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Featured Application: This study established a new approach for calculating the effect of
vibration-induced pressures on cylindrical thin-walled structures. Such a method will benefit the
design of cylindrical thin-walled structures subjected to wind loads, earthquakes, etc. Structural
designers can use the approach to evaluate the structural effects of vibrating air or fluid.

Abstract: This paper unprecedentedly addresses the effect of vibrations of a cylindrical structure
on dynamic pressures in a compressible and incompressible fluid situation. To obtain analytical
solutions, the density of the fluid is simplified as a constant, but the rates of the density with respect
to time and to space are considered as a dynamic and time-dependent function. In addition, the low
velocity of the vibration is taken into account so the lower order terms are negligible. According to
the assumption that the vibration at the boundary of the structure behaves as a harmonic function,
some interesting and new analytical solutions can be established. Both analytical solutions in the
cases of the compressible and incompressible fluid are rigorously verified by the calibrated numerical
simulations. New findings reveal that, in the case of the incompressible fluid, dynamic pressure at
the surface of the cylindrical shell is proportional to the acceleration of the vibration, which acts like
an added mass. In the case of the compressible fluid, the pressure at the surface of the cylindrical
structure is proportional to the velocity of the vibration, which acts as a damping. In addition, the
proportional ratio is derived as ρc.

Keywords: incompressible fluid; cylindrical structure; fluid-structure interaction; viscous damping

1. Introduction

In recent years, owing to the large demand for civilian buildings, ocean engineering, military
structures, and membrane structures [1,2], many large-span structures have been widely designed for
public uses [3–5]. It is well known that those structures are generally light and flexible so they are
sensitive to dynamic loads, such as wind loads, seismic loads, etc. [6]. There are several examples [7–9]
in which fluid pressure induced by the vibration of light and flexible structures has a significant effect
on the mechanical system. However, the prediction of the fluid pressure induced by the vibration is
very difficult; and there are very few pertinent investigations in the open literature. Due to the lack of
understanding in this field, it is necessary to embark on studies, including experimental, theoretical,
and numerical simulation studies [10–12].

Based on the potential flow theory [13,14] and the hypothesis that the vibration mode of a structure
can be a sinusoidal function shape, Minami [15] deduced a significant result that the added mass of
a planar membrane in a rectangle is 0.68 divided by the mass ratio, m/ρl. Actually, his conclusion
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only fulfilled the 1-D condition. Kubenko, Dzyuba [16] proposed a new method to investigate the
behavior of an elastic shell submerged in an unbounded fluid. In his paper, the fluid was assumed to
be an elastic medium, and some analytical solutions written as a Fourier series were proposed. Several
publications exist that investigated VIV (vortex-induced vibration) problems. Sorokin et al. [17] studied
flow-induced vibration of a cylindrical shell conveying a compressible fluid. Chung [18] addressed a
new approach to estimate the pressure of a circular shell beneath a free surface.

Mancinellli and Brocchini [14] carried out an experimental investigation of wave-induced flow
around a cylinder in different conditions with several Keulegan-Carpenter ratios and Reynolds
numbers. In Kaiser Calautit’s work [19], numerical analysis of several wind towers located on the same
building was conducted following the verification of a benchmark model against the wind tunnel data.
Some new findings were produced via experiments, but those findings did not include discussion via
theoretical analysis.

Unfortunately, in the papers presented above, the incompressible fluid hypothesis was mostly
taken into account [20,21], which can simplify the mathematical difficulty in the analytical solution,
but also changes the physical rules of the FSI problems [22–25]. In addition, very few studies were
devoted to vibrations of a cylindrical shell.

Based on the reasons above, this paper is the first to consider a cylindrical structure vibrating
in the radius direction in both compressible and incompressible fluid [26–28]. Additionally, some
analytical solutions were obtained. In addition, a new mathematical model about the damping ratio
of the cylindrical shell vibrating in the fluid was derived and validated. This study enables a novel
analytical prediction that can be practically utilized in the design and analysis of cylindrical shell
structures interacting with wind loads, earthquakes, blast loading, and so on. This new mathematical
technique can be extended to the other research fields. The rest of this study is organized as follows:
The governing equations are presented in Section 2. In Section 3, the numerical verifications are
investigated and discussed, and finally a summary and conclusions are presented in Section 4.

2. Governing Equations

Based on the inviscid fluid consideration, there is an assumption of p = c2ρ, where p, c, and
ρ denotes the static pressure, the sound speed, and the density of the fluid, respectively. The
fluid–structure interaction equation can be employed below [29], relying on the assumption that
the amplitude of the cylindrical structure vibrating in the radius direction is relatively small compared
to its radius. The geometry model is shown in Figure 1. Considering the rotationally symmetric
deformation of this structure [30–32], the dynamic pressure on the boundary of the fluid affects the
structure simultaneously. The governing equations include both the structure dynamics equation as
Equation (1) [33,34] and the fluid dynamic equation as Equation (2) [35–37], namely:

m
∂2U
∂2t

+ k · ∇4U + ∆p = 0 (1)


∂ρ
∂t +

∂ρu
∂r + ρu

r = 0
∂u
∂t + u ∂u

∂r + c2

ρ
∂ρ
∂r = 0

(2)

Equation (1) is the typical structural dynamic mechanical equation, where m is the areal density
of the structure, U is the displacement, k is the bending stiffness, and ∆p is the pressure of the flow
field boundary acting upon the structure. The initial conditions can be written as follows:

U|t=0 = 0,
∂U
∂t

∣∣∣∣
t=0

= us(0) (3)

Equation (2) is the fluid control equation, which is also called the Naiver-stokes equation. The
first equation of Equation (2) is the mass conservation equation and the second one is the conservation
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of momentum equation. In Equation (2), ρ is the fluid density, p the static pressure in the fluid field, c is
the sound speed, and u is the fluid velocity generated by the vibration of the boundary. On introducing
the symbol:

∂U
∂t

= us(t) = u (4)

The boundary conditions can be written as follows:

u|r=rs
= us(t), p|r=R = p0 , u|r=R = 0 (5)

where rs expresses the boundary of the fluid and is a function of the time, thus:

rs = rs(0) + U (6)

On the assumption that the amplitude is very small compared to the radius, rs, rs can be considered
as a constant value. The initial conditions can be written as shown below (Equation (7)):

u|t=0 = 0, ρ|t=0 = ρ0, p|t=0 = p0 (7)
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Figure 1. The schematic states of the vibration of the cylindrical shell.

2.1. Solution of the Compressive Fluid

It can be assumed that the velocity can be a harmonic function with a frequency of ω, so it can be
written as:

∂2u
∂t2 = −ω2u (8)

Meanwhile, based on the physical property of the fluid, the density change is very small, but the
rate of the density with respect to time or respect to space may not be small. As a matter of fact, the
smaller the change of the density, the larger the change of the pressure according to the state equation
of fluid. Therefore, in this paper, the density is assumed to be a constant value, ρo, and the rate of the
density with respect to time or to space are variables. From the second term of Equation (2), it can be
transformed to Equation (9):

∆ρ = ρ− ρ0 = −ρo

c2

∫ ∞

r

∂u
∂t

dr +
ρo

2
u2

c2 (9)

From Equation (3), it can be seen that the changes in density or pressure come from two sources:
The change of the velocity with respect to time or to space. By neglecting the second term of Equation
(3) and substituting another term into the continuous equation, the following equation can be obtained
(Equation (10)):

− ρo

c2

∫ ∞

r

∂2u
∂t2 dr + ρo

∂u
∂r

+
ρou

r
= 0 (10)
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Afterwards, Equation (3) can be transformed after being divided by the density, ρo:

− ω2

c2

∫ ∞

r
udr +

∂u
∂r

+
u
r
= 0 (11)

Furthermore, the equation can be simplified by taking the derivative on both sides of Equation (11):

∂2u
∂r2 +

1
r

∂u
∂r

+ (
ω2

c2 −
1
r2 )u = 0 (12)

By letting s = ω · r/c, the above equation can be simplified as Equation (13), finally:

s2 ∂2u
∂s2 + s

∂u
∂s

+ (s2 − 1)u = 0 (13)

Equation (13) is the classical Bessel function [38,39]; the general solution can be derived as:

u = A · J1(s) + B ·Y1(s) (14)

where A, B is an arbitrary function with respect to time. J1(s), Y1(s) is the first and second order Bessel
function, respectively. The coefficient of A, B can be confirmed via the boundary condition:{

us(t)|r=rs
= A · J1(srs) + B ·Y1(srs)

0 = A · J1(sR) + B ·Y1(sR)
(15)

If the radius of the boundary is R→ ∞ , the second boundary condition will be satisfied naturally
as J1(sR), Y1(sR) tends to 0. In this case, it is reasonable to assume u as a harmonic function with a
frequency of ω as well, so that:

A = C · cos(ωt + ϕ), B = C · sin(ωt + ϕ) (16)

where, C, ϕ are the coefficients which express the amplitude and phase angle, respectively. By
considering the velocity as a harmonic function, us(t) = D · sin(ωt) can be obtained, where D is the
amplitude of the vibration. Additionally, the boundary condition can be written as Equation (17) below
by submitting Equation (16) to Equation (15). The coefficients of C and ϕ can thus be confirmed:

C · (cos(ωt + ϕ)J1(sr) + sin(ωt + ϕ))Y1(sr) = D · sin(ωt) (17)

2.2. Analyses of the Velocity

The solution of Equation (17) can be simplified as follows via trigonometric function theory:

C
√

J2
1 (sr) + Y2

1 (sr) sin(ωt + ϕ + φ) = D · sin(ωt) (18)

where sr =
ω
c rr, tan(φ) = J1(sr)

Y1(sr)
. So, it can be concluded that by solving Equation (18) above:

C =
D√

J2
1 (sr) + Y2

1 (sr)
, ϕ = −φ = −arctan(

J1(sr)

Y1(sr)
) (19)

Moreover, the Bessel functions have the following asymptotic forms for large arguments, s: J1(s) =
√

2
π

cos(s− 3
4 π)√

s

Y1(s) =
√

2
π

sin(s− 3
4 π)√

s

(20)
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At last, the analytical solution of the velocity can be concluded using the previous relationship:

u =
D√

J2
1 (sr) + Y2

1 (sr)

√
c
ω

2
π

cos(ω(t− r
c ) + ϕ + 3

4 π)
√

r
(21)

According to Equation (21), the vibration of the boundary at time t0 will be propagated to the
location, r = ct, over time t and the amplitude will decrease by the decreasing rate of 1/√r.

2.3. Analyses of the Pressure

As for the pressure analysis, it is known from Equation (9) that the pressure contributed by
acceleration with respect to time is:

∆P = −ρo

∫ ∞

r

∂u
∂t

dr (22)

The Bessel function has the following asymptotic forms for large arguments, s:∫
J1(r)dr = −J0(r),

∫
Y1(r)dr = −Y0(r), lim

r→∞
J1(r) = 0, lim

r→∞
Y1(r) = 0, (23)

Therefore:

∆P = ρoc
D√

J2
1 (sr) + Y2

1 (sr)
[cos(ωt + ϕ +

π

2
)J0(s) + sin(ωt + ϕ +

π

2
)Y0(s)] (24)

where the value of s, ϕ is the same as in Section 2.2 above. If s is large, the following statement will
be true:  J1(s) =

√
2
π

cos(s− 1
4 π)√

s

Y1(s) =
√

2
π

sin(s− 1
4 π)√

s

so, the simplest solution may be got, finally,

∆P = ρoc
D√

J2
1 (sr) + Y2

1 (sr)

√
c
ω

2
π

cos(ω(t− r
c ) + ϕ + 3π

4 )
√

r
= ρoc · u. (25)

It can be derived from Equation (25) that the pressure is proportional to the velocity of the
vibration and the proportion is a product of the density and sound speed. In addition, it is a large
value compared to the pressure contributed from migration acceleration, 1

2 ρou2. That is the mean,
neglecting migration acceleration as done in the solution of Section 2.2, is reasonable.

2.4. Incompressible Fluid Solution

For comparison, it is necessary to consider the case of vibration in the incompressible fluid
situation. The control equation can be listed as follows:

m ∂2U
∂2t + k ·U + ∆p = 0

∂u
∂r + u

r = 0
∂u
∂t + u ∂u

∂r + 1
ρo

∂p
∂r = 0

. (26)

where the symbols are the same as in Section 2.1. The boundary condition in the structural equation in
this case is the same as Section 2.1, while the boundary condition in the fluid aspect is:{

u|r=rs
= us(t)

p|r=R = p0
(27)
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The following solution can be concluded according to the continued equation of Equation (26)
combined with the boundary condition of u|r=rs

= us(t):

u(r, t) =
rs

r
us(t) (28)

Also, the general solution of pressure can be obtained below from the momentous equation of
Equation (26) by substituting Equation (28) into it:

p(r) = −ρ0
∂us

∂t
ln(R/r)− 1

2
u2

s
r2 + C (29)

At last, the specific solution of this case may be deduced as follows combined with the boundary
condition of p|r=R = p0:

∆p = p− p0 = ρ0rs
∂us

∂t
· ln(R

r
) +

1
2

ρ0u2
s

r2
s

r2 (30)

Generally speaking, R is a large value and the vibration acceleration, ∂us/∂t, may be of the same
order with a magnitude of us. Therefore, the second term in the specific solution of Equation (30) can
be neglected and the approximate result can be derived as the following statement:

∆p = ρ0rs
∂us

∂t
· ln(R

r
) (31)

2.5. Discussion

There are some significant differences between the solution of Equations (25) and (31). As for
the case of an incompressible fluid, the pressure is proportional to the boundary acceleration and it
has a logarithmic relationship with the length of the flow field, which implies that the radius of the
boundary has a significant effect on the pressure result. In addition, after substituting Equation (31)
into Equation (1), it was found that the effect of pressure is equivalent to the effect of added mass. It is
remarkable that if the radius of the boundary becomes extremely large (mostly it will be in the CFD
solution), the pressure on the boundary surface becomes very large as well. This characteristic can
result in unsolvable difficulties in fluid–structure interaction problems using CFD methods.

As for the case of the compressible fluid case, according to the solution, ∆p = ρoc · u, it can be
concluded that the pressure is proportional to the velocity of the boundary, and the proportional ratio
is the product of the sound speed and the density. In this case, the effect of the pressure is equivalent
to the viscous damping, and the damping coefficient is a constant value.

From the point of view of a physical sense, over time, ∆t, the amount of fluid affected by the
structure is π[(rs + us∆t)2 − r2

s )], whilst, the region it can reach is π[(rs + c∆t)2 − r2
s ]. Thus when

∆t→ 0 , the air compression ratio is:

lim
∆t→0

π[(rs + us∆t)2 − r2
s )]

π[(rs + c∆t)2 − r2
s ]

=
us

c
(32)

Plus, the air compression modulus [40] is ρoc2, and the pressure of compression air can be
calculated as follows according to Hoke’s law:

p = c2 · us

c
= ρoc · us (33)

which is identical to Equation (25).
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3. Numerical Verification

Based on the preceding analysis, two simulations with a semi-circular shell submerged in
unbounded fluid were calculated by CFD analysis using commercial computer code, ANSYS (release
18.0). The CFD model has an identical shell geometry, boundary conditions, and material properties as
those used in the theoretical analysis.

3.1. Case 1: A Cylindrical Shell

3.1.1. Model Details

The radius of the semi-circular shell is 10 m and the unbounded fluid was simulated as a far field
boundary whose radius was 500 m (shown Figure 2a). The material properties of the fluid were set
up as follows: Density = 1.225 kg/m3; sound velocity, c = 340 m/s. The viscosity is so small that it
can be neglected in both the theoretical analysis and CFD calculation. The purpose of this paper is to
investigate the principle of pressure under vibrations of a structure. The movement of a semi-circular
shell was set as a uniform vibration in the radius direction. As for the calculation parameters, the far
field boundary was set to be the far field pressure, the reference pressure value was zero, boundary
movement (it is the same as the shell vibration) was set as U(t) = sin(10t), which is shown in Figure 2b,
the calculating time was set to 1.0 s, and the delta-time to 0.001 s. A simple scheme second order
method was accepted in the CFD simulation and the initial condition in fluid was set to a stationary
condition. For comparison, two cases of a compressible and an incompressible fluid were carried
out, respectively.

In order to present the effect of the discretization, numerical solutions with different meshing
sizes are displayed. Table 1 shows the comparison of the total energy in the fluid, including kinetic
energy and pressure potential energy, at t = 0.2 s. As the results in the case of a size of 0.2 m and 0.1 m
are the same, the size of 0.2 m was thus adopted in this paper. Afterward, there were a total of 24,885
structural hexahedron elements in the numerical model.

Table 1. The total energy with different densities of mesh.

Density of Shell Mesh (cm) 2.0 1.0 0.8 0.5 0.3 0.2 0.1
Total energy (104 J) 4.52 4.21 3.93 3.90 3.89 3.88 3.88
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Figure 2. The circular symmetry model of a semi-circular shell vibrating in unbounded velocity.

3.1.2. Velocity Analyses

Figure 3 shows the relationship of the velocity vs. radius when t = 1.0 s. The continuous red line
and green dot line show the value of the numerical result and the analytical solution in the case of
the incompressible fluid and the compressible fluid, respectively. In the model described above, it
is known that sr = 0.294, J1(sr) = 0.146, Y1(sr) = −2.334, and D = 1, therefore, the parameters can
be derived as C = 0.425, ϕ = −0.063. For the case of the compressible fluid, the analytical solution
is u = −1.98 cos(10− r/34 + 2.3)/

√
r, while for the case of the incompressible fluid, the analytical

solution is u = −5.44/r. The correlation coefficients of the two figures are 0.982 and 0.937, respectively,
which show that the analytical solutions and the numerical results are in good agreement. It can be
concluded from the analytical solutions that the boundary motion is transmitted to the whole fluid
instantly. Additionally, among the field of r > ct, all the fluid field remains in the initial situation. To
show the whole shape of the analytical solution, the theoretical result was not cut off beyond the range
of r > ct. That is why in Figure 3b, the data ranges from r < 350 fits very well and some discrepancy
exists between the numerical value and analytical solution in the range from r > 350.Appl. Sci. 2019, 4, x; doi: FOR PEER REVIEW 9 of 17 
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3.1.3. Pressure Analyses

Figure 4 shows the curve of pressure vs. radius at the condition of t = 1.0 s. The continuous
line and dotted line of Figure 4a show the value of the numerical and theoretical result in the case
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of an incompressible fluid, while Figure 4b shows the result in the case of a compressible fluid. The
correlation coefficients of the two figures are 0.973 and 0.928, respectively. It can be seen that the
theoretical results fit the numerical results very well.
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3.1.4. Pressure vs. Velocity

Figure 5 shows the relationship between the velocity and pressure under the assumption of a
compressible fluid. The data of the blue circle expresses the numerical results and the red line expresses
the linear line of the fitting curve via the least squares method. The results show that the numerical
results are approximate to the linear relationship and the fitting coefficient is 418. The theoretical
prediction is close to ρoc = 417, which fits the result very well.
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3.2. Case 2: Trigonal Velocity

3.2.1. Simulation Model

To verify that this paper’s conclusion can be applied to the other velocity model, the simulation of
trigonal velocity, which is written as Equation (34), was implemented, which is illustrated in Figure 6,
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and the other parameters were identical to case 1. In Equation (34), the function of round(t) returns a
number rounded to a given digit:

v(t) =

{
3 · s,

3− 3 · s,
, s = round(t) (34)
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harmonica velocity. Figure 7a shows the velocity on the line [X = 0, Y = (10,500)], which is shown in 
Figure 8a. It presents that in the case of a compressible fluid, the result does fit not well, especially in 
the area marked by the blue rectangle, and there is a large discrepancy. However, in the case of an 
incompressible fluid, the result of the simulation fits with the theoretical result very well. This is 
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3.2.2. Velocity Analyses

As the velocity was a non-harmonica function, the velocity in case 2 could not be strictly evaluated
by the conclusion above. In this section, Equation (21) is extended to be applied to the non-harmonica
velocity. Figure 7a shows the velocity on the line [X = 0, Y = (10,500)], which is shown in Figure 8a. It
presents that in the case of a compressible fluid, the result does fit not well, especially in the area marked
by the blue rectangle, and there is a large discrepancy. However, in the case of an incompressible fluid,
the result of the simulation fits with the theoretical result very well. This is because Equation (21) is
based on the velocity being a harmonic function, which was described in Section 2.1. Additionally,
it can be seen that there is no dominant frequency for the function of Equation (34) by the Fourier
series, so the velocity of the inlet in case 2 does not agree with the harmonic function assumption,
strictly. Figure 7b agrees with the theory very well as Equation (28) is true without the limitation of the
harmonica function, which is described in Section 2.4.
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3.2.3. Pressure Analyses

In applications, the designer mostly cares more about pressure rather than the distribution of
the velocity. Although the velocity is not the harmonica function, the pressure can be estimated by
Equations (16) and (22). Figure 8 shows a contour map of the pressure when the time is 1.48 s.

Figure 9 illustrates the curve of pressure on the line of X = 0, Y = (10,500), which is shown in
Figure 8. It is shown in Figure 9a that the result marked with the blue rectangle has some discrepancy
compared with the other results that agree very well with the theory. Additionally, in the case of the
incompressible fluid, the simulation results fit very well with the prediction of the theory.
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3.2.4. Pressure vs. Velocity

As predicted in Equations (16) and (22), the pressure in the case of compressible fluid is
proportional to the fluid velocity. The simulation and the theoretical result are shown in Figure 10a.
There is some discrepancy nevertheless, but it can also be evaluated by the theoretical prediction. As
for the incompressible fluid case, there is a very interesting result in that the pressure is the periodic
step function, which the simulation agrees with very well. The error between the simulation and
theory is about 17/143 = 12%, which may be caused by the numerical calculation and the simplification
of the solution.
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3.3. Case 3: FSI Model of the Elliptical Shell

3.3.1. Model

An FSI simulation was completed to verify the validity of the theoretical conclusion via the
module of the system coupling connecting the fluid solution and a transit solution. The simulation
shown in Figure 11 was carried out by the loose coupled method. From the point of view of the fluid
solution, all the parameters were identical to the model of case 1 except for the boundary, which was
coupled to the structure analysis. From the point of view of the structure solution, the circular shell
was set to an ellipse shape, and all the parameters are listed in Table 2. For comparison, the solo transit
analysis via the theoretical pressure and Bernoulli method [41,42] were calculated. The results of point
N1 and N2 marked in Figure 6 were discussed to verify the displacement result while the result on
line L-1 was to verify the pressure solution.Appl. Sci. 2019, 4, x; doi: FOR PEER REVIEW 13 of 17 
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Figure 11. Schematic diagram of the FSI mode.

Table 2. Parameters of the FSI analysis.

Semi major axles (a) 10 m Acceleration load 3 sin(15 t) Yang’s module 210 GPa
Semi minor axles (b) 7 m Boundary pined Poisson’s ratio 0.3

Thickness of shell 0.01 m Total time 10 s Delta time 0.01 s

3.3.2. Displacement Results

Figure 12 presents the time history of the x-direction displacement in point N1 and point N2 of a
circular shell vibrating under a sine wave load. Both plots show that the results calculated from theory
are in good agreement with the results calculated from the FSI simulation. In contrast, the result from
Bernoulli has a large gap from the FSI result.
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Figure 12. The time history of the X-direction displacement at the point of N1 and N2.

3.3.3. Pressure Results

Figure 13 shows the instantaneous pressure contour of fluid when t = 1.0 s and Figure 9 illustrates
the velocity contour of a circular shell at the same time. According to Section 2 above, it is known that
the circular shell is the boundary of the fluid; that is, the mean of the velocity of the boundary of the
fluid is identical to the circular structure, which is verified by Figures 12 and 13.Appl. Sci. 2019, 4, x; doi: FOR PEER REVIEW 14 of 17 
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Figure 13. The instantaneous contours of velocity when t = 1.0 s.

In addition, the streamline is shown in Figure 13. The streamlines generated from the boundary
extend outside. It should be noticed that some part of the circular shell, seen as a red color in Figure 14,
may vibrate back from the balance position, while some other part, seen as a blue color in Figure 14,
may vibrate out from the balance position. The streamlines only come from the position of vibrating
out to the position of vibrating back.

Figure 15 presents the relationship between the pressure on the line, L-1, and its x coordinate
value. The theoretical results are in good agreement with the FSI simulation results. The plot of the
pressure vs. velocity at the position, L-1, at t = 1.0 s is shown in Figure 16. The pressure is almost
proportional to the velocity, which was predicted by the analytical solution.
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Figure 14. The velocity response in the y-direction of the circular shell when t = 1.0 s.
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Figure 15. Pressure at the position, L-1, when t = 1.0 s.
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4. Conclusions

Through the theoretical analysis of the vibration in the fluid of a circular shell structure, analytical
solutions in both the incompressible fluid and compressible fluid were obtained. Compared with the
numerical simulation results, the following conclusions can be made.

In the case of the incompressible fluid condition, the pressure of the structure is proportional
to the boundary acceleration and it has a logarithmic relationship with the length of the flow field,
which may result in unsolvable difficulties in the CFD solution. While under the condition of the
compressible fluid, the boundary pressure is proportional to the velocity of the boundary and has
nothing to do with the length of the flow field. Under the assumption of incompressible fluid, the
effect of the pressure acting on the structure is equivalent to the added mass while in the case of
compressible fluid, the pressure effect is equivalent to the viscous damping, and the damping ratio is
ρoc, exactly. Under the incompressible fluid condition, the structural vibration is transmitted to the far
field instantly while in the case of a compressible fluid, the vibration will be transmitted to the far field
in a certain degree of time.

Via the new findings reported in this study, the dynamic pressure under the surface of a structure
vibrated by an earthquake, boom blast, wind load, etc. can be accurately evaluated. The novel
computational technique can also be applied to predict the effect of a fluid acting under the dynamic
motion of a structure.
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