is
shown (solid purple curve) along with the corresponding QCRB
(dot-dashed purple curve). Notice how the QN of the highly
squeezed interferometer is limited by optical losses, while the
QCRB is significantly less constraining. Since the QCRB does
not take into account losses, it can be made arbitrarily low by
further increasing the squeezing of the input state, i.e., reducing
the uncertainty in the phase quadrature, and thereby increasing
SPP in Eq. (2) beyond the 30-dB level used for this example. Note
also that the highly squeezed interferometer QN is above the loss
limit (dashed black curve) at low frequencies (≲20 Hz) due to the
fixed read-out quadrature and at high frequencies (≳400 Hz) due
to uncompensated dispersion.
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on the sensitivity without specifying the details of the
intracavity filter configuration, we assume a single effective
frequency-independent loss:

ϵsrc ¼ min
Ω

X
i

ϵiðΩÞ; ð9Þ

which is the minimum of the total loss over the frequency.
Inside the arm cavity, the field not only experiences the

ponderomotive squeezing mentioned earlier but also picks
up a round-trip phase of 2ΩL=c through free propagation.
The higher the frequency of the sideband, the more phase it
picks up; this is sometimes referred to as “positive
dispersion.” Such a phase relationmakes the high-frequency
signal sidebands deviate from the perfect-resonance con-
dition, which reduces their amplitude at the output. In the
case of Advanced LIGO, it decreases the detector sensitivity
at high frequencies and leads to a finite detector bandwidth
around 1 kHz, as shown by the sensitivity curve in Fig. 2.
With the nominal configuration, one can increase the
bandwidth by tuning the properties of the SRC. However,
this increase comes at the cost of decreasing the peak
sensitivity. Such a trade-off between the bandwidth and
peak sensitivity was first found by Mizuno [39] and is a
direct consequence of the QCRB in Eq. (2).
Adding any passive element to the intracavity filter will

also introduce a frequency-dependent phase, as mentioned
after Eq. (6). This trade-off cannot be circumvented with
passive elements, but since we are only considering the
sensitivity bound resulting from optical losses, we assume
that the intracavity filters may also contain active elements
that produce the so-called white-light-cavity effect.

With active elements present, all signal sidebands may
be resonantly enhanced [6–8]. In other words, these active
elements produce the optimal phase ϕnd with a negative
dispersion, which cancels both the propagation phase
2ΩL=c and the passive filter phase Φ around the frequency
of interest, namely,

ϕndðΩÞ ¼ −ΦðΩÞ − 2ΩL=c: ð10Þ

Any nonperfect cancelation will lead to a sensitivity that is
worse than the loss-induced limit considered here.
With the assumption expressed in Eq. (9) and the

condition given in Eq. (10), we can further simplify the
general scheme into what is shown in Fig. 3(b): Mrot and
Msqz capture the effect of both the internal squeezing and
the intracavity filters, which gives rise to Mintra (a general
rotation and squeezing matrix). The optical losses ϵarm and
ϵsrc can then be combined to form a lower bound on the
effective internal loss,

ϵint ¼ ϵarm þ T itm

4

�
1þ Ω2

γ2

�
ϵsrc: ð11Þ

The frequency-dependent factor in front of ϵsrc comes from
the finite arm-cavity bandwidth. We have assumed frequen-
cies that are lower than the free spectral range (FSR) ffsr ¼
c=ð2LÞ of the arm cavity. If this assumption is violated and
the frequency is around other FSR, Ω must be replaced by
Ω − 2nπffsr, where n is the index of the closest FSR.
Following the propagation of the optical field and using

the continuity condition at different interfaces, we can
derive the frequency-domain input-output relation for the
scheme in Fig. 3(b):

âout ¼ Mioâin þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tsrcϵint

p
Mcn̂int þ

ffiffiffiffiffiffiffi
ϵext

p
n̂ext þ vhGW;

ð12Þ

which quantifies the noise and signal content in the output
at each frequency. Here, â and n̂ with different subscripts
are vectors of the amplitude and phase quadratures of fields
at different locations. We do not include the input loss
explicitly, which can be accounted for by assuming some
degradation on the input squeezing level if the squeezed
light is used. The transfer matrixMio between âin and âout is
defined as

Mio ≡ −
ffiffiffiffiffiffiffiffi
Rsrc

p
Iþ TsrcMcMrotMsqzMrot; ð13Þ

in which I is the identity matrix, Rsrc ≡ 1 − Tsrc,
and the transfer matrix Mc is defined as
½I −

ffiffiffiffiffiffiffiffi
Rsrc

p
MrotMsqzMrot�−1. The vector v describes the

detector response to the GW signal:

(a)

(b)

FIG. 3. (a) A simplified schematic of the general scheme shown
in Fig. 1 when only focusing on the differential mode that
contains the GW signal. The optical losses at different places are
illustrated. (b) A further simplified diagram by mapping the SRC
into an effective mirror, and optical losses into internal and
external components. Here, Mrot accounts for a general rotation
of the amplitude and phase quadratures; Msqz describes the
general squeezing effect.
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v≡ ffiffiffiffiffiffiffiffi
Tsrc

p
Mcv0; ð14Þ

with v0 ¼ ð0; βÞ0 and β ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0L2P=ðℏc2Þ

p
.

Using the homodyne read-out, we can measure the
general quadrature of the outgoing field âoutðζÞ, which is
equal to ðcos ζ; sin ζÞ âout. If we apply an output filter
that optimizes ζ at all frequencies, we will obtain the best
sensitivity with the minimum signal-referred noise spectral
density:

Smin
hh ¼ 1

v†Σ−1
tot v

≈ SQCRBhh þ Sϵhh; ð15Þ

where Σtot ≡MioM
†
io þ TsrcϵintMcM

†
c þ ϵextI is the total

covariance matrix, and the approximation is to the first
order in ϵint and ϵext.
Since the interferometer under consideration is a linear

Gaussian system, we can view the signal part of Eq. (14) as
displacing the mean of the Gaussian state of the optical
field. We can obtain the sensitivity bound by evaluating the
quantum Fisher information for estimating the mean of a
Gaussian state [17,40–43]. This approach gives exactly the
same result shown above; i.e., Eq. (15) is also the QCRB in
the presence of optical loss, and the optimal homodyne
detection is the one that saturates it. We intentionally
separate the first term and call it SQCRBhh to echo the result
presented in Refs. [14,16], where the lossless case was
considered.
The explicit form of SQCRBhh and Sϵhh, in terms of r, Tsrc,Θ,

and θ, is quite complicated. However, not all parameter
regimes are relevant. To achieve a low QCRB or large
power fluctuation, we require Tsrc ≪ 1 to enhance the
signal recycling. We also assume Θ ≪ 1 to focus on
relevant frequencies that are within one free spectral range
of the arm cavity. The internal squeezing needs to be of the
same order of Tsrc so that the round-trip gain of the
amplitude quadrature is close to unity, which can then
result in a significant level of power fluctuation. In such
a parameter regime, we can make a Taylor expansion of
both SQCRBhh and Sϵhh with respect to these small parameters.
Specifically, up to the leading order of Tsrc, Θ, and r,
we have

SQCRBhh ¼ ℏc2ðδ2 − 4r2Þ2e−2rinput
16L2ω0PTsrc½δ2 þ 4r2 þ 4δr sinðθ þ θ0Þ�

; ð16Þ

where rinput is the squeezing factor of the input squeezed

light, δ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
src þ 16Θ2

p
and θ0 ≡ cot−1ð4Θ=TsrcÞ. This

means that we can make the above QCRB vanish, i.e.,
achieving an unbounded sensitivity in the ideal lossless
case, if r ¼ δ=2. Under this condition, the resulting
sensitivity limit due to the optical loss reads

min
θ
Sϵhh ¼

ℏc2

4L2ω0P
ðϵint þ TsrcϵextÞ; ð17Þ

where the minimum is achieved by setting θ ¼ π=2þ θ0.
If, however, the internal squeezing is negligible with

r ¼ 0, the QCRB cannot be made to be arbitrarily small
given a finite input squeezing, and we have

SQCRBhh ¼ ℏc2δ2e−2rinput

16TsrcL2ω0P
; ð18Þ

which is simply the shot-noise-only sensitivity given a
general Θ. The corresponding loss-induced limit is

min
ϕ
Sϵhh ¼

ℏc2

4L2ω0P

�
ϵint þ

Tsrc

4
ϵext

�
; ð19Þ

where the minimum is attained when Θ ¼ 0 (tuned).
Equations (17) and (19) together give our main result
shown in Eq. (3), when expanding out ϵint in terms of ϵarm
and ϵsrc.
It is worth pointing out that there is a factor of 4

difference in the dependence of ϵext between Eqs. (17)
and (19). It originates from a reduced signal response when
trying to maximize the sensitivity using the internal
squeezing:

jqζoptvðr ¼ δ=2Þj
jqζvðr ¼ 0Þj ¼

�
1þ sinðθ þ θ0Þ

4

�
1=2

≤
1

2
; ð20Þ

which shows that the signal responsewith internal squeezing
is at least a factor of 2 smaller. Such a reduction of signal
response was mentioned by Peano et al. [24] and recently
investigated experimentally by Korobko et al. [25], when
considering placing an internal frequency-independent
squeezer inside an optical cavity. In the case of laser
interferometric GW detectors, even without introducing
an additional squeezer, as mentioned earlier, there is internal
ponderomotive squeezing. The only difference is that the
corresponding squeezing factor r is highly frequency
dependent due to the test mass response [cf. Eq. (8)], and
the condition r ¼ δ=2 can only be satisfied at a single
frequency, given the nominal dual-recycled Michelson
interferometer, which is also illustrated in Appendix A.

III. CONCLUSIONS AND DISCUSSIONS

We present a new fundamental limit to gravitational-
wave detector sensitivity based on optical losses which lead
to decoherence. While the quantum Cramér-Rao bound in
Eq. (2) provides a fundamental limit to the sensitivity of
gravitational-wave detectors in the ideal lossless case, the
optical-loss-induced limit presented in Eq. (3) can be more
stringent. Unlike the QCRB, the loss limit cannot be made
irrelevant with high levels of external or internal squeezing.
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The implication of our study for future gravitational-wave
detectors is that the minimization of optical losses in the
interferometer arms and in the read-out must be a strong
focus of research and development efforts.
There are three additional points that we would like to

mention to broaden the scope and applicability of our
result. First, while we have focused our discussion on
Michelson-type interferometers, there are advanced QND
configurations based on Sagnac interferometers [44,45].
Optical loss is also an important limiting factor for such
quantum speed meters [46], and our result can be directly
applied to the equivalent sloshing-cavity-based speed-
meter scheme [47]. For Sagnac speed meters with addi-
tional intracavity and output filters, the term in Eq. (3) from
the arm-cavity loss is still the same, but we need to
introduce an additional factor of ðωs=ΩÞ2 at frequencies
below ωs (the characteristic frequency of the speed
response) for the limit from the SRC loss and the external
loss. This factor accounts for the difference between the
position response and the speed response at low
frequencies.
Second, our result also applies to any optomechanical

sensors that can be put into the general scheme illustrated in
Fig. 3(b). They share the same principle as the laser
interferometric gravitational-wave detectors, even though
they may operate in different parameter regimes and have
different forms of ponderomotive squeezing [22,48]. The
only issue occurs around the resonant frequency of the
mechanical oscillator, where, if the optical loss is small, the
loss limit may not be the dominant one and the zero-point
fluctuation (ZFP) of the mechanical oscillator will impose a
more stringent bound [36,37]. Moreover, the quantum
noise of the light cannot be made lower than the mechanical
zero-point fluctuation at the resonance using the homodyne
detection [49–51]; the total quantum noise is actually twice
(in power) the noise from zero-point fluctuations—an
interesting consequence of the linear quantum measure-
ment theory [52,53].
Finally, as illustrated in Appendix B, the loss effect

described here is analogous to thermal noise from the
mechanical dissipation, which provides another fundamen-
tal limit to gravitational-wave detectors and other high-
precision measurements. This not only highlights the
fundamental role of optical losses in quantum metrology
but also motivates future studies, which may eventually
allow us to understand both the mechanical dissipation and
the optical dissipation under a unified framework.
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APPENDIX A: UNDERSTANDING THE OPTICAL
SPRING FROM INTERNAL PONDEROMOTIVE

SQUEEZING

Here, we provide some insight into the optical spring
effect in the laser interferometric GW detectors from the
perspective of internal ponderomotive squeezing. Con-
ventionally, the optical spring is understood in terms of
a modification to the dynamics of the test mass through an
optical feedback; the free mass is effectively turned into a
harmonic oscillator that resonates at the optical spring
frequency [23]. In this picture, the enhancement of the
sensitivity is attributed to an increase of the response to the
GW signal (viewed as a tidal force acting on the test mass).
However, as we have seen from the discussion about the
internal squeezing, if we choose the optimal read-out
quadrature for maximizing the sensitivity [cf. Eq. (20)],
the signal response is decreased by a factor of 2 compared
with the case without using the internal squeezing. This
result seems to be in contradiction with the interpretation of
the optical spring effect as arising from the internal
ponderomotive squeezing [16]. It can be clarified if we
look at the noise amplitude and signal response that define
the sensitivity separately.
In Fig. 4, we compare two cases: one with tuned SRC

and the other with detuned SRC. The optical spring effect is
present in the latter. At the optical spring frequency, the
signal response is amplified compared to the tuned case
without the optical spring, when we measure the output
phase quadrature (the default quadrature that GW detectors
measure). However, the corresponding noise amplitude is
also high, leading to a suboptimal sensitivity. If instead the
optimal quadrature is measured, we can achieve the best
sensitivity at the optical spring frequency, which was first
presented in Ref. [54]. The main contribution comes from a
significant reduction of the noise amplitude due to the
internal ponderomotive squeezing. The signal response for
the optimal quadrature read-out is indeed reduced by a
factor of 2 compared with the tuned case with phase
quadrature measurement, agreeing with our statement ear-
lier. Therefore, reaching the optimal sensitivity using the
optical spring effect is mostly attributable to the squeezing
rather than the signal enhancement. It is worth mentioning
that we are considering the presence of a small amount of
optical loss. If the output loss is very high and significantly
degrades the generated squeezing, the optimal quadrature
for maximizing the sensitivity can deviate from the one
with a reduced signal response, and having signal enhance-
ment can be preferable [55].
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APPENDIX B: OPTICAL FLUCTUATION-
DISSIPATION THEOREM

The loss-induced quantum limit can be viewed as arising
from the optical dissipation, analogous to the thermal noise
from the mechanical dissipation. Such an analogy, in some
limiting cases, can be made exact by using the fluctuation-
dissipation theorem (FDT) [56]. In the GW community, the
FDT has been widely applied for analyzing other classical
fundamental limits to GW detectors, arising from the
thermal noise in the suspension and test-mass mirrors
[57–59]. The idea of applying FDT to the optical degrees
of freedom (d.o.f.) was first envisioned by Smith and Levin
[60]. The goal is to provide a unified treatment of the
quantum noise and the classical thermal noise. However,
the nonequilibrium nature of the quantum measurement
process defies a straightforward generalization. In particu-
lar, we have a coherent laser field driving the system out of

equilibrium, which induces internal ponderomotive squeez-
ing. Interestingly, as we have seen from the previous
analysis, the internal squeezing only changes the loss limit
by a factor of 4 without changing the dependence to other
parameters. Therefore, the equilibrium FDT applied to the
case without the internal squeezing can provide some
quantitative and useful insights into the loss limit, like
what we are trying to show in the discussion below.
Since we are looking at the optical frequency, the

external continuum field introduced by the optical loss,
to a good approximation, can be treated as a zero-
temperature heat bath. As a result, according to the FDT
[56,61], any dynamical quantity x of the system, which
couples to the continuum field, satisfies

SxxðωÞ ¼ 2ℏIm½χxxðωÞ�; ðB1Þ
where χxx is the susceptibility of x and Im½χxx� is its
imaginary part, which quantifies the dissipation.
In our case, the system is the optical field at different

locations, which couples to the heat bath due to the
presence of the optical loss and also responds to the
GW signal. Let us use the field inside the arm cavity
and the associated arm-cavity loss to illustrate the basic
idea. At frequencies below the free spectral range c=2L, the
arm-cavity field can be modeled as a single mode or a
simple damped harmonic oscillator: Its amplitude quad-
rature Â1 and phase quadrature Â2 satisfy the following
equations of motion:

_̂A1ðtÞ þ γϵÂ1ðtÞ ¼ ωcavÂ2ðtÞ þ
ffiffiffiffiffiffiffi
2γϵ

p
Âext
1 ðtÞ; ðB2Þ

_̂A2ðtÞ þ γϵÂ2ðtÞ ¼ −ωcavÂ1ðtÞ þ
ffiffiffiffiffiffiffi
2γϵ

p
Âext
2 ðtÞ; ðB3Þ

where ωcav is the cavity resonant frequency, γϵ ¼
cϵarm=ð4LÞ is the damping rate due to the arm-cavity loss,
and Âext is the external continuum field. In the linear-
response theory [16,23,56], the susceptibility is defined as

χABðt − t0Þ≡ ði=ℏÞ½ÂðtÞ; B̂ðt0Þ�Θðt − t0Þ: ðB4Þ
Using the commutator relation ½Âext

1 ðtÞ; Âext
2 ðt0Þ� ¼

iℏδðt − t0Þ, we can derive the relevant susceptibilities
χA2A2

and χA2A1
. In the frequency domain, they can be

written as

χA2A2
ðωÞ ¼ ωcav

ℏ½ðγϵ − iωÞ2 þ ω2
cav�

; ðB5Þ

χA2A1
ðωÞ ¼ iω − γϵ

ℏ½ðγϵ − iωÞ2 þ ω2
cav�

: ðB6Þ

In the transverse-traceless (TT) gauge [62,63], a GWacts
as a strain directly coupled to the cavity mode, of which the
linearized interaction Hamiltonian is

ĤTT ¼ −ℏgÂ1LhGW: ðB7Þ

(a)

(b)

(c)

FIG. 4. (a) The noise amplitude, given the measurement of
output phase quadrature (dashed line) and the optimal quadrature
(solid line) in the two cases: tuned SRC (blue) and detuned SRC
(red), respectively. (b) The corresponding signal response for
these two cases. We also show the half of the signal response with
a phase measurement in the tuned case as a reference (dashed
black curve). (c) The sensitivity curve, which is a ratio of the
noise amplitude in (a) and the signal response in (b). We assume
the interferometer parameters are the same as the aLIGO design,
but we choose the detector bandwidth to be 240 Hz and the
detuning to be 600 Hz for illustration. The optical spring
frequency is marked using the vertical grid line around 35 Hz.
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Here, we have defined g≡ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pω0=ðℏLcÞ

p
, and hGW is the

GW strain. With the FDT in Eq. (B1) and the susceptibility
in Eq. (B5), the sensitivity limit due to arm-cavity loss can
be obtained by normalizing the fluctuation of the phase
quadrature with respect to the signal response obtained
from Eqs. (B6) and (B7), namely,

SϵhhðωÞ ¼
SA2A2

ðωÞ
ℏ2g2L2jχA2A1

ðωÞj2 ¼
2Im½χA2A2

ðωÞ�
ℏg2L2jχA2A1

ðωÞj2 : ðB8Þ

Switching to the sideband frequency Ω with the laser
frequency ω0 as the reference, we obtain the first term in
Eq. (3):

SϵhhðΩÞ ¼
4γϵωωcav

ðω2 þ γ2ϵÞg2L2
≈

ℏc2ϵarm
4L2ω0P

; ðB9Þ

where we have used the fact that ωcav is approximately
equal to ω with ω ¼ Ωþ ω0 ≈ ω0, and ω0 ≫ γϵ.
The above result still holds even when the arm-cavity

mode is coupled to additional d.o.f. This is because the ratio
Im½χA2A2

�=jχA2A1
j2 is an invariant, as long as there is no

dissipation in these additional d.o.f. and they are passive.
To prove this, we can have the phase quadrature of the
cavity mode coupled to some general coordinate ŷ of one of
these d.o.f. Using the linear-response theory, the coupling
modifies the original susceptibilities χA2A2

and χA2A1
into

χnewA2A2
¼ χA2A2

1 − χA2A2
χyy

; χnewA2A1
¼ χA2A1

1 − χA2A2
χyy

: ðB10Þ

Since no dissipation is present in these d.o.f., i.e.,
Im½χyy� ¼ 0, we have

Im½χnewA2A2
� ¼ Im½χA2A2

ð1 − χ�A2A2
χyyÞ�

j1 − χA2A2
χyyj2

¼ Im½χA2A2
�

j1 − χA2A2
χyyj2

:

ðB11Þ
This result implies Im½χnewA2A2

�=jχnewA2A1
j2 ¼ Im½χA2A2

�=jχA2A1
j2,

and regardless of the type of intracavity filters introduced,
SϵhhðΩÞ is given by Eq. (B9) for arm-cavity loss.
Similarly, we can derive the result for the SRC loss and

the output loss by converting them into an effective arm-
cavity loss. However, such a conversion can be made exact
only when we ignore the internal squeezing or tweak the
signal response by compensating the additional factor of 4
difference mentioned earlier.
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