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 CURRENT
OPINION Novel advances in monitoring and therapeutic

approaches in idiopathic intracranial hypertension

James L. Mitchella,b, Susan P. Mollanc,
Vivek Vijaya,b, and Alexandra J. Sinclaira,c,d

Purpose of review

The current article appraises the recent developments in idiopathic intracranial hypertension (IIH), with
particular attention to novel therapeutic avenues and advanced clinical assessment and monitoring with
optical coherence tomography and telemetric intracranial pressure devices.

Recent findings

The incidence of IIH is increasing. The first consensus guidelines for IIH have been published detailing
investigation and management algorithms for adult IIH. Improved understanding, clinical assessment and
monitoring are emerging with the use of optical coherence tomography. Intracranial pressure telemetry is
providing unique insights into the physiology of raised intracranial pressure in IIH. There are now an
increasing number of ongoing clinical trials evaluating weight loss methods and novel targeted therapies,
such as 11ß-HSD1 inhibition and Glucagon-like peptide 1 (GLP-1) receptor agonists.

Summary

Several studies are evaluating new therapies for IIH. Monitoring techniques are advancing, aiding diagnosis
and allowing the clinician to accurately evaluate changes in papilloedema and intracranial pressure.

Keywords

glucagon-like peptide 1 receptor agonists, idiopathic intracranial hypertension, intracranial telemetry,
novel therapies, optical coherence tomography, raised intracranial pressure

INTRODUCTION

Idiopathic intracranial hypertension (IIH) is charac-
terized by increased intracranial pressure (ICP) with
no identifiable cause. IIH, also known as pseudotu-
mor cerebri, is a syndrome with the major risk factor
of recent weight gain, occurring mainly in over-
weight women of working age [1

&&

,2]. There is a
rising incidence in this disease [3] and the incidence
appears related to country-specific prevalence of
obesity [4].

In the majority of those presenting with IIH,
they will have headache that is progressively more
severe and frequent, with a divergence of traditional
considerations of a raised ICP headache [5] to a
phenotype that is highly variable and commonly
mimics migraine [6,7

&

]. Other reported symptoms
include transient visual obscurations (unilateral or
bilateral darkening of the vision typically lasting
seconds), pulsatile tinnitus, back pain, dizziness,
neck pain, visual blurring, cognitive disturbances,
radicular pain, and horizontal diplopia [2,8

&

,9].
Prognosis is variable as IIH can either be self-limited
or have a lifelong chronic course with significant
affects on quality of life [10,11].

In 2018, the first consensus IIH guidance was
published [1

&&

]. The document was reviewed by a
committee of international key opinion leaders and
a patient group, which established a James Lind
Alliance Priority Setting Partnership for adult IIH
[12]. It sets out key diagnostic and management
principles. The diagnostic principles of the investi-
gation of papilloedema are to find any underlying
treatable cause in a timely manner, protect the
vision and ensure timely re-examination when
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vision is at risk, and to enable onward care of the
patient with the input from the most appropriate
experienced clinician. Key considerations are to
exclude secondary causes, such as venous sinus
thrombosis with appropriate imaging and check
blood pressure to exclude malignant hypertension.
The Friedman et al. [13] 2013 diagnostic criteria are
used, although a key area of uncertainty still exists
with the diagnostic cut-off, lumbar puncture open-
ing pressure (LP OP) 25 cm cerebrospinal fluid (CSF)
as was then recognized. A grey zone between 25 and
30 cm CSF exists with the recommendation that
wherever measured LP OP does not fit the clinical
picture, consideration should be given to repeat
measurement or ICP monitoring.

The key management principles are addressing
the underlying modifiable risk factor of weight gain;
protecting the vision through regular assessment and
escalation of treatment when sight is threatened; and
reducing headache morbidity through active man-
agement. Importantly, considerations included the
indication for CSF diversion surgery in declining
visual function. However, alternative interventions,
such as neurovascular stenting do not yet have evi-
dence to recommend them. It should also be stressed
that headache alone is not an indication for CSF
diversion with a majority of patients having persis-
tent headache following the procedure [14].

The major achievement of this document is the
interdisciplinary working to provide a framework to
standardize care for those with IIH. This standard-
ized approach to care has been subsequently pub-
lished in the European Headache Federation
Guidelines for IIH [15].

ADVANCES IN OCULAR IMAGING

Visual monitoring of patients is a key principle of
management [1

&&

], in addition to visual field peri-
metry, optical coherence tomography (OCT) has

allowed new observations in papilloedema. OCT is
a rapid, reliable, reproducible and noninvasive
imaging technique, using reflected light waves to
produce high-resolution cross-sectional and 3D rep-
resentations of retinal structures. Optic nerve head
(ONH) OCT measures have been correlated with the
modified Frisén grading of papilloedema [16,17].
The noninvasive nature of these techniques make
them ideal in follow-up in contrast to lumbar punc-
ture, which is feared by patients [18].

Whenever investigating papilloedema, OCT is
useful in the differentiation of pseudopapilloedema
from true papilloedema, a key area of misdiagnosis
[19,20]. Combining blue autofluorescence and disc
volumeOCTscanningcanhighlightburiedcrystalline
drusen clearly (Fig. 1). There is debate regarding OHN
drusen that appear de novo in papilloedema. Peripa-
pillary hyperreflective mass-like structures, termed
PHOMS (Fig. 2), [21,22] may be nerve fibre in origin
[21]. Further work may define their significance.

Standard measurements for papilloedema
include peripapillary retinal nerve fibre layer
(pRNFL) and ONH volume. These are reliably
increased in active IIH compared with controls,
are significantly associated with CSF opening pres-
sure and improve following treatment [23]. OCT has
revealed dynamic deformation of the peripapillary
retinal pigment epithelium and Bruch’s membrane
(pRPE/BM) regressing towards the normal shape
with reduction of ICP [24,25]. Deformation in
pRPE/BM may be of particular value in evaluating
atrophic papilloedema with minimal RNFL swelling,
as deflection of pRPE/BM may correlate with disease
activity. Macular RNFL thickness has been shown to
be significantly reduced compared with controls,
reduces over time and is associated with ONH vol-
ume measurements at baseline and visual function
[26,27].

OCT angiography (OCTA) is a relatively new,
noninvasive investigative modality, allowing visu-
alization of ONH vasculature. OCTA is based on
detecting differences in amplitude, intensity or
phase variance between sequential B-scans taken
at the same location of the retina. Early use has
been directed at papilloedema is with small cohorts,
reported on multiple OCT platforms, with differing
methodology. The advantage of OCTA is the ability
to segment layers and view below retinal haemor-
rhage, but despite the small field of view, there is
high resolution [28

&

]. Early findings include dilated
tortuous OHN capillaries with no vascular dropout
in comparison to ischaemic OHN oedema where
there is vascular dropout [29]. OCTA may provide
useful biomarkers and aide diagnosis as fundus fluo-
rescence angiography, its predecessor, remains an
invasive test [30

&

].

KEY POINTS

� The incidence of IIH is increasing, and clinicians now
have consensus recommendations to help guide their
management decisions.

� Novel therapeutic targets are emerging for IIH
including GLP-1R agonists.

� Optical coherence tomography provides the clinician
with accurate assessment of changes in papillloedema.

� For those with problematic intracranial pressure,
telemetric ICP monitors are likely to be
increasingly utilized.

Headache
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FIGURE 1. (a) Fundus photograph of the right optic disc in a patient referred for papilloedema. The optic nerve shape is
irregular. Note there is no loss of view of any of the retinal vessels as they run over the border of the optic nerve. (b) Fundus
photograph of the left optic disc in a patient referred for papilloedema. (c) Red-free fundus photograph of the right optic disc
highlights hyper reflectivity at the optic nerve head. (d) Red-free fundus photograph of the left optic disc highlights hyper
reflectivity at the optic nerve head. (e) Blue autoflurorescence (BAF) imaging using the Heidelberg Spectralis optic coherence
tomography (OCT) imaging. This clearly highlights buried optic disc drusen as a cause of the pseudopapilloedema. (f) BAF

Novel advances in therapeutic approaches in IIH Mitchell et al.
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OCT technology is limited by penetration par-
ticularly in severe OHN swelling. Measurement of
the pRPE/BM deflection is semi-automated and
accurately placing landmarks is challenging [25].
Proprietary automated algorithms commonly fail
to correctly segment the layers, and manual re-seg-
mentation is recommended [15,31]. Overall, as the
different parameters of OCT are investigated, the
outstanding advantage of OCT is the provision of

reliable quantitative method for the longitudinal
monitoring of IIH patients (Fig. 2).

ADVANCES IN INTRACRANIAL PRESSURE
TELEMETRY

The most common method of ICP measurement
in IIH remains lumbar puncture, with several
well documented negative aspects [32]. Direct

OCT imaging clearly highlights buried optic disc drusen in the left eye as a cause of the pseudopapilloedema. (g) BAF and an
OCT disc volume imaging cross-section showing one of the drusen (white arrow) in the right eye and the depth of the drusen
with obvious elevation of the over laying optic nerve tissue. (h) BAF and an OCT disc volume imaging cross-section showing
one of the drusen in the left eye (white arrow) and the depth of the drusen with obvious elevation of the over laying optic
nerve tissue.

FIGURE 2. (a) Optical coherence tomography infra-red image, in same patient as other figures, shows the cross-sectional cut
for (b) with the arrowed line. (b) OCT cross-sectional volume image shows a typical peripapilliary hyperreflective ovoid mass-
like structures (PHOMS) (arrow). (c) OCT infra-red image, in same patient as other figures, shows the cross-sectional cut for (S)
with the arrowed line. Note the reduction in optic nerve head swelling. (d) OCT cross-sectional volume image shows the
reduction in the size of the PHOMS (arrow). (e and f) Fundus photographs of the right (e) and left (f) eye at baseline showing
Frisen grade 4 papilloedema. (g and h) Resolution of papilloedema following bariatric surgery seen on fundus photographs. (i
and j) Resolution of papilloedema seen on OCT as reduction of total retinal thickness at the optic nerve head in right (i) and
left (j) eyes. OCT, optical coherence tomography.

Headache
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measurement of ICP is either noninvasive (yet to be
used routinely) or invasive. Invasive ICP measure-
ment can be performed at various anatomical sites
namely intraventricular, intraparenchymal, sub-
arachnoid, subdural, epidural; where there is CSF
communication ICP can be measured by lumbar
puncture [33]. Basic ICP measurement by external
ventricular, lumbar drains or lumbar puncture is
made by fluid column; more recently a variety of
microsensors have become available that locate in
the target tissue. These have been limited by drift
phenomena and the requirement for external wir-
ing, thus the risk of infection with use in excess of
72 h.

Telemetric ICP monitors are now available com-
mercially. There are two main systems, Neurovent p-
Tel, Raumedic, Helmbrechts, Germany and Sensor
Reservoir, Miethke, Potsdam, Germany. The wiring
issue is resolved with wireless power and reading
utilizing induction technology. The drift issue is
solved in both systems by way of an external moni-
tor reading atmospheric pressure and solid-state
sensor technology. The two systems differ with
Neurovent p-Tel siting a pressure sensor in the brain
parenchyma; meanwhile the Miethke system is
based on a sensor within a reservoir attached to a
ventricular drain. Both devices are readable by exter-
nal hand-held equipment, both devices are passive
in the sense that they have no power or memory
integral to the device and so pressure is only
recorded with the external equipment in situ.

The major initial application for the Miethke
system is in refining valve settings in challenging
patients, a recent case series highlights this

application, of note the highest frequency of valve
adjustments was seen in the IIH cohort [34].

More data is available for the Raumedic p-Tel as
it has been available for longer. It sites a solid-state
pressure sensor approximately 20 mm into the brain
parenchyma, usually within the right frontal lobe.
From the largest published series, there is a low
complication rate, approximately 6% overall, with
seizures affecting 3% and infection in 1.5% [35

&&

];
however, this was in a series of patients with signifi-
cant structural brain abnormality (for example,
hydrocephalus) and the rate of such complications
is likely lower in IIH patients. Of note, the UK
driving regulations allow resumption of driving
1 week after insertion in patients without compli-
cations. The device provides a high degree of accu-
racy with low drift [36]. Many have been kept in situ
beyond the licensed 3-month period [35

&&

,37];
where they have been shown to retain their accuracy
with low drift of 2.5 mmHg over a median 241-day
implantation period. The device samples at 5 Hz,
considerably lower than the wired and Miethke
systems, although this is sufficient for waveform
analysis [36,38]. The device is capable of long-term
recordings for up to 1 week with the present hard-
ware and can be worn by an ambulant patient out
with the hospital environment (Fig. 3) [38].

Telemetric ICP monitors have an evolving role
in diagnosis and monitoring of several conditions.
In IIH, particular roles could include evaluating
whether neurosurgical shunt placement is advised
in a deteriorating patient developing fulminant dis-
ease. Furthermore, it is useful in evaluating whether
pressure is pathologically elevated in those with

FIGURE 3. (a) Intracranial pressure telemetry, 1 h baseline recording of patient with intracranial hypertension. Mean
23.8 mmHg (32.3 cm CSF), range 11.8–46.5 mmHg. (b) Above patient during presentation with fulminant IIH. Mean
48.6 mmHg (66.1 cm CSF) range 23.6–85.0 mmHg. Note peak values of 85 mmHg (115.6 cm CSF). (c) Histogram of
pressure recordings from (a) and (b) – arrow demonstrates right shift with increasing pressure and waveform variability. CSF,
cerebrospinal fluid.

Novel advances in therapeutic approaches in IIH Mitchell et al.
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minimal ocular features and in shunted patients.
Monitors can inform the setting of CSF shunt valves
aiming to abrogate low pressure headaches, at pres-
ent seen in 23% [14]. ICP telemetry may also facili-
tate the differentiation between raised pressure
headaches and migrainous headaches [39].

NOVEL THERAPEUTICS AND
INTRACRANIAL HYPERTENSION

Acetazolamide is the longest established treatment
for IIH. In 2015, following the publication of the
first two randomized control trials for medical treat-
ment in IIH [8

&

,40], an updated Cochrane review
highlighted that there was insufficient evidence to
recommend or reject the efficacy of acetazolamide
for treating IIH and insufficient evidence for other
drugs used in IIH [41]. Of note, there was no effect of
acetazolamide on headache seen in the IIHTT [6].
The common existing drugs used in IIH have been
evaluated acutely in vivo at clinically relevant doses,
and were not found to significantly reduce ICP, with
the exception of topiramate [42

&

]. There is, there-
fore, an unmet need for novel therapeutic strategies
in IIH (Fig. 4).

Disordered CSF dynamics have been suspected
to underlie the raised ICP seen in IIH. There are
currently no novel drugs targeting the underlying
pathogenesis driving IIH, which remains elusive.
Novel therapies are currently focussed on reducing
ICP through reducing CSF secretion. Ideally novel
therapies would also reduce weight as this approach
is disease modifying in IIH [43

&&

].
The choroid plexus is the principle site of CSF

production; this is driven by the net movement of
sodium ions (Naþ) from the blood to the cerebral
ventricles, creating an osmotic gradient down,
which water moves. Although several channels are
involved in this process, the principle channel is the
Naþ and Kþ-dependent adenosine triphosphatase
(Naþ/Kþ/ATPase) that actively transports Naþ into
the cerebral ventricle and is the rate-limiting step
[44,45].

11ß-HYDROXYSTEROID
DEHYDROGENASE TYPE 1

11ß-hydroxysteroid dehydrogenase type 1 (11ß-
HSD1) is an intracellular enzyme that converts inac-
tive cortisone to the active cortisol. This amplifies
local glucocorticoid activity independent of sys-
temic cortisol. 11ß-HSD1 expression and activity
has been demonstrated in choroid plexus epithelial
cells, along with other key elements of the gluco-
corticoid signalling pathway [46,47]. Inhibitors
have been developed, including AZD4017,

originally as potential therapies for diabetes mellitus
type 2 and the metabolic syndrome. Glucocorticoid
metabolism has been characterized in IIH in relation
to therapeutic weight reduction; global 11ß-HSD1
activity decreased with weight loss as measured by
urinary glucocorticoid metabolites by gas chroma-
tography/mass spectroscopy [43

&&

]. Importantly it
was noted that the reduction in ICP significantly
correlated with reduction in 11ß-HSD1 activity [47].
Of interest, is that 11ß-HSD1 inhibition reduced
intraocular pressure and it has been shown that
secretory mechanisms of the ocular ciliary body
are akin to that of choroid plexus epithelium [46–
48].

11ß-HSD1 inhibitors do not affect systemic glu-
cocorticoid metabolism [49], but would reduce CSF
secretion though reducing local cortisol availability
in the choroid plexus with subsequent reduction of
downstream glucocorticoid receptor-mediated
sodium transportation, reduced osmotic gradient
and decreased water movement into the cerebral
ventricle [46,47]. Conversely systemic administra-
tion of glucocorticoids has been found to precipitate
intracranial hypertension [50]. The IIH Drug trial
(IIHDT), clinicaltrials.gov identifier NCT02017444,
has investigated the ability of an 11ß-HSD1 inhibi-
tor to reduce CSF secretion and hence ICP in
patients with IIH [51

&

]. IIHDT is the first phase 2
double-blind placebo-controlled trial in IIH. It
recently completed recruitment and is expected to
report in 2019.

GLUCAGON-LIKE PEPTIDE 1

The incretin glucagon-like peptide 1 (GLP-1) is a gut
peptide secreted by the distal small intestine in
response to food intake [52]. GLP-1 stimulates glu-
cose-dependant insulin secretion and inhibits glu-
cagon release, lowering blood glucose only in the
presence of insulin and not resulting in hypogly-
caemia [53]. GLP-1 is also synthesized in neurons of
the nucleus tractus solaris that project to the hypo-
thalamus [54] and promotes satiety and weight loss
[55]. GLP-1 analogues have a clinical role in the
management of type 2 diabetes mellitus, as well
as for weight loss in obesity. Several GLP-1 agonists
have been developed and are now licensed drugs
[56]. These include exenatide twice daily, exenatide
once weekly, liraglutide, lixisenatide, albiglutide,
dulaglutide and most recently semaglutide. Cur-
rently, only liraglutide is licensed for weight loss
in obesity. They vary in structure and pharmacol-
ogy, ability to penetrate the blood–brain barrier
(BBB) as evidenced by CNS effects. Importantly,
the choroid plexus epithelium lies outside the BBB
[57].

Headache
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FIGURE 4. The major ion channels responsible for CSF secretion in the choroid plexus are shown with sites of action of
acetazolamide, AZD4017 and exenatide. Cortisone is converted to the active cortisol by 11ß-HSD1, cortisol binds to the GR
and MR receptors, which upregulate Naþ Kþ ATPase activity; AZD4017 inhibits 11ß-HSD1 reducing local availability of
cortisol. Exenatide binds and activates GLP-1R stimulating the conversion of ATP to cAMP by AC. cAMP activates PKA, which
inhibits the Naþ Hþ exchanger reducing Naþ re-absorption and also inhibits the Naþ Kþ ATPase reducing Naþ excretion.
Carbonic anhydrase catalyzes the conversion of H2O and CO2 to Hþ and HCO3

�, which is important in the establishment of
the osmotic gradient. Both acetazolamide and topiramate inhibit carbonic anhydrase function. AC, adenylate cyclase; AE2,
anion exchange protein 2; cAMP, cyclic adenosine monophosphate; CSF, cerebrospinal fluid; CTFR, cystic fibrosis

Novel advances in therapeutic approaches in IIH Mitchell et al.
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GLP-1 also has a diuretic effect by reducing Naþ

re-absorption in the renal proximal tubule, thereby
increasing Naþ and water excretion [58]. Activation
of GLP-1R stimulates the conversion of adenosine
triphosphate to cyclic adenosine monophosphate
(cAMP) by adenylate cyclase. cAMP activates protein
kinase A, which inhibits the NaþHþ exchanger, thus
reducing Naþ re-absorption. Choroid plexus epithe-
lial cell function is inverted compared with renal
proximal tubule but with an analogous fluid trans-
port mechanism [59], and as such GLP-1R was inves-
tigated as a potential target for conditions with
raised ICP. It has been shown that GLP-1 receptor
(GLP-1R) is expressed in the human choroid plexus.
Treatment with the agonist exendin-4 modulates
the GLP-1R in the rat choroid plexus through ago-
nist induced receptor internalization, which was
shown to increase cAMP generation and reduce
Naþ/Kþ/ATPase activity. Importantly exendin-4
reduced ICP in conscious rats at clinically relevant
doses. There was a 65% reduction in ICP 30 min post
dose compared with baseline and a cumulative
effect seen with reduction in the ICP to 79.3 and
72.5% of baseline values predose at days 2 and 4,
respectively, of the experiment. The action was
blocked by intraventricular administration of the
GLP-1R antagonist exendin 9-39, suggesting the
effect is mediated by the GLP-1R in the brain. Impor-
tantly, the effect was also seen in a rat model with
markedly raised ICP [60

&&

]. The IIH Pressure Trial,
ISRCTN12678718, is a double-blinded, placebo-con-
trolled physiology study assessing the effects of
exenatide, a GLP-1R agonist, on ICP in a cohort
with active IIH and is expected to report this year
[39].

There are also developments with surgical man-
agement of IIH, two trials are currently ongoing, the
IIH Weight Trial [61] (ClinicalTrials.gov Identifier:
NCT02124486) is a randomized controlled trial
of Bariatric Surgery Versus a Community Weight
Loss Programme and opened to recruitment in
2014. The SIGHT trial (ClinicalTrials.gov Identifier:
NCT03501966) opened in 2018 and is a triple-arm
randomized controlled trial of medical therapy
(acetazolamide) vs. medical therapy with Optic
Nerve Sheath Fenestration vs. medical therapy with
ventriculoperitoneal shunting.

CONCLUSION

The incidence of IIH is increasing along with global
rates of obesity, a key pathological factor, making

IIH research and management increasingly impor-
tant. The first consensus guidelines for the manage-
ment of IIH have now been published guiding the
clinical management of this condition. Looking to
the future, there are several new avenues of clinical
therapeutics based on reducing CSF secretion, with
GLP-1 receptor agonists appearing promising as
they also significantly reduce weight. Advances in
OCT technology will continue to improve our diag-
nosis and monitoring of papilloedema, and may
provide unique biomarkers. Early indications show
that telemetric ICP monitoring may provide insight
into CSF dynamics in IIH and facilitate
management decisions.
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