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We obtain the distribution of a number of atoms in an interval (full counting statistics) for interacting
bosons in one dimension. Our results are valid in the weakly interacting regime in a parametrically large
window of temperatures and interval lengths. The obtained distribution significantly deviates from a
Gaussian away from the quasicondensate regime, and, for sufficiently short intervals, the probability of
large number fluctuations is strongly enhanced.
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Introduction.—In situ measurements of particle number
fluctuations in a one-dimensional (1D) Bose gas have been
recently performed in experiments with ultracold 87Rb
atoms on a chip [1–3]. In these experiments, absorption
images of a 1D gas of interacting bosons were analyzed for
many pixels of predetermined size R of the order of several
microns, and the number of atoms in each pixel was
inferred based on the absorption intensity. Data accumu-
lated over several repetitions of such imaging were then
used to extract the second [1] and third [2] moments of
the underlying particle number distribution on an interval
fixed by the pixel length. This distribution is known as full
counting statistics (FCS) and contains full information
about many-particle correlations.
Despite the fact that FCS arises naturally in these

experiments, there are no theoretical predictions for the
experimentally relevant range of interval lengths R. The
reason is that such a study involves the calculation of
density correlations between an arbitrary number of differ-
ent spatial points which remains an unsolved problem even
for the exactly solvable Lieb-Liniger model [4] describing
one-dimensional bosons with contact interactions [5,6].
Even in the impenetrable limit, equivalent to free fermions
[7], this is a formidable task involving sophisticated
mathematical methods like asymptotics of Toeplitz deter-
minants [8].
If the interval is sufficiently large and can be viewed as a

subsystem in contact with the effective bath characterized
by temperature T and chemical potential μ, it was suggested
first in Ref. [2] that the moments of FCS can be obtained
from the appropriate thermodynamic relation involving the
mean density of particles n̄ as a function of μ and T. The
corresponding equation of state n̄ðμ; TÞ is calculated by

using the Yang-Yang thermodynamics of the Lieb-Liniger
model [9] and was recently measured experimentally [10].
This approach was later extended in Ref. [11] to a
calculation of the fourth moment of FCS.
The results of these studies show that higher moments

decay quickly with the increasing of interval sizes and FCS
becomes strongly peaked around the mean number of
particles n̄R, effectively yielding a Gaussian—a result
expected from the general thermodynamic argument on
the scaling of fluctuations of extensive quantities [12]. This
makes large deviations of the particle number from its mean
value extremely improbable. In particular, the emptiness
formation probability, i.e., the probability to find a void of
size R considered in Refs. [13–15], is exponentially small.
In the opposite limit of microscopic intervals n̄R ≪ 1,

the problem of calculating FCS is amenable to an
analysis of local correlations. This approach was taken
by Bastianello, Piroli, and Calabrese [16], who obtained
FCS using exact analytic Bethe ansatz calculations. An
expected consequence of these studies is that the most
probable particle number is zero and the probability to find
N particles decays as ðn̄RÞN .
In fact, large nonthermodynamic deviations of the

number of particles become appreciable already for inter-
vals still containing typically a large number of particles,
n̄R ≫ 1, but shorter than a certain correlation length scale.
For such mesoscopic intervals, the central limit theorem
does not hold, and FCS deviates strongly from the
thermodynamic Gaussian distribution expected for a col-
lection of many independent intervals. The importance of
such mesoscopic fluctuations for experimental investiga-
tions of 3D and 2D systems was addressed in a recent
publication [17].
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In this Letter, we study FCS on intervals of arbitrary
length and provide an elegant and simple method for its
calculation based on the exact mapping of the one-dimen-
sional classical field theory onto a quantum mechanical
problem, introduced in Ref. [18]. In the limit of short
intervals, the form of FCS is shown to change continuously
from a Gaussian to an exponential one as the temperature is
increased; see Fig. 1. The limit of long intervals is
represented in Fig. 2, and our FCS agrees with the results
of previous studies. We also trace FCS as a function of the
interval length in Fig. 3. These results show enhanced large
deviations of the number of particles for mesoscopic
intervals where fluctuations play a major role.
Full counting statistics.—The main quantity studied in

this Letter is the FCS defined as the probability PNðRÞ to
find exactly N particles on an interval of length R. We
define it via its generating function:

χðλ; RÞ ¼
X∞
N¼0

e−λNPNðRÞ ¼ he−λN̂Ri: ð1Þ

Here, N̂R is the operator of the number of particles in the
interval. Statistical averaging in Eq. (1) is performed in the
equilibrium state of a uniform 1D Bose gas with contact
interactions [4,9].
For intervals containing a large number of particles,

n̄R ≫ 1, it is convenient to define the rescaled distribution

pðν; RÞ ¼
Z

i∞

−i∞

dk
2πi

ekνχðk=n̄R; RÞ ¼ n̄RPνn̄RðRÞ ð2Þ

of the fraction of particles, ν ¼ N=n̄R, treating it as a
continuous variable. As long as the number of particles in
the interval is large, νn̄R ≫ 1, the typical values of λ ¼
k=n̄R contributing to the integral (2) are small [19]. In this
case, the generating function Eq. (1) can be approximated
by a normal-ordered average evaluated as a path integral,
χðλ; RÞ ≃ h∶e−λN̂R∶i ¼ Z½λ�=Z½0�, where

Z½λ� ¼
Z

Dψ̄ψe−λNR½ψ̄ ;ψ �e−S½ψ̄ ;ψ �: ð3Þ

Here, NR½ψ̄ ;ψ � ¼
R
R
0 ψ̄ðx; 0Þψðx; 0Þdx, and configurations

of the complex-valued fields ψ̄ðx; τÞ, ψðx; τÞ are weighted
by the action

S ¼
Z

1=T

0

dτ
Z

dx

�
ψ̄∂τψ þ 1

2m
j∂xψ j2 − μjψ j2 þ g

2
jψ j4

�
;

ð4Þ

with m being the atomic mass, g is the strength of 1D
contact interaction, and the units are chosen such that ℏ ¼ 1
and kB ¼ 1. The integral over space coordinate x runs over
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FIG. 1. Normalized FCS pðν; RÞ defined in Eq. (2) in the limit
of short intervals. The dimensionless temperature is
T=cn̄ ¼ ξ=lφ ¼ 0.1, 0.25, 0.5, 1.0, and 5.0.
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FIG. 2. Normalized FCS pðν; RÞ defined in Eq. (2) in the limit
of long intervals. The dimensionless temperatures are the same as
in Fig. 1, and R=lφ ¼ 5. Inset: Reduced width wðxÞ defined in
Eq. (18) characterizing fluctuations of the number of particles.
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FIG. 3. Normalized FCS pðν; RÞ defined in Eq. (2) for
intermediate intervals and high-temperature regime
T=cn̄ ¼ ξ=lφ ≫ 1. The bold solid line represents exponential
distribution, Eq. (9).
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an infinite line as thermodynamic limit N ¼ n̄L → ∞ is
taken with average density n̄ ¼ hψ̄ðx; τÞψðx; τÞi fixed by
the chemical potential μ. Having calculated the equation of
state n̄ ¼ n̄ðμ; TÞ, it is permissible to use n̄ as a control
parameter and to adjust μ accordingly.
Here, we consider a regime where the mean interparticle

separation 1=n̄ is the smallest of the characteristic length
scales. The other two length scales, in addition to the
interval length R, are the healing length ξ ¼ 1=

ffiffiffiffiffiffiffiffiffi
mgn̄

p
,

which characterizes the interactions, and the phase
coherence length lφ ¼ n̄=mT, which characterizes the
temperature. The regime of weak interactions considered
here is defined by the dimensionless interaction constant
γ ¼ mg=n̄ ≪ 1, equivalent to the condition on the healing
length ξ ≫ 1=n̄. The phase coherence length also satisfies
lφ ≫ 1=n̄ for a degenerate gas T < n̄2=m. This leaves only
two independent dimensionless parameters, which can be
chosen to be R=lφ and ξ=lφ. The latter equals T=cn̄,

where c ¼ ffiffiffiffiffiffiffiffiffiffiffi
gn̄=m

p
is the speed of sound at zero temper-

ature. Below, we obtain FCS as a function of these two
parameters.
Classical field theory and effective quantum

mechanics.—The main obstacle in calculating FCS is the
nonlinearity of the action (4), which is responsible for
correlations between the particles and which makes the
exact calculation of FCS extremely difficult if at all possible.
In the hydrodynamic approach of Refs. [14,15], this diffi-
culty was overcome by expanding the action (4) near
configurations of the fields contributing the most to FCS.
This method is limited to sufficiently low temperatures and
sufficiently large intervals where contributions of quantum
and thermal fluctuations are small. Here, we use an alter-
native classical field method which properly accounts for
thermal fluctuations of arbitrary magnitude but not the
quantum ones; see Ref. [18] and references therein. The
latter can be safely neglected under the condition of
sufficiently high temperature equivalent to ξ=lφ ≫ 1=n̄ξ.
This condition and the condition of quantum degeneracy
ξ=lφ ≪ n̄ξ define a parametrically wide range of temper-
atures, gn̄ ≪ T ≪ n2=m, where the classical field method
provides reliable results for macroscopic intervals of any
length.
Neglecting quantum fluctuations amounts to retaining

only τ-independent configurations of fields in Eq. (4),
leading to a 1þ 0-dimensional field theory described by
the action

S ≃ Scl ¼
1

T

Z
dx

�
1

2m
j∂xψ j2 − μjψ j2 þ g

2
jψ j4

�
: ð5Þ

This action can be reformulated as an effective quantum
mechanical problem if we treat the rescaled spatial
coordinate x=lφ as an effective imaginary time. The

components of the complex field ψ ¼ ffiffiffī
n

p
reiθ are

parametrized by dimensionless polar coordinates ðr; θÞ
of a fictitious quantum particle with the unit mass moving
in a rotationally symmetric potential:

VðrÞ ¼ −μml2
φr2 þ

1

2

l2
φ

ξ2
r4: ð6Þ

The coefficient of the first (quadratic) term in Eq. (6)
depends on the chemical potential μ and is fixed from the
condition h0jr2j0i ¼ 1, where j0i is the ground state of the
Hamiltonian H0 ¼ −∇2=2þ VðrÞ. It was shown in
Ref. [18] that, for low temperatures where ξ=lφ ≪ 1,
the chemical potential is positive and the potential expe-
rienced by the effective particle has a characteristic
“Mexican hat” shape, with the effective particle localized
near r ≃ 1. This temperature range corresponds to the
quasicondensate regime [21,22]. For high temperatures,
ξ=lφ ≫ 1, corresponding to the quantum degenerate
regime of Refs. [21,22], the chemical potential is negative,
μ < 0, and the effective particle explores the vicinity of the
minimum at r ¼ 0 where the potential is almost harmonic.
In this language of effective quantum mechanics, the

generating function (1) has the following meaning. The
ground state j0i is evolved for imaginary time tR ¼ R=lφ

by the modified Hamiltonian Hs ¼ H0 þ sr2, where
s ¼ λn̄lφ. This results in the modified state e−tRHs j0i.
The generating function is then given by the normalized
overlap

χðλ; RÞ ¼ χðs=n̄lφ; tRlφÞ ¼ h0je−tRðHs−E0Þj0i; ð7Þ

where E0 is the ground state energy of H0.
Short intervals.—We first consider the case of a short

interval R. In this limit, the imaginary time evolution of the
ground state in Eq. (7) is obtained by a multiplication of the
rotationally symmetric ground state wave function hrj0i ¼
Φ0ðrÞ by an exponential factor e−tRsr

2

so that the corre-
sponding probability distribution is proportional to the
ground state probability density of the effective 2D quan-
tum mechanical problem:

pðν; RÞ ¼
Z

∞

−∞
dk

Z
∞

0

rdreikðν−r2ÞjΦ0ðrÞj2 ¼ πjΦ0ð
ffiffiffi
ν

p Þj2

ð8Þ

and is independent of the interval length R.
For high temperatures, ξ=lφ ≫ 1, the HamiltonianH0 is

that of a two-dimensional harmonic oscillator with fre-
quency ω0 ¼ 1, and its ground state wave function is
simply Φ0ðrÞ ¼ e−r

2=2=
ffiffiffi
π

p
. Using Eq. (8), we see immedi-

ately that FCS is exponential;

pðν; RÞ ¼ e−ν ð9Þ
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and analogous to the intensity distribution in a speckle
pattern resulting from interference of Gaussian random
complex fields.
The low-temperature limit ξ=lφ ≪ 1 corresponds to the

quasicondensate regime. The value of chemical potential
μ ¼ 1=mξ2 ¼ gn̄ is fixed from the requirement that the
Mexican-hat-shaped potential has a minimum at r ¼ 1.
Expanding VðrÞ near the minimum, we get a one-
dimensional harmonic potential with the frequency
ω ¼ 2lφ=ξ ≫ 1. Substituting its ground state wave func-

tion Φ0ð1þ δrÞ ¼ ðω=4π3Þ1=4e−ωδr2=2 in Eq. (8) gives

pðν; RÞ ¼
ffiffiffiffiffiffiffiffi
lφ

2πξ

s
e−ð1=2Þðlφ=ξÞðν−1Þ2 : ð10Þ

The quadratic approximation for VðrÞ fails for large
deviations ν − 1 ∼ 1 already in the low-temperature regime
and becomes worse in the regime of intermediate temper-
atures. In these cases, the effective quantum mechanical
problem can be solved numerically. We find the ground
state Φ0ðrÞ and plot the corresponding distributions in
Fig. 1 for several values of dimensionless temperature
T=cn̄ ¼ ξ=lφ. The plots show how the exponential dis-
tribution in Eq. (9) transforms into the Gaussian distribu-
tion of Eq. (10) with a decreasing temperature. The
distinctive feature of these plots is the enhanced probability
to find the fraction ν well below its average value 1.
The above results are valid provided R is smaller than

correlation length Rc, which can be estimated as

Rc

lφ
¼ minð1; ξ=lφÞ: ð11Þ

For very small values of ν ≪ minð1; ξ=lφÞ, we have a more
stringent condition R=lφ ≪ ν equivalent to replacing mean
density n̄ with νn̄ ¼ N=R in the definition of lφ. This fact
makes the result in Fig. 1 unreliable for the corresponding
small values of the fraction ν.
Long intervals.—For R ≫ Rc, the evolution operator in

Eq. (7) becomes a projector:

e−tRðHs−E0Þ ≃ jsie−tRΔðsÞhsj ð12Þ

onto the ground state jsi of the modified Hamiltonian,
Hsjsi ¼ ½E0 þ ΔðsÞ�jsi. In this limit, the generating func-
tion (7) has the following form:

χðs=n̄lφ; tRlφÞ ¼ AðsÞe−tRΔðsÞ; ð13Þ

where the ground state energy shift ΔðsÞ and the overlap
AðsÞ ¼ jhsj0ij2 are independent of R. For long intervals,
the distribution (2) can be found by the saddle point
method:

pðν; RÞ ¼ R
lφ

Z
ds
2πi

AðsÞeðR=lφÞ½sν−ΔðsÞ� ≃DðνÞeðR=lφÞΓðνÞ;

ð14Þ

where Legendre transform ΓðνÞ ¼ sν − ΔðsÞ and the pre-
factor DðνÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R=2πlφ

p
AðsÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffijΔ00ðsÞjp

are calculated at
the saddle point obtained from the condition ν ¼ Δ0ðsÞ.
In the high-temperature limit, ξ=lφ ≫ 1, the rescaled

ground state energy shift and the overlap become inde-
pendent of the temperature ΔðsÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2s
p

− 1, AðsÞ ¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2s

p ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2s

p Þ−2 [20], and we obtain

pðν; RÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
R

2πlφ

s
4eðR=2lφÞð2−ν−1=νÞffiffiffi

ν
p ð1þ νÞ2 : ð15Þ

For small deviations jν − 1j ≪ 1, this expression for FCS

becomes a Gaussian with variance δν2 ¼ lφ=R.
In the low-temperature regime, ξ=lφ ≪ 1, to the lowest

order, the rescaled ground state energy shift is a quadratic
function ΔðsÞ ≃ s − ðξ=lφÞ2s2=2 and AðsÞ ≃ 1, so that by
Gaussian integration we get

pðν; RÞ ¼
ffiffiffiffiffiffiffiffiffiffi
Rlφ

2πξ2

s
exp

�
−
Rlφ

2ξ2
ðν − 1Þ2

�
ð16Þ

in full agreement with the hydrodynamic result of

Refs. [14,15]. The variance is δν2 ¼ ξ2=lφR. In Fig. 2,
the results based on the numerical calculations of Eq. (14)
are shown for intermediate values of the temperature.
Intermediate intervals.—In the limiting cases of high

and low temperature, the probability distribution can be
obtained for an interval of arbitrary length R. The method is
based on the exact evolution of harmonic oscillator
wave functions under a time-dependent variation of the
frequency and external force [23] as explained in
Supplemental Material [20]. For high temperatures,
ξ=lφ ≫ 1, FCS is shown in Fig. 3. It interpolates between
Eqs. (9) and (15) and has a distinctive non-Gaussian shape.
For small intervals, the distribution approaches the expo-
nential distribution Eq. (9) everywhere apart from the
interval ν < R=lφ, where it drops to zero.
For low temperatures, ξ=lφ ≪ 1, the distribution

remains very close to a Gaussian with variance depending
on the interval length,

pðν; RÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2πFcðR=ξÞ
lφ

ξ

s
e−½1=2FcðR=ξÞ�ðlφ=ξÞðν−1Þ2 : ð17Þ

The crossover function FcðxÞ ¼ ð2x − 1þ e−2xÞ=2x2
behaves as FcðxÞ≃1 for x≪ 1 and FcðxÞ≃1=x for x≫1
and interpolates between Eqs. (10) and (16). This result
could have otherwise been obtained by including gradient
terms in the hydrodynamical approach of Ref. [15].
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Variance of the particle number.—For long intervals
R > Rc, the above results suggest the following scaling
form for the variance of the number of particles:

δN2

n̄R
¼ n̄Rδν2 ¼ n̄ξwðξ=lφÞ; ð18Þ

where the universal function has the limiting behavior
wðxÞ ¼ x for x ≪ 1 and wðxÞ ¼ 1=x for x ≫ 1. For
intermediate values of x, the numerical results for wðxÞ
are shown in the inset in Fig. 2 and confirm the non-
monotonic dependence of the particle number variance on
the temperature anticipated from the limiting behaviors of
wðxÞ. The right-hand side of Eq. (18) is greater than 1 in the
whole range of validity of our approach, 1=n̄ξ< ξ=lφ < n̄ξ,
and thus the fluctuations of particle number are super-
Poissonian, in agreement with findings of Ref. [3].
Higher moments of FCS can also be obtained from the

knowledge of generating function χðλ; RÞ, and we calculate
the third and the fourth moments in Supplemental Material
[20]. They are in full agreement with the results of previous
studies [2,11].
Conclusions.—The departure of FCS from Poisson

distribution characteristic of a classical ideal gas [20] is
a direct consequence of quantum statistics and constitutes
manifestation of bosonic bunching beyond second-order
fluctuations. A distinctive feature of distribution we found
at high enough temperatures is an enhanced probability to
find large (on the scale of mean interparticle separation)
regions of depleted numbers of particles. One can directly
verify our results by counting the number of atoms in pixels
of the size R of the order of a few microns in many
realizations of the one-dimensional cloud of atoms. For
typical values of parameters in the experiments in
Refs. [1,2], 1=n̄ ∼ 0.02 μm and ξ ∼ 0.3 μm ≫ 1=n̄ as
required in the weakly interacting regime. The phase
coherence length lφ is similar to ξ but can be changed
by adjusting the temperature. Thus, the observation of
mesoscopic FCS in the various temperature regimes
described above is indeed within the reach of current
experiments. Such measurements can provide a novel
way to characterize the temperature and interaction strength
due to the strong dependence of FCS on these parameters.
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