
 
 

University of Birmingham

Compressive Sensing Based Hyperspectral
Bioluminescent Imaging
Bentley, Alexander; Rowe, Jonathan E.; Dehghani, Hamid

DOI:
10.1117/12.2507223

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Bentley, A, Rowe, JE & Dehghani, H 2019, Compressive Sensing Based Hyperspectral Bioluminescent Imaging.
in KK Tsia & K Goda (eds), SPIE Proceedings - High-Speed Biomedical Imaging and Spectroscopy IV. vol.
10889, 54, SPIE Proceedings, vol. 10889, Society of Photo-Optical Instrumentation Engineers, SPIE BIOS High-
Speed Biomedical Imaging and Spectroscopy IV, San Francisco, United States, 2/02/19.
https://doi.org/10.1117/12.2507223

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility:03/04/2019
Copyright 2019 Society of PhotoOptical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only.
Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification
of the contents of the publication are prohibited.

Alexander Bentley, Jonathan E. Rowe, and Hamid Dehghani "Compressive sensing based hyperspectral bioluminescence imaging", Proc.
SPIE 10889, High-Speed Biomedical Imaging and Spectroscopy IV, 108891H (4 March 2019);
 https://doi.org/10.1117/12.2507223

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024

https://doi.org/10.1117/12.2507223
https://doi.org/10.1117/12.2507223
https://birmingham.elsevierpure.com/en/publications/b8ff61c4-bdb3-4db0-a08e-6bc9c21d0f3f


Compressive Sensing Based Hyperspectral Bioluminescent Imaging 
 

Alexander Bentley*a,b, Jonathan E. Rowea, , Hamid Dehghania,b 
a School of Computer Science, College of Engineering and Physical Sciences, University of 

Birmingham, UK; 
b Physical Sciences for Health Doctoral Training Centre, College of Engineering and Physical 

Sciences, University of Birmingham, UK  

*axb1179@student.bham.ac.uk 

ABSTRACT   

Photonics based imaging is a widely utilised technique for the study of biological functions within pre-clinical studies. It 
is a sensitive and non-invasive technique that is able to detect distributed (biologically informative) visible and near-
infrared light sources providing information about biological function. Compressive Sensing (CS) is a method of signal 
processing that works on the basis that a signal or image can be compressed without important information being lost. 
This work describes the development of a CS based hyperspectral Bioluminescence imaging system that can be used to 
collect compressed fluence data from the external surface of an animal model, due to an internal source, providing lower 
acquisition times, higher spectral content and potentially better tomographic source localisation. 
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1. INTRODUCTION  
Bioluminescence Imaging (BLI) is light based imaging technology which has been shown to be a sensitive and non-
invasive pre-clinical methodology. The technology is based on the detection of visible and near-infrared light produced 
by, for example, luciferase-catalyzed reactions (bioluminescence), which allows for the non-invasive detection and 2D 
visualization of functional activity within intact living animals and is becoming widespread due to the prognostic insights 
it can provide into established model of disease. BLI has a number of advantages over fluorescence imaging, for 
example, in BLI there is no need for external excitation of the exogenous contrast as the signal is generated directly by 
the luciferase-catalysed reactions, and typically the signal is well localised (i.e. sparse)1. 
 
The basic idea of Compressive Sensing (CS) theory is that when the image of interest is very sparse or highly 
compressible in some basis (i.e., most basis coefficients are small or zero-valued, which is true for Bioluminescence due 
to the localisation of the sources), relatively few well-chosen observations are sufficient for the reconstruction of the 
image. These observations must obey certain properties: in particular, the observations should randomly sample the 
entirety of the image. The acquisition of a small number of such distributed measurements, followed by reconstruction 
(subject to a maximum sparsity constraint) is the essence of CS: the data that is acquired is a “compressed” 
representation of the image, and the full image data can be reconstructed exactly with high probability. This technique 
therefore finds the basis of a signal that is sparse or compressible, meaning that a signal of length n can be represented 
by 𝒌≪𝒏 nonzero coefficients. A sparse signal can be represented with high accuracy by only keeping the values and 
locations of the largest coefficients of the signal. 
 
In this work, the development of a CS based hyperspectral imaging system is presented. An experimental phantom study 
is carried out to demonstrate that an internal light source can be tomographically reconstructed using measured 
compressed hyperspectral data from the external surface with good accuracy. 
 

2. THEORY 
Compressive or Compressed Sensing is a signal processing technique that utilises the sparse nature of real-world signals 
in order for them to be compressed either in its original domain or in some transform domain. It works in a similar way 



 
 

 
 

 
 

to standard image/signal compression algorithms such as JPEG-2000, where the data vector which represents the raw 
pixels of the image is transformed using the discrete wavelet transform (DWT). Once the image has been transformed, 
all of the small wavelet coefficients below a threshold are set to zero leaving behind a sequence that can be stored 
efficiently and when required can be inverse-transformed to provide an approximate representation of the original image 
or signal2.  The basis or domain of a signal that is sparse or compressible is found when using this technique, meaning 
that a signal of length n can be represented by  nonzero coefficients, where k is the sparseness. It is therefore 
possible to represent a sparse signal with high accuracy by only using the values and locations of the largest coefficients 
of the signal.   
 
By using this concept, it is possible to create a new framework for both acquiring signals and how sensors are designed. 
If a signal is sparse or compressible, it is possible to acquire a signal with less samples than is classically suggested 
within the Nyquist-Shannon sampling theorem, which states there needs to be a minimum number of measurements 
taken in order to perfectly capture an arbitrary signal3. In CS, rather than first sampling at a high rate and then 
compressing the collected data, it is possible to directly collect the compressed data. This enables a potentially massive 
reduction in the sampling and computational costs of measuring signals that are sparse4. 
 
A number of methods can be employed to recover the raw signal from the compressed data that is measured. The 
classical approach to solving this problem is to minimise the l2 norm (energy) of signal x such that: 
 
  (1) 

 
Where, A is a random mxn matrix made up of 1’s and –1’s and b is the measured data of length m. This method also 
referred to as least squares and has a simple closed form solution, however this method almost never finds a sparse 
solution and often returns a nonsparse solution with many nonzero values. The correct approach is to minimise the l0 
norm of the signal which finds the sum of the zeroth power of the components that make up the signal so will in-turn 
find the sparsest solution5. However, solving this is both numerically unstable and NP-complete, meaning that is it near 
impossible to find the correct solution without exhaustive enumeration of all of the nonzero values in the signal. A 
method that can be employed is to minimise the l1 norm of signal, which assuming the signal is sparse, can recover the 
exact sparse solution. If it is assumed that instead of the signal being sparse, the gradient of the underlying signal or 
image is sparse, it is possible to recover the signal by minimising the total variation (TV) of the signal instead of the l1-
norm6.  
 

3. MATERIALS AND METHODS 
3.1 Imaging System 

Figure 1 presents a schematic of the imaging system that has been developed, showing the different components that 
allow making measurement from a sparse source distribution map. A Texas Instruments DLP Lightcrafter 4500 has been 
modified so that the digital micro-mirror device (DMD) within it can be used to direct random projections of the imaging 
scene into a spectrometer. The DLP is modified by removing the three LEDs that are part of the system and then 
attaching one end of an optical fibre in its place for detection. The DMD within the DLP is an array of 912 by 1140 
micro mirrors that can be individually controlled to be in either an ‘off’ or ‘on’ position. This allows for random binary 
patterns to be created as shown in Figure 1(c). The spectrometer used in the system is an Ocean Optics Flame S-VIS-
NIR, which has an optical detection range of 350nm to 1000nm with a spectral resolution of 0.4nm, which is suitable as 
the wavelengths detected for a typical BLI are in the red visible wavelengths of around 600nm. It contains a 200µm slit 
and uses a Sony ILX511B linear silicon CCD array to detect the incident light. Both the DLP and the spectrometer are 
controlled using a MATLAB script that automatically collects data once the desired resolution, number of measurements 
and acquisition time have been selected. The system includes an adjustable stage that the object being imaged can be 
placed on to correct and set the imaging field of view and focus. The whole system fits within a housing to render the 
system dark and eliminates any background light that may cause the signal to noise ratio of the system to reduce. 
 
 



 
 

 
 

 
 

 
Hyperspectral data is collected from a mouse phantom containing an internal light source using a 20×20 pixel random 
binary projections of the imaging field into the spectrometer. The binary patterns that are used are created randomly 
ensuring that there is a 50% ‘fullness’, meaning there are equal amounts of 0’s and 1’s. The data is then formatted using 
a spectrum of the object being imaged with all of the mirrors on, so that it can be displayed as if the random patterns 
were formed of 1’s and -1’s. The reconstructions were carried out using 240 (60% of the total number of pixels) random 
projections at the desired wavelength.  
 
3.2 Tissue Mimicking Phantom 

The phantom used in this work is an XFM-2 Fluorescent Phantom (Caliper Life Sciences Inc.) which is a mouse shaped 
phantom made of polyurethane material with incorporated scattering particles and dyes to mimic the optical properties of 
live tissue. Optical properties of the phantom are spectrally varying and is stated by the manufacturer as having an 
absorption of 0.01 mm-1 and an isotropic scattering of 1 mm-1 at a wavelength of 600nm. The phantom is designed to be 
used with rods that contain a fluorescent probe at the tip which can be inserted into the phantom at two different depths. 
This was modified by inserting an optical fibre connected to an Ocean Optics halogen light source into the phantom in 
order to simulate an internal bioluminescent light source. Figure 2 show the phantom and the fibre that can be inserted at 
two different depths.  
 

3.3 Compressive Sensing Algorithm 

Surface fluence images are reconstructed from compressed data using the total variation minimisation by augmented 
Lagrangian and alternating direction algorithm (TVAL3) developed by Chengbo Li at the Department of CAAM, Rice 
University in Houston7. This is a total variation (TV) minimization algorithm and works by combining a classic 
augmented Lagrangian method with an appropriate variable splitting and nonmonotone alternating direction method. 
This is done by reformulating the minimisation problem as an alternative problem known as augmented Lagrangian 
function. An iterative method is then used to implement this function by finding minimising parameters by means of an 
alternating direction algorithm. It is shown that this algorithm outperforms other available TV and l1 norm optimisation 
algorithms in both speed and reconstruction quality6. 
 
3.4 Tomographic Reconstruction 

Tomographic reconstruction is carried out using the established software package NIRFAST8. Within this package a 
compressive sensing based optimisation algorithm has been developed that uses a forward model of light propagation 
through the phantom based on the diffusion approximation of the radiative transport equation9.  
 
Images are reconstructed from the compressed hyperspectral data and are corrected for the relative spectral response of 
the system. The images are then registered to the model of the phantom using affine registration and the surface fluence 
data is taken at each detector point. This data is then normalised and fed into the NIRFAST software for tomographic 

 
 

 

(a) (b) (c) 
Figure 1: a) Schematic of the whole imaging system. b) Schematic of the lens within the DLP. c) An example 
of the binary patterns displayed on the DMD. 



 
 

 
 

 
 

reconstruction. Four different wavelengths (610nm, 620nm, 630nm and 640nm) are used for tomographic reconstruction 
as it has been shown that use of multi/hyper-spectral data improve the accuracy and quality of the reconstructions10.   

 

   

Figure 2: a) XFM-2 Fluorescent phantom. b) Back of the mouse phantom showing the channels and the optical 
fibre used. c) An image of the phantom using a CMOS camera with the light source on inside the phantom, 
showing surface fluence distributions. 

 

4. RESULTS AND DISCUSSION  
Figure 3(a) shows the mesh that was created within NIRFAST and Figures 3(b)-(c) show the raw reconstructed surface 
fluence and the registered and normalised surface fluence respectively. The light source was placed within the top 
channel on the phantom which is located 20mm along the y axis from the bottom, -5mm from the centre on the x axis 
and at a depth of 10 mm.  
 
First, hyperspectral data was collected using random binary projections of the imaging field after which surface fluence 
images were reconstructed at wavelengths of 610nm, 620nm, 630nm and 640nm with a bandwidth 5nm. Tomographic 
reconstruction of the source was then carried out in NIRFAST.  

Figures 4(a-c) show the actual target position of the light source within the mouse phantom and figures 4(d-f) show the 
tomographically reconstructed source. The image of the tomographically reconstructed source has been thresholded to 
values above full-width-half-maximum. As the true location of the source is known, it is possible to calculate the 
percentage error in the localisation of the reconstructed source which was found to be 2.21%. 
 
In previous work involving bioluminescence tomographic, surface fluence data is collected using a CCD along with 
filters for which data is collected individually for each wavelength11, making the collection of hyperspectral data 
unfeasible. Using this new method of data collection, it is possible to collect hyperspectral data whilst using fewer 
measurements than previously done, which opens the door for high speed data collection as well as having the ability to 
use and differentiate between multiple light sources of different wavelengths. The effect of filter bandwidth on the 
quantitative accuracy of bioluminescence tomography has also ben investigated and found to have dramatic effects on 
the reconstruction accuracy12. In this proposed method, as no filters are used and the spectral resolution of the 
measurements can be better controlled, the effect of filter bandwidth is minimized, however this should further be 
investigated. 
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Figure 3: a) Mesh of the XFM-2 phantom showing the detector points that are used. b) Raw reconstruction 
of the surface fluence at 640nm. c) Registered and normalised surface fluence of the internal light source.   

 
 

5. CONCLUSION 
Practical experiments have shown that tomographic reconstruction of a light source within a mouse-like phantom can be 
carried out using a compressive sensing based hyperspectral imaging technique with good accuracy. Using this method 
has the potential to bring a number of advantages to the field of bioluminescence tomography such as the ability to 
collect hyperspectral data at high speeds with much less measured data than currently collected. In a filter based CCD 
setup, each wavelength measurement typically relies on ~50s of measurements, providing data at spectral bandwidth of 
~20nm. Using the method, it is possible to dramatically improve on this data collection time while providing much better 
spectrally resolved data. 
 
There are still many areas that need to be investigated in order to make this method a commercially viable option for 
bioluminescence tomography. Firstly, the optical properties of the phantom used are already known, whereas in practice 
those of a live mouse or more realistic phantoms would be unknown. Therefore, there is a need to develop a technique to 
measure the optical properties of the subject simultaneously with data collection so that this can be used in tomographic 
reconstruction. There is also a need to optimise the system that has been developed so that weak bioluminescent signals 
can be measured with the same accuracy as strong light signals. Tests into using multiple light signals of different 
wavelengths are to be carried out in order to assess the performance of the system. With the system optimised to be able 
to detect weak bioluminescent signals as well as have the ability to simultaneously measure the optical properties of the 
subject, it is suggested that this method could improve how current bioluminescent tomography is carried out.  
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Figure 4: a-c) The ground truth location of the light source within the phantom. d-f) Tomographic 
reconstruction of the optical fibre light source within the mouse phantom. 
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