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Laser Powder Bed Fusion of Ti-rich TiNi Lattice Structures: Process 

Optimisation, Geometrical Integrity, and Phase Transformations 
 
 

Abstract：The use of Laser Powder Bed Fusion (LPBF) in fabricating TiNi-based lattices 

enables tailoring the mechanical and physical properties of the structure, in addition to the 

functionality associated with the shape-memory effect. In this work, TiNi lattice structures 

were fabricated using LPBF, following an optimisation study for LPBF parameters 

investigating the geometrical integrity of the lattices, microstructural evolution, and phase 

transformation behaviour. A process map for TiNi lattices was constructed to visualise the 

influence of LPBF parameters on the build density, elemental evaporation, and impurity 

pick-up. The optimum LPBF processing window was found to be ~60-90 J/mm3 volumetric 

energy density, achieving >99% relative density. Optimisation of the geometrical integrity of 

the LPBF-fabricated lattices, including the pore and strut sizes, was performed by considering 

the influence of the laser track width (LTW), beam compensation (BC), and contour distance 

(CD). As a result, when CD-BC=LTW/2, the deviation in strut size from the target design size 

was reduced to <2%. The build microstructure was affected by LPBF parameters, where the 

dendritic cell size increased with the increase in LPBF heat input, also resulting in a change in 

the solidification structure morphology from cellular to columnar dendritic structures. The 

phase transformation behaviour was investigated using Differential Scanning Calorimetry to 

understand the effect of LPBF parameters on the formation of Ti2Ni intermetallics and 

impurity pick up (oxygen and carbon), and the resulting impact on the phase transformation 

temperatures. 

Keywords: Laser Powder Bed Fusion; Shape Memory Alloys; Lattices; Phase 

Transformations 
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1. Introduction 

There is a growing interest in additive manufacturing (AM) of TiNi shape memory alloys 

(SMAs), as they provide an interesting combination of functional performance due to the 

shape memory effect (SME), as well as unique mechanical and physical properties (e.g. low 

elastic modulus, biocompatibility [1, 2], mechanical strength, and excellent corrosion and 

wear resistance [3, 4]). They have been employed in biomedical implants and devices [5], 

aerospace components [6], and functional devices [7]. TiNi components are typically 

processed via casting, powder metallurgy (PM), wire drawing, and machining [5, 8]. Vacuum 

casting is essential to avoid increasing the impurity levels (O, C, and N), which could 

generate TiC, TiO2, and Ti4Ni2OX secondary phase particles, which degrade the functional 

and mechanical properties of TiNi SMAs [4, 8]. PM will also result in impurity pick-up, and 

is limited in its geometrical complexity [2]. Machining of TiNi encounters significant tool 

wear owing to the intrinsic mechanical behaviour of SMAs, making it essential to use special 

machining processes (e.g. laser micro-machining for stents) [9]. Thereby, traditional 

manufacturing methods appear to hinder the performance and applications of TiNi SMAs. 

Laser powder bed fusion (LPBF) produces parts in a layer-wise incremental manner using a 

laser to melt and consolidate thin layers of powders [10, 11], providing an alternative 

approach to circumvent the challenges associated with traditional manufacturing methods of 

TiNi. Due to its localised heating and rapid cooling rates (up to 106 K/s), LPBF can reduce 

chemical segregation, cause grain refinement, and improve the mechanical behaviour [12]. 

Besides, LPBF provides design freedom and flexibility, making it an ideal process for the 

fabrication of structures with engineered porosity like lattices, auxetics, and other complex 

functional structures [13].  

However, LPBF of TiNi encounters a number of challenges, including the formation of 

structural defects (pores, cracks, or lack of fusion), selective Ni-evaporation, pick-up of 

impurity elements, and the formation of intermetallic particles, which affect the phase 

transformation temperatures, mechanical behaviour and functional properties [5, 12, 14]. 

Previous process optimisation studies identified an optimum LPBF energy density window of 

~52-83 J/mm3 [15-18], but that was mainly for solid and Ni-rich TiNi-alloys, which as such 

may be not suitable for LPBF of Ti-rich TiNi lattice structures. When fabricating lattices by 
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LPBF, the laser exposure area in each layer is mostly made up of single laser tracks and is 

significantly reduced, compared with fabricating solid/bulk structures. As a result, the heat 

transfer and solidification mechanism are also quite different compared with bulk structures. 

However, specific studies on LPBF optimisation for TiNi lattices are fairly limited, especially 

studies that considered process optimisation for porosity, elemental evaporation, cracking, 

intermetallic precipitation, impurities pick-up, and the resulting phase transformation 

behaviour, simultaneously. 

The geometrical integrity of LPBF-fabricated lattices can be expressed in terms of the strut 

size and structural porosity (i.e. lattice nominal density), compared with the target design. 

Depending on the process parameters, two aspects are known to cause the deviation between 

the target design and the LPBF-produced geometry. The first aspect is the residual partially 

melted powders that form on the struts, which result in a larger strut diameter and a higher 

nominal density. Arabnejad et al. [19] found that the pore size within the lattice is typically 

smaller than the target design, generating a large disparity in the structural porosity. 

Furthermore, the size of the inclined struts typically ends up becoming larger than the target 

design due to the staircase-effect associated with building inclined geometries. The second 

aspect is the influence of the laser thermal footprint (as opposed to the optical footprint), as 

depicted in Fig. 1a, which results in a larger laser track width (LTW) than the laser spot size. 

Some studies investigated the utility of post-processing methods to remove the residual 

powder by post-treatments, such as chemical etching, electro-polishing, and sandblasting [20, 

21]. Nonetheless, no reports have been published to-date on controlling the lattice geometry 

using laser beam compensation strategies, which could be an intrinsic way to efficiently 

reduce the variability in the geometrical integrity. Normally, the laser compensation strategies 

involve tailoring the laser beam compensation (BC) and contour distance (CD). As illustrated 

in Fig. 1b, BC (also known as the beam offset) is the distance between the border of the laser 

filling scan area and the defined real part edge, while the CD represents the distance from the 

centre of the contour scan track, which is usually employed to improve the surface finish, to 

the target design edge. Optimising the BC and CD ensures that LPBF-fabricated lattices are 

not oversized by compensating for the width of the contour track melt pool. This is analogous 

to compensating for the machine tool diameter in machining. 



                                                                                       4 / 26 

 
Fig. 1. Schematic illustrations for (a) the laser track width, and (b) laser filling strategies, 

illustrating the definition of the beam compensation (BC) and contour distance (CD). 

 

Aiming to develop high-performance TiNi for medical implants, Ti-rich TiNi was selected for 

this study due to their low elastic modulus, and the reduced Ni-content to avoid the adverse 

(allergic) effects of Ni-ion release [22]. Potentially, LPBF may enhance the biocompatibility 

through the formation of a TiO2-based oxide film covering the surface of TiNi struts [23] to 

reduce the toxicity and Ni-ion release well below the cytotoxic concentration [24]. In this 

work, LPBF parameters were optimised considering the aforementioned factors to construct a 

process map of TiNi lattices. The lattice geometrical integrity, microstructural evolution, and 

phase transformation behaviour were also assessed. 

 

2. Material and Experimental Methods 

2.1. Materials and Processing 

Argon atomised pre-alloyed Ti54.8Ni45.2 (at. %) powder, with a size distribution range of 20-50 

μm, was supplied by TLS Technik GmbH & Co (Germany). The powder was used for LBPF 

processing and powder hot isostatic pressing (HIP). The morphology and microstructure of 

the powder were characterised using a Hitachi TM3000 Scanning Electron Microscope 

(SEM).  

Lattices were built using a Concept Laser M2 Cusing LPBF system, with a protective Argon 

atmosphere, controlled down to 100 ppm O2, and employing a continuous wave fibre laser 

with a nominal maximum output power of 400 W and a focus diameter of ~75 μm. A hatch 
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distance (h) of 75 μm was used, which is similar to the laser spot diameter. Taking the mean 

particle size of the powder into account, a layer thickness (t) of 30 μm was selected. In order 

to achieve fully dense parts, an optimisation study involving the laser parameters (laser power 

(P) and scan speed (v)) was performed in the ranges of 60-120 W and 150-600 mm/s, 

respectively. To describe an equivalent value for the heat input, the volumetric energy density 

(Ev) was used, as defined as Ev=P/(v×h×t) [25]. The laser was scanned in a continuous raster 

pattern with ‘meander on’ and 0.1 ms corners delay. The laser scanning direction rotated in 

90º between the subsequent layers.  

HIP was performed in an EPSI hot isostatic press to obtain fully dense TiNi as a density 

reference. TiNi powder was encapsulated in a mild steel can, and HIPed at 1000 ºC for 3 

hours under a pressure of 100 MPa.  

2.2. Characterisation 

Archimedes density measurements for the HIPed and LPBF-fabricated TiNi samples was 

performed using an OHAUS Adventurer® Analytical balance using pure ethanol according to 

ASTM B962-08. The porosity within the builds was measured using ImageJ® image analysis 

software from ten micrographs, which were captured at 25× magnification on a Brunel optical 

microscope (OM). A JOEL 6060 W-filament SEM fitted with an Oxford Energy Dispersive 

Spectrometer (EDS) was used to observe the surface morphology, as well as to measure the 

elemental composition of the specimens. X-ray diffraction (XRD) was conducted using a 

Bruker D8 Advance Diffractometer with a Cu Kα radiation (wavelength, λ= 0.15418nm), 

operated at 40 kV and 40 mA using a step size of 0.02° at room temperature. Ti2Ni phase 

volume fractions were quantified using ImageJ® from BSE micrographs of polished samples. 

To analyse the microstructure in the X-Y plane (normal to the build direction), Kroll’s reagent 

(2%HF+10%HNO3+88%H2O) was used. The content of impurity elements (carbon, oxygen, 

and nitrogen) in the powder and LPBF-processed samples was also determined using a LECO 

TC436AR analyser. Phase transformation temperatures (TTs) of the powder and the 

as-fabricated specimens were identified using a Mettler-Toledo DSC1 Differential Scanning 

Calorimetry (DSC) system. The specimens were thermally cycled between -10˚C and 120 ˚C, 

at a heating/cooling rate of 10˚C/min in an Ar atmosphere. No differences in the TTs were 

noticed in the DSC traces with repeated thermal cycling. 
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3. Results 

3.1. Powder and Lattice Characteristics 

The external morphology and cross-sectional microstructure of the powder are shown in Fig. 

2. The powder was generally spherical, with limited satellite particles as shown in Fig. 2a, 

which was reflected in a good spreading during LPBF. The cross-section of powder (Fig. 2b) 

showed a cellular microstructure, with a dark grey phase on the cell boundaries. EDS analysis 

showed that the dark phase along the cell boundaries is Ti-rich, which was identified as the 

intermetallic compound Ti2Ni, with the surrounding light grey phase being TiNi, according to 

the Ti-Ni phase diagram and as identified in other studies on LPBF of TiNi [12, 26]. The 

main impurity elements in the powder (O, C, and N) were measured to be 1250 ppm, 427 ppm, 

and 130 ppm, respectively. 

 
Fig. 2 SEM micrographs for the TiNi powder, showing: (a) powder morphology, and (b) 

cross- section microstructure. 

 

Lattice structures for bone replacement should meet the criteria of pore interconnectivity to 

promote cell migration, proliferation and differentiation, in order to enable nutrient-waste 

exchange and enhance bone ingrowth (osseointegration) [27]. Bone ingrowth requires the 

pore size to be 50-800 μm, with a structural porosity > 50% [19, 28, 29]. As shown in Fig. 3a, 

a diagonal cubic structure (also referred to as skeletal structure) was designed since it has no 

overhangs (i.e. suitable for self-support during LPBF) and shows strong geometrical isotropy. 

The target design unit cell size, strut thickness, and pore size were 1000 μm, 310 μm, and 400 

μm, respectively. A cuboid lattice with a size of 8 × 8 × 12 mm3 was used in this study. The 
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structural porosity % (PS) of the sample was calculated as the percentage of the voids volume 

to the fully solid volume as:  

PS  = �1 −
𝑉𝐿
𝑉𝑆
� × 100% 

where 𝑉𝐿 is the volume of the lattice unit cell and 𝑉𝑆 is its enclosing volume (L3). The 

structural porosity of this diagonal cubic unit cell is 55 %, so the relative density is 45%. The 

LPBF-fabricated samples are shown in Fig.3b. It is important to note that higher energy 

density promoted the tendency to block and/or disfigure the pores, with the pore morphology 

being more recognisable and uniform in the specimens that were built using low energy 

density conditions. 

 
Fig. 3. The geometry of the TiNi lattice, showing: (a) isometric view of the unit cell and the 

full lattice, and (b) LPBF-fabricated lattices, with a well-defined pore morphology for the low 

P builds (bottom row), compared with a more disfigured pore morphology for the high P 

builds (top row).  
 
3.2. Parameters optimisation 

3.2.1. Surface/Pore Morphology 

The horizontal (X-Y) surface morphologies of the lattices produced using different laser 

parameters are shown in Fig. 4. Due to the nature of LPBF as previously explained, the lattice 

surface contains some partially melted residual powder particles attached to the struts. As 

shown in Fig.4a-d, increasing the Ev from 67 J/mm3 to 178 J/mm3 resulted in higher levels of 

densification, causing the pores to be blocked, and resulting in a more dense structure. This is 

attributed to the increase in strut size, ultimately reducing the pore size, due to the larger melt 

pool width at higher Ev conditions[30]. Besides, as revealed in Fig. 4f, at the same Ev, higher 
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P conditions result in a reduction in the pore size, presumably also due to the wider melt pool. 

Interestingly, decreasing the Ev from 67 J/mm3 to 44 J/mm3 also resulted in a slight decrease 

in the pore size, or rather its geometrical definition, as well as slightly increasing the strut size, 

comparing the morphologies of Fig. 4d with Fig. 4e. This can be attributed to the balling 

effect, which occurs at low Ev conditions due to insufficient wetting by the molten liquid [11, 

31]. Balling increases the surface roughness and leads to more powder attachment to the 

surface of the struts.  

 
Fig. 4. Surface morphologies of LPBF-fabricated samples using different build parameters. 

 

3.2.2. Defects and densification 

The Archimedes density of the HIPed sample was measured as 6.219±0.005 g/cm3, with a 

relative density of ~99.93±0.03% according to the measured porosity. As such, a fully dense 

(defect-free) structure of the investigated TiNi-alloy has a theoretical density of 6.223 g/cm3, 

which was used as a reference for the LPBF-processed samples. The variation in the 

Archimedes density of the lattices versus Ev is plotted in Fig. 5. Overall, the samples 

produced using Ev of 67-133 J/mm3 had a relatively higher density, among which the 90W / 

80J/mm3 sample achieved the highest density of 6.208±0.007 g/cm3 (99.76% of the 

theoretical density). Lowering Ev from 67 J/mm3 or further increasing Ev from 133 J/mm3 

resulted in a density reduction. It should be noted that the samples produced using 90 W 
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achieved a higher density than those with 60 W and 120 W, at the same Ev of 133 J/mm3. To 

further investigate the densification behaviour, the cross-sections of struts were observed 

using OM. Representative images showing the defects were correlated with Ev and 

Archimedes density, Fig. 5. The morphology of the sample produced using 44 J/mm3 showed 

irregular pores with unconsolidated particles, which is characteristic of lack of fusion defects 

caused by insufficient heat input [14]. At Ev of 267 J/mm3, the sample exhibited a significant 

number of spherical pores, which is characteristic of keyhole defects [32, 33]. In contrast, the 

sample produced at 67 J/mm3 showed few fine pores, which resulted in a higher relative 

density. Besides, high P increases the tendency of keyholing, the P=120 W processed sample 

has more keyhole defects than that of 60 W condition despite using the same Ev, 133 J/mm3. 

Cracks were present in all the high power conditions (P=90 W and 120W), and also in some 

low power conditions (P=60 W and 75W), as well as in high Ev conditions (≥133 J/mm3). The 

cracks were aligned normal to the build direction along the X-Z and Y-Z planes causing 

interlayer delamination due to the residual stresses along the build direction, and initiating 

from the Ti-rich inter-dendritic regions [12]. 

 

Fig. 5. Effect of the volumetric energy density on the density and defect types in the 

LPBF-fabricated samples. 
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3.2.3. Evaporation and Impurity 

Selective elemental evaporation is known to occur during LPBF, especially under high 

laser energy input, resulting in higher evaporation rates for the lower boiling point elements 

within an alloy [5]. In TiNi-LPBF, Ni is likely to evaporate more readily than Ti, since Ni has 

a vaporisation enthalpy 374.8 kJ/mol and a boiling point of 2913˚C, compared with 425.5 

kJ/mol and 3287˚C for Ti. The Ni-content of the samples produced in this study was 

quantified using several large area EDS measurements, as shown in Fig. 6a. It was found that 

Ni-evaporation in low P (P=60 W) and low Ev (≤90 J/mm3) conditions was negligible. 

Nonetheless, Ni-loss became rather intensive in higher P and/or higher Ev conditions. 

Moreover, at Ev ≥ 200 J/mm3, Ni-loss exceeded 1 at. % even in low P condition (P=60W). 

Furthermore, in high P conditions (P=120 W), Ni-loss was >1 at. % even when the Ev was 

merely 133 J/mm3. From a correlation perspective, Ni-loss increased with the increase in P at 

the same Ev, and generally increased with the increase in Ev. 

In addition to selective vaporisation, LPBF is known to increase the susceptibility for 

impurity elements pick-up from the surrounding atmosphere, despite the inert atmosphere. As 

revealed in Fig. 6b, the impurity pick-up (O, N, and C) varied depending on the laser energy 

input. At lower Ev, the impurity pick-up was insignificant in comparison to the original 

powder. However, at elevated P and Ev, impurity pick-up increased. Similar observations 

were found in other studies on LPBF-processing of TiNi [16]. It is important to note that the 

combined effect of Ni-loss and impurity elements pick-up significantly affects the phase 

transformation behaviour in TiNi-based SMAs, potentially disturbing the alloy performance. 

 

Fig. 6. Effect of laser parameter on the nickel evaporation (a) and impurity pick-up (b). 
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3.3. Geometrical Integrity 

3.3.1. Effect of LPBF parameters on the laser track width 

As shown in Fig. 4 and Fig. 5, in the lattice sample (67 J/mm3) that achieved the least build 

defects, the average pore size (317±17μm) was still significantly smaller than the design value 

of 400 μm (Fig. 3), which suggested that a further geometrical refinement study was needed. 

The effect of LPBF parameters on the laser track width (LTW) was investigated in Fig. 7 by 

building single-track walls using a range of parameters. Fig. 7a shows representative 

micrographs for the laser tracks associated with different P and Ev. LTW measurements using 

SEM images are plotted in Fig. 7b. It is obvious that the LTW increased with increasing P and 

Ev. At the same Ev of 133 J/mm3, higher P (120 W) resulted in significantly larger LTW than 

lower P (60 W), Fig. 7a. Moreover, it is notable that increasing Ev reduces the tendency to 

have partially melted residual powder particles stuck on the strut surfaces, as a result of the 

reduction in balling due to the improved wetting. Besides, increasing P seems to aggravate the 

sticking of residual particles on the surface, at the same Ev condition, similar to the results 

reported by Qiu et al. [34]. The LTW at the optimum Ev condition (67 J/mm3) was determined 

to be 93±5 μm. Knowing the LTW at the optimum Ev condition is essential for the laser 

compensation strategies, as it will be shown in the following section.  

 

Fig. 7. (a) SEM micrographs showing the morphology of individual laser tracks produced 

with different process parameters, and (b) the relationship between Ev and P and the LTW. 

3.3.2. Laser beam compensation optimisation 

In order to understand the effect of BC on the geometrical precision, lattice samples with 

different BC values were fabricated using the optimum Ev of 67 J/mm3 without a contour scan. 
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SEM micrographs for samples produced with BC values of 0 μm, 25 μm, 50 μm and 75 μm 

are shown in Fig. 8a-d. It is obvious that increasing the BC increases the pore size, while 

reducing the strut size and decreasing the nominal density of lattices, Fig. 8e. At BC of 0 μm, 

the pore size was the smallest, while the strut size was the largest in the investigated 

conditions, deviating from the design values, which suggests that a tailored BC is needed to 

achieve geometrical precision. In contrast to BC=0 μm, at BC=75 μm, the pore size becomes 

larger, while the strut size becomes smaller than the design values. BC=25 μm was the 

optimum value for geometrical precision in the absence of a contour scan, since the deviations 

in the pore and strut were only ~4% from the design value. Nonetheless, in the absence of a 

contour scan, partially melted powder particles were attached to the surface, with the edges 

being quite uneven. This implies that a contour scan is essential for improving the edge 

quality and surface integrity.  

 

Fig. 8. Effect of laser BC on the pore size and strut size: (a) - (d) SEM micrographs for the 

samples built using BC of 0, 25, 50, and 75 μm, respectively; and (e) the relationship between 

BC and pore size and strut size (average 15 measurements from different SEM micrographs). 

 

3.3.3. Laser beam compensation and contour distance optimisation 

The combined effect of BC and CD on the lattice geometrical integrity is shown in Fig. 9a. 

All the samples were produced using the same Ev of 67 J/mm3. At BC = 25 μm, the pore size 
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significantly increased from 313 μm to 440 μm by increasing the CD from 0 to 100 μm. The 

same correlation occurred at BC = 50 µm. Interestingly, using equal BC and CD values, the 

pore size increased when they were increased from 25 µm to 75 µm, as summarised in Fig. 

9b. Overall, enlarging the gap between the CD and BC values can increase the pore size 

while reducing the strut size. Further analysis reveals that a variation of CD has a more 

significant impact on the lattice geometry than BC, since at a constant CD of 75 μm, 

increasing BC had a slight influence on the enlargement of pore size. As noted from Fig. 9b, 

samples processed using BC=25 μm along with CD=75 μm had the best geometrical 

precision with a reduced deviation of <2% in strut and pore sizes in comparison to the target 

design sizes, in addition to enhancing the circularity of the pores. 

 

Fig. 9. The combined effect of beam compensation (BC) and contour distance (CD) on the 

lattice geometrical integrity: (a) SEM micrographs showing the pore morphology at different 

BC and CD values, and (b) deviations in the pore size and strut size between the 

LPBF-fabricated lattice and the design value at difference BC and CD. 
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3.4. Microstructural observation 

Fig. 10 shows the as-fabricated microstructure in the LPBF-fabricated lattices using different 

process parameters. Generally, the solidification cell size/dendrite arm spacing (DAS) 

increased with the increase in Ev. Besides, the microstructural morphology of the 

solidification structure varied depending on the Ev. Rounded fine cellular structures (Fig. 10a, 

b, and c) were prevalent in lower P and Ev conditions, while columnar and coarser cellular 

structure (Fig. 10d, e, and f) were more predominant in higher power and Ev processed 

samples. It is known that the temperature gradient G (K/m) and growth rate R (m/s) during 

solidification control the morphology and size of the solidified microstructure (e.g. DAS). The 

G/R ratio determines the solidification mode, while the product of G × R indicates the cooling 

rate (K/s) that controls the size of the solidified microstructure [35, 36].  

 

Fig. 10. SEM micrographs of the microstructures in LPBF-fabricated TiNi samples processed 

using different Ev and P conditions. 

 

At low Ev, which is associated with high laser scan speed, G increases, which in turn 

increases the nucleation and formation of the fine cells/dendrites. At high Ev, the melt pool is 

exposed to higher temperatures, which slows the solidification rate [37, 38]. The growth 
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modes are generally defined as planar, cellular, columnar dendrites, and equiaxed dendrites. 

The planar growth needs to satisfy the following criterion [35]: 
𝐺
𝑅
≥
∆𝑇
𝐷𝐿

 

where ∆𝑇 = 𝑇𝐿 − 𝑇𝑆 is the equilibrium freezing range, 𝐷𝐿 is the diffusion coefficient of the 

solute in the liquid. When increasing the Ev, G decreases, which alters the solidification mode 

from planar growth to columnar dendrites gradually. As discussed previously, the 

solidification structure coarsens with the increase in P, at a constant Ev (Fig. 10 c and d), since 

higher P appears to have a more significant effect on increasing the melt temperature and 

temperature gradient than the laser scan speed [39]. The melt pool size and fusion boundary 

width are smaller in lower energy input, which results in a higher cooling rate [40]. 

XRD patterns of the powder and LPBF-fabricated TiNi samples confirm constitutions of 

Ti2Ni and TiNi phases, Fig. 11a. Different Ev and P processed samples have the same peak 

positions, but the peak intensities seem different. For example, the 42.5º peak of TiNi phase in 

267 J/mm3 fabricated sample seems to be much weaker than that of the powder and low Ev 

processed samples, 44 J/mm3 for instance. The variable peak intensity implies the process 

parameters also affected the volume fraction of the interdendritic intermetallic phase Ti2Ni. 

Restricted by the overlapped peaks of those two phases (e.g. the peaks at ~41.5º and 45.5º), 

quantifying the phase contents by XRD peaks was not straightforward. Meanwhile, it is 

notable in Fig. 10 that interdendritic Ti2Ni volume fraction increased with the increase in Ev. 

As illustrated in Fig. 11b, the differences in contrast between Ti2Ni (dark) and TiNi (grey) are 

distinct. Image analysis from BSE micrographs of polished samples was performed to 

measure the Ti2Ni phase volume fractions. The results are summarised in Fig. 11c. The 

powder has a Ti2Ni vol.% of about 18%, similar to the low Ev produced samples (such as 44 

and 67 J/mm3), which had the same Ti2Ni friction level as in the powder, suggesting that the 

cooling rates associated with these conditions are similar to the cooling rates associated with 

gas atomisation. Higher Ev levels led to an increase in the Ti2Ni content dramatically, with the 

sample processed at 267 J/mm3 having a Ti2Ni vol. % of 27%. Interestingly, the Ti2Ni vol. % 

in the HIPed sample (about 26%) is comparable to the high Ev samples and is significantly 

higher than in the powder, as the extended hold at 1000 ˚C during HIPing and the subsequent 
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slow cooling promoted the precipitation of Ti2Ni. In general, high Ti2Ni content has negative 

effects on the performance of TiNi. On one hand, the Ti2Ni is very brittle, which is known to 

promote cracks formation along the continuous Ti2Ni phase along the interdendritic regions. 

On the other hand, high Ti2Ni content impairs the SE behaviour and SME as it disturbs the 

TiNi matrix chemistry, and accordingly the phase transformation behaviour [12]. 

 
Fig. 11. (a) XRD patterns of LPBF-fabricated TiNi samples processed using different Ev and 

P conditions, (b) illustration showing image analysis of Ti2Ni fraction content, and (c) Ti2Ni 

volume fraction in the powder, HIPed and LPBF samples. 

 

3.5. Phase transformation behaviour 

Fig. 12 shows the DSC traces for the powder and LPBF-processed TiNi samples, which 

demonstrate the variation in the phase transformation temperatures (TTs), as a function of Ev 

and P. The TTs are also summarised in Table 1. Overall, the austenite finish temperature (Af) 

and martensite start temperature (Ms) of LPBF-processed samples decreased in comparison to 

the powder. Additionally, increasing Ev and P resulted in decreasing the Af and Ms. 

Specifically, the increase of Ev from 67 J/mm3 to 267 J/mm3 caused a decrease of about 9˚C 

and 5˚C for the Af and Ms, respectively. The changes in TTs were correlated to the Ni-loss, 

impurities pick-up, and intermetallics contents. Ni-loss data (Fig. 6a) suggested that the Ni 

contents in different laser parameter processed samples are different; the impurity (C, N, and 

O) level (Fig. 6b) and Ti2Ni intermetallic content (Fig. 11c) of samples also vary depending 

on the laser parameters.  
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Fig. 12. DSC traces for the powder and LPBF samples processed using different parameters. 

Table 1. Effect of laser parameter on the TTs of LPBF-produced Ti-rich TiNi. 

Specimens 
Heating Cooling 

As (˚C) Af (˚C) EA (J/g) Ms (˚C) Mf (˚C) EM (J/g) 
Powder 
67 J/mm3 
133 J/mm3 
267 J/mm3 

64 
53 
51 
38 

98 
92 
88 
83 

17.6 
17.5 
17.9 
17.2 

62 
57 

54 
52 

33 
28 
25 
20 

-18.4 
-17.9 
-17.5 
-16.9 

  

4. Discussion 

4.1. Laser process window analysis 

As shown in Fig. 5, the formation of irregular pores was attributed to the turbulence in the 

melt pool at high P or Ev, or insufficient heat input leading to lack of fusion defects [14, 36]. 

An Ev as low as 44 J/mm3 is apparently insufficient to achieve a complete solidification, 

which generated irregular pores. Additionally, as revealed in Fig. 4, low laser energy will also 

increase the tendency for balling. Generally, balling is caused by limited wetting due to the 

high surface tension of the melt pool. Low Ev melt pool reduces the wettability owing to the 

limited liquid metal in melt pool. It was reported that re-melting can suppress the balling [41]. 

It is possible that LPBF of lattice structures may have a higher tendency for balling than in 

solid structures due to the reduction in neighbouring laser tracks scans, which reduces the 

re-melting effect caused by the neighbouring laser scan. Balling increases the surface 
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roughness and leads to more powder attachment to the surface of the struts, which 

compromises the geometrical integrity. In contrast, the spherical pores in high Ev processed 

samples (Fig. 5) were attributed to keyholing and Ni-evaporation [42], since the excessively 

high Ev up to 267 J/mm3 increased the melt pool temperature and turbulence, causing material 

vaporisation combined with keyholing. As such, the build density increases initially with the 

increase in Ev to a threshold level beyond which it reduces with the increase in Ev. Besides, 

high Ev also increased the impurities pick-up, as plotted in Fig. 6b. Taking the above factors 

into consideration, a process map for Ti-rich LPBF-processed lattices was generated, Fig. 13. 

As illustrated in Fig. 13a, although the laser parameters in the red region reached the highest 

relative densities up to 99.76%, cracks formed along the build direction. Further increasing Ev 

or P aggravated the formation of cracks, as revealed in Fig. 13b. Only the low Ev (≤ 110 

J/mm3) and low P (≤75W) processed samples were crack-free. 

 
Fig. 13. Laser process map of LPBF-fabricated TiNi: (a) the effects of laser parameter on the 

relative density, Ni evaporation loss rate (right Y axis) and cracks of LPBF-processed samples; 

(b) macro appearance of representative samples taken from the four regions as circled by A-D 

in (a). 

 

The rapid heating and subsequent cooling associated with LPBF leads to the formation of 

residual stresses due to the temperature gradient between the melt pools, causing cracks to 

form [43, 44]. The residual stresses are inevitable, but they could become more intense in 

higher power/energy conditions due to the elevated temperature gradient [45]. The Ni-loss % 
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(the % of the Ni at.% loss in the LPBF-processed TiNi samples to the original Ni at. % in 

powder), was also integrated into the process map Fig. 13a. Using either high Ev or P 

increased the Ni-loss %, with the highest loss approaching 2.1% at an Ev of 267 J/mm3. 

Besides, high P also intensified Ni-loss dramatically (from about 0.7% to 1.8%) for the same 

Ev of 133J/mm3. Though negligible, the higher Ni-loss can decrease the density of the 

LPBF-processed TiNi [16]. Moreover, higher Ev or P also increased the LTW and fusion 

boundary width, as shown in Fig. 7 and Fig. 4, which jeopardise the geometric integrity of 

lattice structures. Consequently, the optimum laser parameter window obtained in this work is 

considered to be Ev= 60-90 J/mm3, alongside P= 60-75W, keeping the structural defects, 

densification, geometric resolution, Ni evaporation and impurity pick-up into consideration. 

The achievable relative density in this region is > 99%. 

 

4.2. Geometrical control analysis 

In order to ensure that the pore size achieves the design value, optimising the CD and BC is 

essential. Fig. 14 shows actual laser filling patterns generated in the Concept Laser M2 

Cusing system when using different BC and CD values, and the correlative schematic 

illustrations of laser tracks further clarify the impact of the BC and CD. Understandably, 

when CD ≤0 (such as BC=CD=0 μm; and BC=0 μm, CD=-75μm), a reduced cavity size and 

an enlarged strut size will be created owing to the width of contour melt pool. When the 

difference between CD and BC is too large (e.g. at BC=0 μm and CD=75 μm), the filling scan 

will stretch over the contour scan, which impairs the function of the contour scan and results 

in poor surface finish. As observed in Fig. 8, using a BC=25 and without contour scan, a part 

with good geometrical precision can be built, the gap between the laser track boundary and 

defined part edge (i.e, BC=25 μm) is considered as metallurgical scaling regions. The 

surrounding surface of the cavity and strut are quite uneven, and the cavity shape is irregular 

without contour. In contrast, the surface roughness and cavity regularity in Fig. 9 were greatly 

improved when a contour scan was applied. Actually, the main function of using a contour 

scan in LPBF is to improve the surface finish. Therefore, using a contour scan in building 

porous or lattice structures using LPBF is indispensable.  
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Fig. 14. Actual laser filling patterns generated in the Concept Laser M2 system and 

corresponding schematic illustrations of laser tracks using different beam compensation (BC) 

and contour distance (CD).  

 

As illustrated in Fig. 14, when using the optimised BC value of 25 μm, a limited CD value 

(such as 0 μm) or minus CD value (such as -75 μm) could also reduce the cavity size, since 

the melt pool radius is larger and the laser track width of the contour scan track would beyond 

the defined part edge, which was demonstrated in Fig. 9a. When the gap between CD and BC 

is too large, such as BC=0 μm and CD=75 μm, the scan tracks will fill beyond the border of 

the contour tracks, which jeopardise the function of the contour scan. In Fig. 9b, the 

combination of BC =25μm and CD=75μm achieved the optimum geometrical precision, since 

the gap between the CD and BC (i.e., the CD-BC value of 50μm) is suitable for the contour 

scan filling up. Specifically, the LTW was measured as d=93±5 μm in Fig. 7 when E=67 

J/mm3 and P=60 W, meaning that half of the LTW (i.e, melt pool radius) was about 47 μm, 

which is quite close to the indicated 50 μm gap between CD and BC. In this case (i.e., CD - 

BC=1/2 × LTW), the surface finish and geometrical precision were all improved.  
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4.3. Phase transformation analysis 

The variation in TTs associated with different Ev conditions (Fig. 12) can be attributed to the 

chemical variations associated with LPBF; mainly impurities (O and C) pick-up and Ni-loss. 

The relationship between oxygen content and MS can be represented using the following 

empirical equation [46]: 

𝑀𝑆 =  78 − 92.63 𝑥𝑂 

where MS is the martensite start temperature in ˚C and 𝑥𝑂 is oxygen content in wt. %. 

Oxygen pick-up decreases the MS by ~93 ˚C/wt.%, This decrease in MS is related to the 

formation of Ti-rich secondary phases such as Ti4Ni2OX, which in turn increases the Ni 

concentration in the matrix by withdrawing more Ti atoms [47, 48]. 

Carbon also decreases the TTs in TiNi through Ti-depletion by forming TiC, which would 

follow a quasi-binary eutectic reaction (TiNiC
1280°C
�⎯⎯⎯�  TiNi 𝐵2 + TiC) [49, 50]. Frenzel et al. 

[49] and Honma [46] investigated the effect of C on the martensitic phase transformations in 

TiNi SMAs. Frenzel et al. produced an empirical formula depicting the relationship between 

MS (in ˚C) and the C concentration (𝑥𝑐) in the TiNi alloy (in at.%) [49]: 

𝑀𝑠 ≈ 7.5℃ − 73.3
℃

𝑎𝑎. %
∙ 𝑥𝑐 

So the MS temperature can be decreased by about 73˚C/at.% by increasing the C-content 

according to the above relationship. Similarly, Honma [46] obtained a value of about 

100˚C/at.%. Therefore, MS can be lowered down to about 73-100 ˚C/at.% by increasing 

carbon content. This may be related to the fact that the TiC particles and its surrounding stress 

field promoted the nucleation and formation of martensite [49]. However, as shown in Fig. 6b, 

at a higher Ev, the C and O pick-up during LPBF process was <0.02 wt.% compared with the 

C and O contents in the as-received powder. These C and O pick-up amounts of <0.02 wt.% 

will be more even smaller (<<0.02 at.%) when using at. %, since the relative atomic mass of 

O and C are much smaller than Ni and Ti. Therefore, in our work, the influence of impurities 

pick-up during LPBF processes on the TTs was insignificant. 

It is well known that the MS, which is ~60ºC in equiatomic TiNi, can be decreased 

continuously by approximately 83-100 ˚C per at.% with Ni addition [47, 48, 51]. But, when 
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the Ni at.% content is lower than 50 at.%, the MS is almost constant [48, 51]. However, the 

higher Ev input could result in a formation of a large amount of Ti2Ni precipitates. One cannot 

neglect that the high Ti2Ni content (18-27 vol.%) in this work (Fig. 11c) depleted a significant 

amount of Ti from the matrix, which may shift the TiNi matrix composition to a higher Ni. To 

verify this hypothesis, further calculations were conducted. The atomic percentage of TiNi 

and Ti2Ni can be express as:  
𝑛𝑇𝑇Ni
𝑛𝑇𝑇2𝑁𝑇

=
𝜌𝑇𝑇Ni𝑉𝑇𝑇Ni
𝜌𝑇𝑇2Ni𝑉𝑇𝑇2Ni

×
𝑀𝑇𝑇2Ni

𝑀𝑇𝑇Ni
 

where 𝜌𝑇𝑇Ni = 6.49 g/cm3 and 𝜌𝑇𝑇2Ni = 5.72 g/cm3 [52, 53]. The molar mass of these 

two phases are 𝑀𝑇𝑇Ni = 107g/mol and 𝑀𝑇𝑇2Ni = 155g/mol, respectively. So the ratio of 

𝑛𝑇𝑇Ni 𝑛𝑇𝑇2𝑁𝑇�  was calculated to be 4.4-7.5 taking the Ti2Ni content of 18-27 vol.% into 

consideration. On the basis that the atomic ratio of Ni:Ti in the raw powder was ~ 45.2:54.8 

at.%, the atomic ratio of Ni:Ti in the TiNi matrix is calculated to be 49.6:50.4 at.% in low Ev 

(67J/mm3) samples, and the atomic ratio of Ni:Ti in the matrix is 51:49 at.% in the higher Ev 

(267J/mm3) samples. For the lower Ev sample (67J/mm3), although, the Ti2Ni precipitation 

caused Ni increase of matrix, the Ni content was still below 50 at.%, so the TTs was inclined 

to be stable despite the negligible decrease. As for the higher Ev sample (267J/mm3), the 

increased Ni content (>50 at.%) could decrease TTs towards the region where it drops by 

83-100 ˚C per at. % Ni increment in the matrix. Consequently, the main contribution to the 

TTs variation in the LPBF-processed samples could be the formation of Ti2Ni intermetallic 

precipitates during LPBF processes, suggesting it is essential to perform post-LPBF heat 

treatment to homogenise the matrix chemistry and reduce the TiNi content, which will be 

discussed in our future publication, alongside the mechanical properties of the lattices. 

 

5. Conclusions 

LPBF was used to produce TiNi lattices with high-density (>99%) and high geometrical 

precision. The main findings can be summarised as follows: 

(1) The optimum processing window identified in this work was Ev= 60-90 J/mm3 along with 

P=60-75W by considering the impact of the process parameters on the formation of defects, 
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densification, geometrical precision, Ni-loss, and impurity pick-up into considerations. Higher 

Ev and P caused serious horizontal cracks and Ni evaporation.  

(2) A reasonable combination of LTW, BC and CD, whereby CD - BC=1/2 × LTW, was 

critical to enable the geometry of the lattices to match the design.  

(3) The solidified microstructure varied depending on the process parameters. The influence 

of impurities pick-up during the processes on the SME TTs was negligible, with the main 

contribution to the variation TTs being the high friction Ti2Ni intermetallic precipitates that 

formed during the process, altering the TiNi matrix chemistry. 

Data Sharing 

The authors are happy to share the experimental data upon request. 
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