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Abstract. Structures used for temporary works are lightweight so that they are easy to transport, erect 

and dismantle. Particular care should be taken in their design as local instabilities could arise due to 

their thin-walled nature. This article presents 12 tests on proprietary soldier beams subjected to two 

concentrate opposing loads applied simultaneously. The geometry of the proprietary beams feature 

cold-formed C-shaped sections with web holes connected back to back with internal spacers. In the 

absence of design rules for application to such members, the experimental results are used in the 

present investigation to assess the suitability of the provisions for the web crippling design of cold-

formed steel members as well as existing design methods from the literature, which account for the 

effect of perforations in the web. Experimental and predicted resistances are compared and design 

recommendations are provided. 

1 INTRODUCTION 

Soldier beams are often used in construction as temporary structures that were developed to 

replace former timber-based products that could not cope with the demands of frequent reuse. 

They are economic backing members suitable for many propping applications such as 

horizontal and vertical systems supporting façades or bridge components, braces, trusses 

spanning openings, secondary beams, heavy duty towers and struts, wailing frames and many 

others [1]. Soldier beams are lightweight cold-formed members made of high grade steel that 

comprise two C-shaped members (lipped channel sections) connected by internal spacers at 

regular intervals. Due to their susceptibility to local instabilities, they are often stiffened with 

transversal steel plates along their length and are provided with transversal end plates which, 

in addition, facilitate connection to other members. Upon assembly of all components, the 

soldier beam becomes a straight member with high load capacity and versatility. The webs of 
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the C-shaped members have a regular pattern of holes that allow components and/or 

accessories to be attached almost anywhere along the member length. Their high reusability 

and recyclability, in combination with their strength and lightweight properties, leads to 

decreases in energy use and CO2 emissions hence substantial society-wide benefits. 

 

In Europe, the design of temporary works including falsework and tied access scaffolding is 

covered in the EN 12812 [2] and the EN 12813 [3]. They contain supplementary information 

to the Structural Eurocode but mostly include generic structural checks that are of very 

limited applicability. In addition, it is unclear whether these recommendations apply to 

proprietary or bespoke equipment and rely on the temporary works designer using additional 

design guides or codes of practice that might not cover the temporary system to be designed. 

For instance, in the UK, a commonly used code of practice for temporary works design is the 

BS 5975 [4]. The BS 5975’s principle is the traditional Allowable Stress Design (ASD) and 

the main problem is that it is skewed towards the management and control aspects of 

temporary structures rather than their structural design.  

 

In the USA, ASCE/SEI 37 [5] specifies minimum design loads and load combinations against 

which temporary structures need to be designed. In both European and American codes [2, 5] 

reduced load return periods are assumed for meteorological actions, which leads to smaller 

design values for such actions compared to those adopted for permanent structures. Although 

using small return periods in the design of temporary structures seems reasonable, it has been 

demonstrated to be unsafe [6], especially for wind actions. Other specific design codes for 

falsework system are available such as the AASHTO standard GSBTW-1-M [7] and the ACI 

standard 347-04 [8] which cover the design of bridge falsework systems and formwork for 

concrete construction, respectively.  

 

The significant level of uncertainty associated with temporary structures is not well captured 

in existing codes arguably due to the lack of understanding of how such structures actually 

behave. Research has been conducted on the causes of collapse in temporary structures and 

methods have been proposed to minimise that risk [9]. This research concluded that 

temporary structure failures occur mainly due to design and operation issues as well as events 

associated with underestimating the applied loading and emphasis is placed upon the 

importance of understanding the limitations of the current existing design methods. In a 

numerical study by Chan et al. [10], a finite element model was developed to analyse the 
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buckling behaviour of shoring falsework subjected to high axial loads which was later on 

validated against test data [11,12]. The same authors proposed analysis and design methods 

that allow for the different loading conditions during the construction phase in modular 

falsework [13]. Different modular falsework systems were tested and modelled in [14] that 

were used by subsequent investigations as benchmark tests. Research conducted in Australia 

examined the material and structural response of the individual components of falsework and 

assemblies that were utilised to generate data and propose reliable design models [15-17].  

 

Building on the above mentioned studies, it is noteworthy that the structural behavior of 

temporary structures subjected to concentrated loading has remained unexplored to date. The 

research presented in this study addresses structural behaviour of proprietary soldier beams 

subjected to two opposing concentrated loads (web crippling) applied simultaneously. An 

example of such is shown in Figure 1 which shows an arrangement of backing members 

propping the concrete deck of a composite bridge. 

 

 
Figure 1: Parapet support system employing soldier beams. Courtesy of Leada Acrow. 

 

The capacity of proprietary products like the type of soldier beams examined in the present 

study is determined by extensive physical testing conducted by the trading company. Tests 

data is subsequently used to developed in-house technical manuals and datasheets declaring 

the product capacities for a range of loading likely to occur in practice. Commonly, the 

designer of temporary works determines the loads that the temporary structure is required to 

carry and chooses an appropriate soldier beam that can withstand them. Codified design 

equations are rarely used because their suitability for application to proprietary products has 

never been assessed.  
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The current web crippling design provisions for cold-formed steel given in EN 1993-1-3 [18], 

the North American Specification (NAS) [19] and the Australian/New Zealand Standard [20], 

consist of a series of empirical equations that mainly depend on the location of the load, the 

arrangement of the transversal load(s) and cross-sectional shape. In the two latter codes [19, 

20], four types of loading are differentiated: End-One-Flange (EOF), Interior-One-Flange 

(IOF), End-Two-Flanges (ETF) and Interior-Two-Flanges. A different designation system is 

used in [18] though same loading cases are considered. Emphasis is placed herein on the 

Two-Flanges loading conditions. The existing web crippling design equations for cold-formed 

steel were built upon substantial experimental and numerical studies conducted since the mid 

1940s [21]. More recent research has been undertaken with new emerging alloys available in 

construction and more advanced methods of analysis [22-41] 

 

The objectives of this article are first to test a series of proprietary soldier beams subjected to 

two concentrated opposing loads (web crippling), secondly assess the suitability of the current 

web crippling design provisions given in EN 1993-1-3 [18], the North American Specification 

(NAS) [19] and the Australian/New Zealand Standard [20] for application to such proprietary 

soldier beams, third assess existing design procedures from the literature [42-44] and finally 

propose design recommendations. The novel aspect of this research is that a commercial 

product currently available in the market is tested under a load condition commonly 

encountered in temporary works design. The ultimate aim is to explore if temporary works 

designers could shift from using in-house design procedures towards existing codes.  

2 EXPERIMENTAL INVESTIGATION 

The behaviour of soldier beams commonly used for temporary structures has been 

experimentally investigated and is reported in this section. The scope of the experimental 

programme covered material tests and web crippling tests under the interior-two-flange and 

end-two-flange loading conditions which were undertaken at the Structures laboratory of the 

University of Birmingham. 

2.1 Description of the specimens 

Three proprietary soldier beams of the “Slim-Lite” type were supplied by Leada Acrow for 

the purpose of this investigation. The beams were taken from the company’s current inventory 

and have been used in the past in various construction sites. This was evident both from 

obvious signs of corrosion observed in two of the three beams tested and from some localized 
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indentations presumably due to localized damage suffered whilst in service. Hence the 

behaviour of the tested beams is expected to be representative of the behavior of members 

already in service for several years or even decades, rather than that of members that have not 

been in service. All soldier beams had a total length of 3.6 m and comprised two lipped 

channel sections (C-sections) affixed to one another at regular intervals, as shown in Figure 2. 

The sections had a nominal overall width B of 152 mm, a nominal overall height H of 170 

mm, a lip depth d of 25 mm, an internal spacer in the form a U-profile with a height s equal to 

42 mm and a nominal thickness t of 3.2 mm. The measured dimensions of the three soldier 

beams are given in Table 1. The degree of corrosion was not an investigated parameter of this 

study and the effect of corrosion on structural response was accounted for by measuring the 

specimen thickness upon removal of the corrosion via sand milling. Hence despite the 

nominal thickness of the specimens being the same, the measured one differed significantly as 

a result of the varying degree of corrosion. 

 

Table 1: Measured geometric dimensions of the tested soldier beams. 

Soldier No. b (mm) H (mm) d (mm) r  (mm) t (mm) Length (mm) 

S1 55.9 169.6 17.2 1.98 3.95 1700 

S2 55.3 169.3 17.6 1.47 2.94 1660 

S3 56.3 168.8 19.1 1.37 2.73 1640 

 

 
Figure 2: Cross-section of the soldier beam. 

 

The C-sections comprising each soldier beam are connected to one another via four internal 

spacers in the form of U-profiles. The U-profiles are 3.9 mm thick, have a flange width of 25 

mm and a web height of 42 mm. At both ends of the beam, end plates with predrilled holes 

are welded to the webs of the C-sections to facilitate connection to other members and stiffen 

the cross-section. Each C-section also has five plate stiffeners welded between the flanges and 

the web at 600 mm intervals along the length and comprises a pattern of large and small web 

holes with different diameters located at 300 mm intervals in the spanwise direction. The 
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diameter dwh of the large web holes is 62 mm whereas the diameter of the small web holes 

dwho is 17 mm. The small web holes are offset 75 mm with respect to the centroid of the large 

web holes. The arrangement of U-shaped internal spacers, plate stiffeners and holes is 

illustrated in Figure 3, where half of a typical soldier beam is shown. Several tests were 

conducted on each soldier beam at various locations along their length with two opposing 

loads acting simultaneously (web crippling tests), whilst material coupons were also extracted 

from the same section lengths to determine material properties.  

 

 
Figure 3: Arrangement of holes, plate stiffeners and internal spacers. 

2.2 Material testing 

A total of 7 coupon tests were conducted at a static strain rate in accordance with the 

provisions of EN ISO 6892-1:2016 [45]. The coupons were cut and milled from the flanges of 

the C-shape members in the longitudinal (rolling) direction. Upon extracting the tensile 

coupons from the flat parts of the flanges, a small curvature of the coupons was observed due 

to the release of bending residual stresses. The residual stresses were, however, reintroduced 

when placing the coupon in the testing machine and are hence implicitly reflected in the 

obtained stress-strain curve [46]. Prior to testing, the protective paint coating and in some 

cases a layer of rust were removed from the external surfaces of the coupons. The nominal 

dimensions of the tensile coupons were 290 mm × 30 mm with the parallel length region 

having a nominal width of 20 mm. A Vernier digital caliper was used to measure the width 

and thickness at 3 different locations upon the sample, to the nearest 0.01 mm. A summary of 

the measured coupon dimensions is presented in Table 2, in which the reported cross-

sectional area Ac is based on average values of the measured width and thickness of the 

coupons taken over three different locations for every coupon, Lc is the parallel length and Lt 

is the overall length of the coupon. A Zwick 1484 Universal test machine (UTM) was used to 

load the coupons in tension as shown in Figure 4. An extensometer was attached to measure 
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the strain and control the loading rate and a data acquisition system was used to record and 

store the applied load and measured strain at 2 s intervals. 

 

Table 2: Tensile coupon specimen geometry and test results. 

Coupon 

designation 

Ac 

(mm2) 

Lc 

(mm) 

Lt 

(mm) 

E 

(GPa) 

fyb 

(MPa) 

fu 

(MPa) 

εu 

(%) 

εf 

(%) 

350-1  75.2 101.59 289 221 360 441 18.2 30.9 

350-2  70.9 99.53 290 -* 375 473 17.6 25.6 

350-3  77.0 101.57 286 216 343 420 14.5 22.5 

450-1  73.3 99.17 289 184 434 495 12.6 19.3 

450-2  70.9 99.88 288 211 450 504 12.0 18.3 

450-3  67.7 99.44 286 218 442 539 12.1 17.9 

450-4  67.2 99.48 286 193 392 503 8.3 13.1 
*Young’s modulus not logged due to a faulty grip at the beginning of the test 

     

Figure 4: Material coupon testing apparatus and specimen fracture. 

 

 

The steel used for manufacturing the soldier beams was designated as Grade HA350 to AS 

1534 with a minimum yield strength of 350 MPa and a minimum ultimate tensile stress of 430 

MPa. The results of the tension coupon tests are graphically shown in a stress-strain diagram 

in Figure 5. The obtained values for the Young’s modulus E, yield strength fyb (0.2 proof 

stress for coupons not exhibiting yield plateau), ultimate tensile stress fu and corresponding 

strain εu and strain at fracture εf are presented in Table 2. Due to the cold-forming production 

route of the product, some coupons showed a non-linear material response with minimal yield 

plateau. Even though the material was specified to a single steel grade, two distinct steel 

grades with yield strengths approximately equal to 350 MPa and 450 MPa can be identified, 

hence the coupon designation adopted in Table 2. 
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Figure 5: Stress-strain curves for all coupon tensile tests. 

 

2.3 Web crippling tests 

The web crippling strength of the soldier beams under two-flange loading condition was 

investigated by applying a localised transverse load on the top flange directly over a support 

location. Both load and support reactions were applied by means of 75 mm wide bearing 

plates. The web crippling strength was determined at four locations along the soldier beam, as 

shown in Figure 6; at the first hole located 150 mm from the member end, at the second hole 

located 450 mm from the member end (or 300 mm from the first hole), at the plate stiffener, 

and at the internal spacer. Each of these four locations has a different overhang length c 

defined as the distance between the edge of the bearing plate and the free end of the soldier 

beams as shown in Figure 6. Design codes distinguish between interior and end loading 

conditions according to whether the overhang length c is larger or smaller than 1.5hw (1.5 

times the depth of the web) respectively. Figure 7 depicts 3 tests in progress, where the 

different loading locations can be seen. Moreover, the various degrees of corrosion suffered 

by the tested specimens can be readily observed, with one specimen appearing in perfect 

condition and the other two exhibiting clear sings of moderate corrosion.  

 

The bearing resistance of the specimens was determined at the above mentioned four 

locations for the three soldiers, thus comprising a total of 12 web crippling tests. Due to the 

loading applied on both flanges simultaneously, the soldiers S1, S2 and S3 are termed TFL1, 

TFL2 and TFL3, respectively. The ultimate bearing resistance attained at the first hole 

location Pu,h1,test, at the second hole location Pu,h2,test, at the plate stiffener Pu,ps,test and at the 

internal spacer Pu,is,test are reported in Table 3. Note that these loads relate to the total applied 
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load on the specimen, not the load carried by each web. Shortening of the overall height of the 

beam was being monitored and recorded with two LVDTs placed on either side of the bearing 

plate loading the top flange. The recorded load – shortening response is shown in Figure 8. 

Tests were stopped either at extensive deformation beyond ultimate load or upon fracture of 

the weld between the internal spacer and the C-shape members. Local yielding failure of the 

web (i.e. web crippling) was achieved in all 12 tests. The response of the specimens when 

loaded over the 1
st
 or 2

nd
 hole is similar, and is characterised by a gradual loss of stiffness and 

a smoother post-ultimate response compared to the other tests. Higher carrying capacities 

were recorded at the internal spacer and at the plate stiffener. 

 

  
1st hole test, c=112.5mm Internal spacer test, c=862.5mm 

  
2nd hole test, c=412.5mm Plate stiffener location test, c=562.5mm 

Figure 6: Location of the bearing loads. 

 

 

   
1st hole test Plate stiffener location test 2nd hole location test 

Figure 7: Test set up for three locations. 
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Table 3: Total bearing load for all the beams and locations. 

Specimen 
Pu,h1,test  

(kN) 

Pu, h2,test  

(kN) 

Pu,ps,test  

(kN) 

Pu,is,test  

(kN) 

Pu, h2,test/ 

Pu,h1,test 

TFL1 150.1 147 308 240 1.02 

TFL2 126 127 328 255 0.99 

TFL3 107 122 230 255 0.88 

 

 

 
a) TFL1 

 
b) TFL2 

 
c) TFL3 

Figure 8: Load shortening response of tested beams. 
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3 ASSESSMENT OF DESIGN PROVISIONS FOR WEB CRIPPLING 

The experimental data generated in this investigation have been used to assess the ability of 

existing design equations specified in international design standards to accurately predict the 

web crippling strength of proprietary soldier beams under two-flange loading condition. The 

web crippling resistances predicted by EN 1993-1-3 [18], the North American Specification 

(NAS) [19] and the Australian/New Zealand Standard [20] are being compared against the 

obtained test results. Existing design methods proposed in the past years based on 

experimental and numerical studies are also considered in this assessment. These approaches 

focused on evaluating the influence of web holes on the web crippling strength of cold-

formed lipped channel sections [42-44]. Although research into the web crippling response of 

cold-formed C-sections is available [47-51], the geometries examined in these studies 

significantly differ from the geometry of the proprietary beams and/or the loading conditions 

pertinent in the present investigation. The following subsections provide an insight into the 

current design provisions for web crippling and present the results of the assessment, while an 

in-depth analysis of the results follows in section 4. 

3.1 Design provisions of EN 1993-1-3 [18] 

The design provisions covering the resistance to local transverse forces are given in clause 

6.1.7 of EN 1993-1-3 [18]. The code differentiates between cross-sections with a single 

unstiffened or several unstiffened webs, whilst the design of stiffened webs is treated 

separately. The set of equations specified in clause 6.1.7.2 for application to cross-sections 

with a single web are compared herein against the experimental resistances previously 

reported. Depending on the location of the applied load, the following design equations were 

used to predict the web crippling resistance of the tested sections: Eq. (1) for the 1
st
 hole test 

and Eq. (2) for the 2
nd

 hole test. Since the code also includes different design equations for 

application to cross-sections the web rotation of which is restrained, Eq. (3) was used to 

predict the web crippling strength of the proprietary beams tested at locations with plate 

stiffener or internal spacer. 

 

𝑅𝑤,𝑅𝑑 = 𝑘1𝑘2𝑘3 [6.66 −
ℎ𝑤 𝑡⁄

64
] [1 + 0.01

𝑠𝑠

𝑡
] 𝑡2𝑓𝑦𝑏 𝛾𝑀1⁄   if 𝑐 ≤ 1.5ℎ𝑤 (1) 

𝑅𝑤,𝑅𝑑 = 𝑘3𝑘4𝑘5 [21 −
ℎ𝑤 𝑡⁄

16.3
] [1 + 0.0013

𝑠𝑠

𝑡
] 𝑡2𝑓𝑦𝑏 𝛾𝑀1⁄   if 𝑐 > 1.5ℎ𝑤 (2) 

𝑅𝑤,𝑅𝑑 = 𝑘8𝑘9 [13.2 + 2.87√
𝑠𝑠

𝑡
] 𝑡2𝑓𝑦𝑏 𝛾𝑀1⁄       if 𝑐 > 1.5ℎ𝑤 (3) 
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In the aforementioned equations, Rw,Rd is the local transverse resistance of one web, hw is the 

web height between the midlines of the flanges, t is the cross-sectional thickness, ss is the 

length of the bearing plate, fyb is the material yield strength in MPa, γM1 is a partial safety set 

to unity and ki are dimensionless coefficients given by Eqs. (4)-(10) where r is the internal 

radius of the corners, ϕ is the angle of the web relative to the flanges in degrees and k=fyb/228. 

 

𝑘1 = 1.33 − 0.33 𝑘⁄  (4) 

𝑘2 = 1.15 − 0.15𝑟 𝑡⁄  but 𝑘2 ≥ 0.5 and 𝑘2 ≤ 1 (5) 

𝑘3 = 0.7 + 0.3(𝜙 90⁄ )2 (6) 

𝑘4 = 1.22 − 0.22𝑘 (7) 

𝑘5 = 1.06 − 0.06𝑟 𝑡⁄  but 𝑘5 ≤ 1 (8) 

𝑘8 = 1 𝑘⁄  if 𝑠𝑠 𝑡⁄ < 66.5;  𝑘8 = (1.1 − ℎ𝑤 (665𝑡)⁄ ) 𝑘⁄  if 𝑠𝑠 𝑡⁄ > 66.5 (9) 

𝑘9 = 0.82 + 0.15𝑡 1.9⁄  (10) 

 

The design predictions for each of the locations subjected to two-flange loading are 

designated as Pu,h1,EC3, Pu,h2,EC3, Pu,ps,EC3 and Pu,is,EC3 for loads applied at the 1
st
 hole, 2

nd
 hole, 

plate stiffener and internal u-shaped spacer respectively. The resulting design strengths are 

reported in Table 4 where the mean value and the coefficient of variation of the experimental 

over predicted web crippling resistances are also reported. Figure 9 shows the test-to-

predicted strength ratio Pu,test/Pu,EN 1993-1-3 plotted against the web slenderness of the soldier 

beam defined as the web height to thickness ratio hw/t. The hw/t ratios of each beam are 41.93 

for TFL1, 56.59 for TFL2 and 60.83 for TFL3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Assessment of the EN 1993-1-3 for the four test locations 
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Table 4: Assessment of the EN 1993-1-3 design provisions based on a test-to-predicted ratio  

Specimen 
Pu,h1,test/ 

Pu,h1,EC3 

Pu, h2,test/ 

Pu,h2,EC3 

Pu,ps,test/ 

Pu,ps,EC3 

Pu,is,test/ 

Pu,is,EC3 

TFL1 2.21 0.72 1.49 1.16 

TFL2 3.45 1.29 2.86 2.22 

TFL3 3.39 1.46 2.31 2.57 

Mean 3.02 1.16 2.22 1.98 

COV 0.189 0.273 0.253 0.302 

 

3.2 Design provisions of the North American Specification (NAS) [19] and the 

Australian/New Zealand Standard [20]. 

The provisions for the web crippling resistance are given in clause C3.4 of the NAS [19] and 

clause 3.3.6 of the Australian/New Zealand Standard [20]. Both codes specify identical design 

equations for the determination of the web crippling resistance, albeit using different symbols 

to refer to the same parameters. Unlike EN 1993-1-3 [18] where a set of equations is 

presented, The NAS [19] and the Australian/New Zealand Standard [20] use the unified 

expression given by Eq. (11), which is applicable to cross-sections without holes. A reduction 

factor is to be used to account for the presence of a web hole under the bearing load. It is 

noteworthy that the presence of holes is currently not accounted for in EN 1993-1-3 [18]. 

 

The previously adopted notation for the EN 1993-1-3 is used to symbolize the relevant 

parameters in Eq. (11). Note that, however, Eq. (11) uses the flat part of the web h instead of 

the distance between midlines of the flanges hw, as is the case for EN 1993-1-3; both hw and h 

are defined in Figure 1. This unified equation also includes four dimensionless coefficients 

which depend on the cross-section geometry, load condition, and support and flange 

conditions: C, Cr, Cs and Ch. Based on the tests reported herein, the values for these 

coefficients were determined assuming unfastened support conditions, unstiffened flanges and 

two-flange loading condition. Similar to the provisions of EN 1993-1-3 and considering the 

overhang length c of each test, the test at the location of the 1
st
 hole was identified as end 

loading condition (i.e. c<1.5h) while the tests at the location of the 2
nd

 hole, the plate stiffener 

and the internal spacer were identified as interior loading condition (i.e. when c>1.5h). 

Regarding cross-section geometry, the coefficients for built-up sections and single web 

channel and C-sections given in tables C3.4.1-1 and C3.4.1-2 of the NAS [19] were used for 

comparison purposes. The same coefficients are given in tables 3.3.6.2(A) and 3.3.6.2(B), 

respectively, in the Australian/New Zealand Standard [20]. The geometry and loading 

arrangement of the tested soldier beams are within the limits of applicability of Eq. (11). 
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𝑅𝑤,𝑅𝑑 = 𝐶𝑡2𝑓𝑦𝑏 sin𝜙 (1 − 𝐶𝑟√𝑟 𝑡⁄ ) (1 + 𝐶𝑠√𝑠𝑠 𝑡⁄ ) (1 − 𝐶ℎ√ℎ 𝑡⁄ ) (11) 

 

The existence of a web hole within the bearing length ss, as is the case in this experimental 

investigation, is accounted for through a reduction factor Rc. Again, based on the overhang 

length c, Eqs. (12) or (13), where x is the nearest distance between the web hole and nearest 

bearing length, should be used. Eqs. (12) and (13) are applicable as long as (i) webs are under 

one flange loading condition, (ii) clear distance between holes is greater than 457 mm and (iii) 

the distance of the holes for the beam end is at least equal to the web depth h. Clearly none of 

these conditions is met by the tested specimens, but, in the absence of alternative means to 

account for the effect of the holes, the applicability of Eqs. (12) and (13) is assessed herein. 

 

𝑅𝑐 = 1.01 − 0.325𝑑𝑤ℎ ℎ⁄ + 0.083 𝑥 ℎ⁄  if 𝑐 ≤ 1.5ℎ (12) 

𝑅𝑐 = 0.90 − 0.047𝑑𝑤ℎ ℎ⁄ + 0.053 𝑥 ℎ⁄  if 𝑐 > 1.5ℎ (13) 

 

The design predictions for each of the locations subjected to two-flange loading are 

designated as Pu,h1,A/A/NZ, Pu,h2,A/A/NZ, Pu,ps,A/A/NZ and Pu,is,A/A/NZ for loads applied at the 1
st
 hole, 

2
nd

 hole, plate stiffener and internal u-shaped spacer. The resulting design predictions are 

reported in Table 5 for the assessment of the code when coefficients for built-up sections are 

used, whilst Table 6 presents the results for the assessment of the code when coefficients for 

single web channel sections and C-sections are used. The tables show in brackets the reduced 

web crippling strength upon applying the reduction factor Rc to account for the effect of the 

web holes on the design resistance. A graphical comparison between experimental and 

codified web crippling resistances is presented in Figures 10 and 11 for loading at the location 

of stiffeners and of holes respectively.  

 

Table 5: Assessment of the NAS and the Australian/New Zealand Standard using coefficients for 

built-up sections based the test-to-predicted ratio. 

Specimen 
Pu,h1,test/ 

Pu,h1,A/A/NZ 

Pu, h2,test/ 

Pu,h2,A/A/NZ 

Pu,ps,test/ 

Pu,ps,A/A/NZ 

Pu,is,test/ 

Pu,is,A/A/NZ 

TFL1 
0.77 

(0.87)* 

0.34 

(0.38)* 
0.70 0.55 

TFL2 
1.41 

(1.60)* 

0.64 

(0.72)* 
1.65 1.28 

TFL3 
1.40 

(1.58)* 

0.71 

(0.81)* 
1.35 1.49 

Mean 
1.19 

(1.35)* 

0.56 

(0.64)* 
1.23 1.11 

COV 
0.253 

(0.252)* 

0.290 

(0.290)* 
0.319 0.365 

* Reduced values to allow for hole under bearing load 
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Table 6: Assessment of the NAS and the Australian/New Zealand Standard using coefficients for 

single web channel and C-sections based the test-to-predicted ratio. 

Specimen 
Pu,h1,test/ 

Pu,h1,A/A/NZ 

Pu, h2,test/ 

Pu,h2,A/A/NZ 

Pu,ps,test/ 

Pu,ps,A/A/NZ 

Pu,is,test/ 

Pu,is,A/A/NZ 

TFL1 
1.22 

(1.39)* 

0.44 

(0.50)* 
0.92 0.72 

TFL2 
2.29 

(2.58)* 

0.77 

(0.88)* 
1.99 1.55 

TFL3 
2.27 

(2.57)* 

0.85 

(0.96)* 
1.60 1.77 

Mean 
1.93 

(2.18)* 

0.69 

(0.78)* 
1.50 1.35 

COV 
0.258 

(0.257)* 

0.258 

(0.258)* 
0.294 0.337 

* Reduced values to allow for hole under bearing load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Assessment of NAS and the Australian/New Zealand Standard at locations without 

holes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Assessment of NAS and the Australian/New Zealand Standard at locations with web 

holes. 
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3.3 Design recommendations by Uzzaman et al. [40-42]  

Uzzaman et al. conducted a series of experimental and numerical studies on the web crippling 

strength of cold-formed steel channel sections with centred web holes under bearing loads 

[44, 51] and with offset web holes [42, 43] under interior and end-two-flange loading 

conditions. Following a regression analysis, they proposed the adoption of the reduction 

factors Rc defined by Eqs. (14) and (15) for the web crippling strength of webs with centred 

holes and Eqs. (16) and (17) for the web crippling strength of webs with offset holes as a 

means to account for the effect of web holes on the web crippling strength. Given their 

empirical nature, these equations are only valid for cross-sections with web holes meeting 

certain geometric limitations, namely h/t≤159, ss/t≤84, ss/h≤63, dwh/h <0.8 and ϕ=90⁰. The 

specimens tested in the present study meet these limitations, hence the equations 

recommended by Uzzaman et al. [42-44] are well-suited to predict the effect of web holes on 

the web crippling strength. 

  

For webs with holes under bearing length: 

𝑅𝑐,𝑐𝑒𝑛𝑡𝑟𝑒𝑑 = 0.90 − 0.6 𝑑𝑤ℎ ℎ⁄ + 0.12 𝑠𝑠 ℎ⁄ ≤ 1 if 𝑐 ≤ 1.5ℎ (14) 

𝑅𝑐,𝑐𝑒𝑛𝑡𝑟𝑒𝑑 = 1.05 − 0.54 𝑑𝑤ℎ ℎ⁄ + 0.01 𝑠𝑠 ℎ⁄ ≤ 1 if 𝑐 > 1.5ℎ (15) 

 

For webs with offset holes: 

𝑅𝑐,𝑜𝑓𝑓𝑠𝑒𝑡 = 0.95 − 0.49𝑑𝑤ℎ ℎ⁄ + 0.17 𝑥 ℎ⁄  if 𝑐 ≤ 1.5ℎ (16) 

𝑅𝑐,𝑜𝑓𝑓𝑠𝑒𝑡 = 1.00 − 0.45𝑑𝑤ℎ ℎ⁄ + 0.09 𝑥 ℎ⁄  if 𝑐 > 1.5ℎ (17) 

 

In this assessment, the reduction factors proposed by Uzzaman et al. [42-44] have been used 

to reduce the web crippling resistance predicted by EN 1993-1-3, the NAS and the 

Australian/New Zealand Standard to account for the web holes present in the soldier beams. 

Since the soldier beams have both centred and offset holes, two cases have been considered: 

(1) accounting only for the effect of the large centred web hole on the web crippling 

resistance (i.e. Rw,Rd×Rc,centred) and (2) accounting for the effect of both the centred larger hole 

and the offset smaller holes on the web crippling strength (i.e. Rw,Rd×Rc,centred×Rc,offset). The 

results of the assessment are presented in Tables 7 to 9, whilst a graphical representation is 

provided in Figures 12-14. Note that in these figures the legend shows a number between 

brackets correlating the displayed data with the case under consideration. 
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Table 7: Assessment of the reduced web crippling resistance predicted by EN 1993-1-3 using 

reduction factors proposed by Uzzaman et al.  

 Rw,Rd × Rc,centred  Rw,Rd × Rc,centred × Rc,offset 

Specimen 
Pu,h1,test/ 

Pu,h1,EC3 

Pu, h2,test/ 

Pu,h2,EC3 

 Pu,h1,test/ 

Pu,h1,EC3 

Pu, h2,test/ 

Pu,h2,EC3 

TFL1 2.48 0.86  2.67 0.88 

TFL2 3.55 1.53  3.82 1.58 

TFL3 3.40 1.72  3.66 1.78 

Mean 3.14 1.37  3.38 1.41 

COV 0.150 0.271  0.150 0.271 

 

 
Table 8: Assessment of the reduced web crippling resistance predicted by the NAS and the 

Australian/New Zealand Standard using reduction factors proposed by Uzzaman et al. and coefficients 

for built-up sections 

 Rw,Rd × Rc,centred  Rw,Rd × Rc,centred × Rc,offset 

Specimen 
Pu,h1,test/ 

Pu,h1,A/A/NZ 

Pu, h2,test/ 

Pu,h2,A/A/NZ 
 

Pu,h1,test/ 

Pu,h1,A/A/NZ 

Pu, h2,test/ 

Pu,h2,A/A/NZ 

TFL1 0.86 0.40  0.92 0.41 

TFL2 1.45 0.75  1.56 0.78 

TFL3 1.40 0.84  1.51 0.87 

Mean 1.24 0.67  1.33 0.69 

COV 0.217 0.289  0.217 0.289 

 

Table 9: Assessment of the reduced web crippling resistance predicted by the NAS and the 

Australian/New Zealand Standard using reduction factors proposed by Uzzaman et al. and coefficients 

for single web channel and C-sections 

 Rw,Rd × Rc,centred  Rw,Rd × Rc,centred × Rc,offset 

Specimen 
Pu,h1,test/ 

Pu,h1,A/A/NZ 

Pu, h2,test/ 

Pu,h2,A/A/NZ 
 

Pu,h1,test/ 

Pu,h1,A/A/NZ 

Pu, h2,test/ 

Pu,h2,A/A/NZ 

TFL1 1.37 0.52  1.48 0.54 

TFL2 2.35 0.91  2.53 0.94 

TFL3 2.28 1.00  2.45 1.03 

Mean 2.00 0.81  2.15 0.84 

COV 0.222 0.256  0.222 0.256 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Reduced test-to-predicted ratio by EN 1993-1-3 using Uzzaman et al. reduction factors  
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Figure 13: Reduced test-to-predicted ratio by the NAS and the Australian/New Zealand Standard 

using Uzzaman et al. reduction factors and coefficients for built-up sections  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Reduced test-to-predicted ratio by the NAS and the Australian/New Zealand Standard 

using Uzzaman et al. reduction factors and coefficients for single web channel and C-sections 

4 DISCUSSION AND DESIGN RECOMMENDATIONS 

Among the three design standards considered, EN 1993-1-3 [18] is the most conservative one, 

as it results in the highest test-to-predicted strength ratios. With the exception of the predicted 

web crippling strength over the location of the 2
nd

 hole of the stockiest soldier beam, all of the 

web crippling resistances predicted by EN 1993-1-3 [18] are on the safe side (i.e. 

Pu,test/Pu,EN,1993-1-3 ratio > 1). Moreover, as shown in Fig. 9, the design predictions become 

increasingly conservative with increasing web slenderness, thus revealing that the codified 

design equations do not properly account for the effect of web slenderness. The COV values, 

ranging from 0.189 to 0.302, are the lowest among all design standards as a consequence of a 

high test-to-predicted strength mean values. 
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The design predictions of the NAS [19] and the Australian/New Zealand Standard [20] are 

unduly conservative for end-two-flange loading when the web slenderness is over 50, whilst 

they become unsafe for low slenderness values. The test-to-predicted ratios are lower when 

dimensionless coefficients for built-up sections are used thereby showing that those standards 

expect built-up sections to have better web crippling performance than single web sections of 

C-shaped section. Both NAS [19] and the Australian/New Zealand Standard [20] show overly 

high COV ranging from 0.252 to 0.365, likewise EN 1993-1-3, which again reflects that the 

formulae do not capture accurately the influence of the web slenderness.  

 

Both the NAS [19] and the Australian/New Zealand Standard [20] are safe when used to 

predict the web crippling strength at locations where there are no holes (i.e. internal stiffener 

and u-shape spacer), albeit unsafe for stockier webs. At the first hole, the design predictions 

are safe regardless of the dimensionless coefficients used with the exception of the predicted 

web crippling strength of the stockiest soldier beam when coefficients for built-up sections are 

used. At the second hole, the design predictions are always unsafe. Accounting for web holes 

through a reduction factor applied to the predicted web crippling strength, results in lower 

predictions and consequently higher test-to-predicted ratios. Overall, in the presence of a hole 

a decrease of about 10-15% in the web crippling strength is predicted by the NAS and the 

Australian/New Zealand Standard leading to even more conservative predictions at the first 

hole and yet unsafe predictions at the second hole.  

 

The web crippling design resistances predicted by EN 1993-1-3 [18], the NAS [19] and the 

Australian/New Zealand Standard [20] were reduced considering two approaches to 

Uzzaman’s et al. [42-44] reduction factors. Overall, it is observed that the reduction factors 

are smaller with increasing distance between the bearing load and the free end.  

 

The results show that the EN 1993-1-3 [18] test-to-predicted ratios upon applying Uzzaman’s 

et al. [42-44] reduction factors at the 1
st
 hole location become even more conservative. Again, 

the predicted web crippling strength over the 2
nd

 hole location for the stockiest soldier beam 

appears as the only unsafe value. However, its reduced web crippling resistance is 

underestimated by 12% as opposed to the original underestimation which was 28%. 
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Regarding the NAS [18] and the Australian/New Zealand Standard [19] predictions upon 

applying Uzzaman’s et al. [42-44] reduction factors, at the 1
st
 hole location it is observed 

slightly less scatter and improved predictions. For the stockiest proprietary beam, this method 

is not adequate when using dimensionless coefficients for built-up sections likewise reducing 

the web crippling strength with the current formulae of the standards.  The use of Uzzaman’s 

et al. [42-44] equations to reduce the web crippling strength of the proprietary soldier beam at 

the 2nd hole location, improves the mean test-to predicted strength value but predictions lay 

mostly on the unsafe side. Thus, further investigation is required to accurately understand the 

web crippling response at this location corresponding to the interior two-flange condition. 

 

Following the above-mentioned discussion of the various assessments carried out, the 

following design recommendations are given for proprietary soldier beams with web holes 

subjected to web crippling under the two-flange loading condition: 

 

 EN 1993-1-3 is safe to predict the web crippling strength for end-two-flange loading as 

well as for interior-two-flange loading at the plate stiffener and the internal spacer. 

 For interior two-flange loading at the hole location, EN 1993-1-3 is safe for application to 

proprietary beams with web slenderness hw/t greater or equal to 56 but unsafe for low 

web slenderness values. 

 In the presence of web holes, it is recommended not to account for any reduction 

coefficient to reduce the web crippling strength as that would lead to overly conservative 

predictions.  

 Reducing the EN 1993-1-3 web crippling predictions through Uzaaman’s et al. reduction 

factor to account for web holes interior loading conditions improves unsafe predictions in 

proprietary beams with web slenderness hw/t value of 41.93.  

 The web crippling design equations in the NAS and the Australian/New Zealand 

Standard are the same and both are safe to predict the web crippling strength at locations 

without holes in proprietary beams with slenderness ratios h/t greater or equal to 54. 

Either dimensionless coefficients for built-up sections or single web sections or C-

sections were observed to be adequate. 

 For lower slenderness (i.e. h/t value of 39.93), those standards are not adequate. 

 At the 1
st
 hole location, it is recommended to use the dimensionless coefficients for single 

web sections or C-sections but not to reduce the web crippling strength to account for 

web holes using the current codified equation as that would lead to overly conservative 
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predictions. Moreover, the examined geometries and cross-section do not meet the limits 

of application of the current reduction factor. 

 The reduction factors proposed by Uzzaman et al. are safe to predict the reduced web 

crippling strength accounting for web holes at the 1
st
 hole location regardless the 

dimensionless coefficients used for specimens with high slenderness (i.e h/t values 

greater than 54.59).  

 At the 1
st
 hole, the most efficient design is achieved when coefficients for built-ups are 

used to determine the web crippling strength and subsequently reduced by multiplying 

Uzzaman’s et al reduction factor for centred holes and Uzzaman’s et al reduction factor 

for offset holes. 

 It is not recommended to use the NAS and the Australian/New Zealand Standard at the 

2
nd

 hole location. It is noteworthy, however, that applying the reduction factor for centred 

holes multiplied by the reduction factor for offset holes proposed by Uzzaman’s et al. 

improves over predictions and almost shift the predictions to the safe side. 

5 CONCLUSIONS 

A series of tests on proprietary soldier beams were conducted to obtain their structural 

behavior and web crippling strength under two-flange loading condition. Both end and 

interior two-flange loading have been considered. All specimens were representative of 

currently-in-service proprietary soldier beams and comprised lipped C-sections with patterns 

of web holes at regular intervals. Material coupon tests were also conducted to obtain the 

material response and were reported herein. In the absence of available methods the suitability 

of the web crippling design provisions given in international design standards for the design 

of cold-formed steel structures including the EN 1993-1-3 [18], the NAS [19] and the 

Australian/New Zealand Standard [20] were assessed. Two sets of dimensionless coefficients 

were considered in the assessment of the two latter design provisions [19, 20]. It was found 

that these standards significantly underestimate the web crippling strength for high web-

slenderness values, particularly under end loading conditions. On the contrary, with 

decreasing slenderness the predictions were found to lie on the unsafe side for interior two-

flange loading. In most cases a very high scatter of the design predictions was observed, 

arguably due to the effect of the web-slenderness that was found to strongly affect the 

predicted design strengths. 
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Design equations that explicitly allow for the effect of holes in the web on the web crippling 

strength [42-44] were applied in conjunction with all three design standards and were found to 

reduce the scatter in the predictions. However, the improvements were marginal as the 

underlying reason for poor agreement between experimental results and design predictions 

seems to be the base equations specified for interior two-flange loading. Further research is 

needed to better capture the effect of the distance of the point of load application from the 

beam end to define a more accurate boundary between interior and end loading conditions. In 

addition to this and since it has not been within the scope of the present paper but can be 

observed in practical uses of soldier beams, further research is also suggested on soldier 

beams subjected to one-flange loading conditions.  
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