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Abstract—In control systems engineering, the selection of
controller parameters play an important role in obtaining optimal
controller performance. However, it is often not possible to
obtain closed-form relationships between the parameters and
performance, making the selection process difficult. This paper
presents an automated tuning strategy for Model Predictive
Controllers (MPC) whereby a meta-cost function is introduced
to penalise undesirable behaviour, and subsequently optimised
over using black-box search algorithms. To this end, we propose
a method of re-parametrising the cost matrices in MPC. This
approach results in a box-constrained parametrisation for the
matrices, as well as a reduction in the search dimension. The
procedure is demonstrated on a diesel engine case study, where we
compare the tuning of MPC using the proposed parametrisation
to an unbounded parametrisation on a test suite of optimisation
algorithms: Simulated Annealing (SA), Particle Swarm Optimi-
sation (PSO), Genetic Algorithms (GA), Nesterov’s gradient-free
algorithm (NGF) and Covariance Matrix Adaptation Evolution
Strategy (CMA-ES). We find that the proposed parametrisation
provides a statistically significant advantage on all algorithms
tested except CMA-ES, for which the performance was similar.
We discuss this latter empirical result in relation to the theoretical
invariance properties of CMA-ES.

Index Terms—diesel engines, evolutionary computation, opti-
mization, predictive control

I. INTRODUCTION
Model Predictive Control (MPC) [1] is a suitable strat-

egy for controlling constrained multiple-input multiple-output
(MIMO) dynamical systems because of its ability to explicitly
handle state and input constraints while solving for an optimal
input sequence over a finite time-horizon. Traditionally, MPC
has been favoured in the process industry, where the slower
dynamics and sampling times of systems allowed for the MPC
online optimisation problem to be solved in between samples.
However, increases in the availability of computing power
have allowed for MPC to be implemented on systems with
faster dynamics and sampling times, such as automotive diesel
engines [2], [3].

The first author is supported by the Elizabeth and Vernon Puzey Scholarship
(The University of Melbourne) and the Priestley Scholarship (The University
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A problem faced in the calibration of MPC are the tuning
of the cost matrices that appear in the cost functional, namely
the Q, P , R matrices in a quadratic formulation with terminal
cost. While the Q, P , R matrices are intended to penalise
deviations of the states and inputs over an open-loop predic-
tion horizon, the impact of each element in these matrices
on higher-level objectives (say, time-domain characteristics)
of controller performance with closed-loop feedback is not
obvious. Experienced control engineers (such as automotive
engine calibrators) have gained an innate understanding of
time-domain characteristics desirable in system trajectories.
However, the unintuitive relationship between Q, P , R and
time-domain characteristics leads to an increased burden as-
sociated with tuning and commissioning new controllers, and
acts as a barrier for MPC to be more commonplace in
industrial domains, including automotive applications. The
issue of tuning MPC has been widely addressed in literature,
although not comprehensively solved. Several textbooks [1],
[4] provide heuristic guidelines for practitioners to tune MPC
cost parameters. In special cases (i.e. when constraints are not
active and when the matrices are of simpler structure), analyt-
ical results have yielded explicit tuning rules for parameters
[5]. In [6], an envelope-constrained formulation of MPC was
developed to be more amenable for tuning by engineers.

In offline tuning of MPC (in which cost parameters are
tuned via simulation before being tested in practice), several
authors have approached the tuning problem by formulating
a higher-level objective function of the closed-loop MPC
response, which we will refer to in this paper as a “meta-
cost” function. These authors have then used an optimisation
algorithm in conjunction with simulations of the closed-loop
MPC to optimise the meta-cost with respect to the parameters
of the MPC [7], [8].

In this paper, we build on the state-of-the-art for offline tun-
ing of MPC via a meta-cost in the following way. We present
a method for re-parametrising the Q, P , R matrices which
reduces the search dimension while retaining the full positive-
definite structure, and also transforming the problem to be over



a box-constrained search space. Some previous literature [9],
[10] have only considered tuning MPC with simplified cost
structure, such as when Q, R are constrained to be effectively
diagonal or scaled identity matrices. Investigating more free-
dom in the structure of the matrices allows the potential for
better controllers to be found. In addition to algorithms used
in existing MPC tuning literature, we propose the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) optimisation
algorithm for solving the meta-cost tuning problem. We show
that our tuning approach is also compatible with existing
stability guarantees of linear, constrained systems. Lastly, we
present results on an automotive diesel engine case study to
benchmark this parametrisation in comparison with another
parametrisation on a test suite of optimisation algorithms.

II. PROBLEM STATEMENT
A. Notation

The set of real numbers is denoted R, the set of positive
real numbers is denoted R>0, and the set of natural numbers
is denoted N. The symbol > denotes the matrix transpose.
The superscript + denotes a forward shift in discrete-time.
Inequalities involving vectors are to be interpreted element-
wise. Matrix-valued variables will be capitalised and the
symbol � is reserved for matrix inequalities.

B. General Formulation

A general formulation of the controller tuning problem may
be posed as follows. Suppose that a controller is parametrised
by ϑ ∈ Θ, and there exists a real-valued function J (ϑ) : Θ→
R that maps each parameter value to a scalar performance
index. Then we consider the tuning problem as to be finding
ideally:

ϑ∗ = argmin
ϑ∈Θ

J (ϑ) (1)

C. MPC Formulation

In this paper, we concentrate on the problem of tuning
MPC matrices of a quadratic cost functional with terminal cost
for regulation of a linear system with linear state and input
constraints. The linear discrete-time model is a dynamical
system with inputs u, outputs y, and states x given by a
difference equation of the form:

x+ = Ax+Bu (2)

and output equation:
y = Cx (3)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, A ∈ Rn×n, B ∈ Rn×m

and C ∈ Rp×n with linear state constraints Mx ≤ f ,
linear input constraints Eu ≤ h and a slew rate constraint
|∆u| := |u+ − u| ≤ ũ. Consider a control objective of
choosing inputs to regulate the system to the origin x = 0
from an initial condition x0. At sampling instant k, the online
MPC cost function is defined as a quadratic in the states and
inputs with prediction horizon N ∈ N:

Vk =

N−1∑
i=0

(
x>k|iQxk|i + u>k|iRuk|i

)
+ x>k|NPxk|N (4)

where xk|i denotes the predicted future state at time k + i
from current state xk, and uk|i denotes the applied input at
time k + i. Also, Q ∈ Rn×n, P ∈ Rn×n and R ∈ Rm×m

are symmetric positive-definite weighting matrices to penalise
the deviation of future states and inputs from the origin. We
take the prediction horizon N to be given (because in practice
this could be dependent on hardware limitations), and thus
is not considered as a tuning parameter. At each sampling
instant k, the controller finds the optimal open-loop sequence
{u∗k} :=

{
u∗k|0, . . . , u

∗
k|N−1

}
by solving:

min
uk|0,...,uk|N−1

Vk

subject to xk|i+1 = Axk|i +Buk|i, i = 0, . . . , N − 1

Mxk|i ≤ f, i = 1, . . . , N

Euk|i ≤ h, i = 0, . . . , N − 1∣∣uk|i − uk|i−1

∣∣ ≤ ũ, i = 0, . . . , N − 1

(5)

and applies u∗k|0 as the control law at time k. Hence the
closed-loop sequence of controls for times k = 0, 1, 2, . . . will
be given by

{
u∗0|0, u

∗
1|0, u

∗
2|0, . . .

}
. This online optimisation

problem can be formulated as a quadratic program (QP), hence
it is a convex problem and there exist a variety of QP solvers
that can aid in finding the global optimum.

D. Meta-cost Formulation

We formulate the offline MPC tuning problem using a meta-
cost function. Suppose that in a finite T ∈ N number of steps,
the closed-loop dynamics of the MPC with given initial condi-
tion x0, closed-loop control sequence

{
u∗0|0, . . . , u

∗
T−1|0

}
and

cost matrix tuple {Q,P,R} yields the following sequence of
outputs:

Y{Q,P,R} :=
{
y0|{Q,P,R}, . . . , yT |{Q,P,R}

}
(6)

Denote J
(
Y{Q,P,R}

)
as a meta-cost function of the closed-

loop output response. Then, the meta-cost tuning problem for
MPC is formulated as:

min
{Q,P,R}

J
(
Y{Q,P,R}

)
subject to Q,P,R � 0

(7)

where the decision variables exist in continuous space. Since
the meta-cost can be an arbitrary function of the closed-loop
response, it is neither guaranteed to be convex nor smooth,
hence the tuning problem should be treated as a black-box
optimisation problem, where we may attempt to apply heuristic
search algorithms to find sub-optimal solutions.

III. RE-PARAMETRISATION

In this section, a method for re-parametrising the tuple
{Q,P,R} is presented. This re-parametrisation is motivated
by the observation that if we multiply Q, P , R all by the
same positive constant c > 0, the solution to the MPC
problem (5) remains unchanged. This suggests that there is
some redundancy by naively parametrising {Q,P,R} by the
elements of the matrices.



Additionally, we perform dimension reduction by fixing the
terminal cost weight P with respect to Q and R. Suppose there
is an implicit function g (P,Q,R) of the cost matrices. We
choose a scheme where given some Q and R, then P is fixed to
be the matrix which solves g (P,Q,R) = 0. In proceeding, we
further require g (P,Q,R) to satisfy the following assumption.

Assumption 1: If the tuple {Q1, P1, R1} solves
g (P1, Q1, R1) = 0, then for any c > 0, then the tuple
{cQ1, cP1, cR1} also solves g (cP1, cQ1, cR1) = 0.
Furthermore, if Q1 � 0 and R1 � 0, then P1 � 0.

Hence this allows us to concentrate only on parametrising
Q and R. An important consideration is that Q and R must be
symmetric positive-definite, which allows us to parametrise the
matrices with only their upper or lower triangular elements.
Although a perturbation to these values (such as that applied
by a search algorithm) does not guarantee the matrices will
remain positive-definite, it is possible to enforce positive-
definiteness by projection onto the positive-definite cone (as
addressed in [7]), by using the spectral decomposition (ie.
eigendecomposition) of positive-definite matrices. The method
presented in this paper is also based on eigendecomposition,
from which we may write:[

Q 0
0 R

]
=

[
WQ 0

0 WR

] [
DQ 0
0 DR

] [
W>Q 0

0 W>R

]
(8)

where WQ,WR are orthogonal matrices and DQ, DR are
diagonal matrices. The orthogonal matrix WQ may be mini-
mally parametrised by

(
n2 − n

)
/2 parameters (see [11] for a

survey covering various approaches to parametrise orthogonal
matrices), and likewise WR may be minimally parametrised by(
m2 −m

)
/2 parameters. In this paper, we choose the method

of parametrisation to be the Givens rotations, which are a
generalisation of the Euler rotations. This is also a method
of minimal parametrisation, so we can choose

(
n2 − n

)
/2

angles in [−π, π) to parametrise WQ and
(
m2 −m

)
/2 angles

in [−π, π) to parametrise WR.
The diagonal matrix diag {DQ, DR} is parametrised using

n + m − 1 parameters, if we impose the constraint that
trace

(
D2

Q

)
+ trace

(
D2

R

)
= 1. Under this scheme, we are

effectively constraining the diagonals to be a point on the unit
hypersphere in n + m dimensions, which is a n + m − 1-
dimensional manifold. Thus using hyperspherical coordinates,
we can parametrise both DQ and DR using n+m− 1 angles
in (0, π/2) so that we a picking from the positive orthant
Rn+m−1

>0 , hence all the diagonals will be positive to satisfy
the positive-definite requirement of Q and R. Although in
choosing this parametrisation we have lost the ability to choose
the scale of the matrices (ie. radius of the hypersphere), this is
of no consequence as it has been established that scaling Q, P ,
R by some positive constant does not change the performance
of the controller. In choosing this parametrisation, we have also
removed the redundancy in parameters as originally alluded to.

We take stock to count the total number of parameters under
this re-parametrisation. We have

(
n2 + n

)
/2+

(
m2 +m

)
/2−

1 parameters, compared to
(
n2 + n

)
/2 +

(
m2 +m

)
/2 if

Q and R were parametrised by their elements. Hence the

number of parameters has been reduced by 1, but we have
also enforced the positive-definite requirement on Q and R
over a box-constrained parametrisation. Compared to fully
parametrising Q, P , R by their elements, we have reduced
the number of dimensions by

(
n2 + n

)
/2 + 1, but lost the

flexibility of choosing P independently of Q and R. However,
we argue that this is not of great detriment. The rationale of P
as a finite-horizon terminal cost weighting is to approximate
the cost weighting over an infinite horizon from N to ∞. If
there are no constraints, P has a solution which gives the
exact weighting over an infinite horizon. This solution is the
solution to the discrete-time algebraic Riccati equation [12]:

Q+A>PA−A>PB
(
R+B>PB

)−1
B>PA−P = 0 (9)

Note that taking g (P,Q,R) to be the discrete-time algebraic
Riccati equation satisfies Assumption 1. In Section V, it is
also described how this choice of P can guarantee stability.
A simple alternative option which also satisfies Assumption
1 is to fix P = Q. With these examples we show that there
are satisfactory approaches for fixing P , in lieu of choosing
P independently of Q and R.

A. Re-parametrisation with a Regularisation Factor

We also provide an alternative re-parametrisation technique
for situations where a practitioner wishes to regularise the
solution to the MPC. If it is known that the uncontrolled
system x+ = Ax is asymptotically stable at the origin (ie.
the spectral norm ‖A‖ < 1), then setting uk = 0 for all k
will ensure the system autonomously regulates to the origin
in the absence of disturbances. In this case, the role of MPC
may typically be to provide feedback and drive the states to
the origin quicker than would be by setting uk = 0 for all
k. However if there is plant-model mismatch, that is, if the
prediction model used by the MPC is not the same as the
actual dynamics of the system, then the MPC will be applying
inputs based on ill-informed predictions. In these cases, there
is merit to weighting deviations of the input above deviations
of the states because then the input solved by MPC would be
‘closer’ to the known valid input uk = 0. Thus the matrix R
relative to Q and P represents a form of regularisation on the
solution to the online MPC problem.

Introduce a parameter ρ > 0. In this alternative parametrisa-
tion, the orthogonal matrices WQ and WR are parametrised as
before, however now DQ and DR are separately parametrised
with hyperspherical coordinates such that trace

(
D2

Q

)
= 1

and trace
(
D2

R

)
= ρ2. Thus there are now

(
n2 + n

)
/2 +(

m2 +m
)
/2 − 2 parameters to be optimised and ρ > 0 is

chosen by the practitioner based on their confidence in the
predictive model, with a higher model confidence leading to
reduced ρ.

IV. OPTIMISATION ALGORITHMS

The method in Section III for parametrising the tuple
{Q,P,R} allows the meta-cost tuning problem to be solved
over a box-constrained search space. While this makes it
convenient to write routines for simple black-box optimisation



algorithms such as grid search and random search to solve
(7), in this paper we consider the use of more sophisticated
solvers including the CMA-ES algorithm [13], particle swarm
optimisation (PSO) [14], genetic algorithms (GA) [15], and
Nestorov’s gradient-free method (NGF) [16]. With the excep-
tion of CMA-ES, each of the aforementioned class of search
strategies has been previously employed in the tuning/design
of MPC ( [17] for PSO, [18] for GA and [7] for NGF). For the
sake of comparison, we also consider the adaptive simulated
annealing (SA) algorithm [19].

CMA-ES operates on a statistical principle by representing
the distribution of possible candidate solutions by a Gaussian
distribution parametrised by a mean and covariance. At each
iteration, a sample of candidate solutions is evaluated on the
objective (‘fitness’) function, and the relative fitnesses are used
to update the mean and covariance in a maximum-likelihood
fashion. CMA-ES has theoretical foundations in information
geometry [20] and close links with natural gradient descent,
which utilises the Fisher information matrix to update the
probability distribution between iterations. It is also shown that
a particular variant of the CMA-ES algorithm can be recovered
as a time-discretisation and finite-sample approximation of the
Information-Geometric Optimisation (IGO) flow in continu-
ous time, when applied to the Gaussian family of distribu-
tions [21]. CMA-ES has been experimentally demonstrated
to benchmark well against other derivative-free optimisation
algorithms on test problems over a continuous space which
are particularly rugged and ill-conditioned [22]–[24]. On this
encouraging note, it stands to reason that we further investigate
CMA-ES in a practical application to MPC tuning.

A. Benefits of Re-parametrisation

We remark on potential benefits of using the box-
constrained re-parametrisation in optimisation. While by some
intuitive notion, a re-parametrisation which transforms an un-
bounded space into a bounded space might appear to ‘shrink’
the search space, it is not immediately clear or not whether
this will prove beneficial. To illustrate with a counter-example,
consider the unbounded search space Ω = {ω ∈ R : ω > 1}
with decision variable ω, and the re-parametrisation ω′ =
1/ω so that the re-parametrised search space is given by
Ω′ = {ω′ ∈ R : 0 < ω′ < 1}. While the search space has been
transformed to now be box-constrained on the interval (0, 1),
an algorithm may struggle to find good local optima if the
re-parametrisation concentrates all the local optima close to 0.

However in our case, we have exploited the redundancy
in the Q, P , R matrices to simultaneously reduce the search
dimension while re-parametrising onto a bounded space. For
each {Q,P,R} naively parametrised by its elements, there ex-
ists a local search direction (which is proportional to {Q,P,R}
itself), whereby a step along this direction will not affect the
meta-cost value, as {Q,P,R} will have only been modified by
a scaling. Sacrificing rigour for exposition, an algorithm which
does not explicitly consider derivatives may ‘waste’ function
evaluations by searching in (or close to) this direction, while a
non-population-based algorithm may be ‘tricked’ into thinking

it has found a local optimum at that point. Re-parametrising to
the box-constrained search space will remove this redundant
search direction, possibly leading to increased efficiency in
optimisation.

Furthermore, another benefit of this box-constrained re-
parametrisation is that the decision variables will be guaran-
teed to stay within known bounds, avoiding numerical com-
putation issues (such as ill-conditioning or rounding errors)
related to the decision variables growing unbounded during
search.

V. STABILITY GUARANTEES

In this section, we summarise how the meta-cost tuning
method can be made to be compatible with existing results of
closed-loop stability guarantees in MPC, for scenarios where
stability guarantees are required. A simple example illustrating
closed-loop stability is provided in Appendix A. For systems
where human-safety is important and/or instability leads to
catastrophic consequences (as can found in numerous automo-
tive and aerospace examples), such guarantees are important.
For simplicity, we state the conditions required for stability
of deterministic, linear, constrained systems with meta-cost
tuning. A wider survey of results in stability of MPC are found
in [25], [26] and can be adapted in a similar manner.

Assumption 2: The system dynamics and MPC predictive
model are both given by (2).

Assumption 3: The polytopes for state constraints X :=
{x : Mx ≤ f} and input constraints U := {u : Eu ≤ h}
contain the origin.

Definition 1 (Maximum output admissible set): Let K∗

denote the gain in the discrete-time Linear Quadratic Regulator
(LQR) control law with dynamics (2) and cost weight matrices
Q, R. The maximum output admissible set Xa is defined as:

Xa := {x : (A+BK∗)x ∈ X,K∗ (A+BK∗)x ∈ U} (10)

An algorithm on computing Xa may be found in [27].
Introduce the region of attraction Xr as the set of states that
can be steered by admissible control sequences (ie. satisfying
state, input, and slew rate constraints) to Xa in N steps or
less.

Assumption 4: The initial condition x0 ∈ Xr.
We then modify the MPC formulation with a terminal con-
straint as the maximum output admissible set:

min
uk|0,...,uk|N−1

N−1∑
i=0

(
x>k|iQxk|i + u>k|iRuk|i

)
+ x>k|NP

∗xk|N

subject to xk|i+1 = Axk|i +Buk|i, i = 0, . . . , N − 1

xk|i ∈ X, i = 1, . . . , N − 1

xk|N ∈ Xa

uk|i ∈ U, i = 0, . . . , N − 1∣∣uk|i − uk|i−1

∣∣ ≤ ũ, i = 0, . . . , N − 1
(11)

where P ∗ is fixed to be the solution of the discrete-time
algebraic Riccati equation (9).



Theorem 1: Under Assumptions 1, 2, 3, 4, the closed-loop
system using any MPC with cost matrices {Q,P,R} with
augmented formulation (11) found through meta-cost tuning
(7) with the re-parametrisation approach in Section III is
exponentially stable with region of attraction Xr.

This guarantees that any candidate solution of the meta-cost
tuning problem (7) using the re-parametrisation technique will
be a stabilising controller.

VI. CASE STUDY

We demonstrate the meta-cost tuning approach for diesel
engine air-path control. The schematic of the diesel engine
air-path with exhaust gas recirculation (EGR) and variable
geometry turbine (VGT) is displayed in Figure 1.

Throttle

EGR
Valve

EGR
Cooler

Intake manifold

Exhaust manifold

Exhaust gas

VGTCompressor

Air

Cylinders

Fuel rail and injectors

Intercooler

Fig. 1. A schematic of the a diesel engine air-path with exhaust gas
recirculation (EGR) and variable geometry turbine (VGT).

A reduced 4th-order model structure developed in [3] has
n = 4 states:

x =
[
pim pem Wcomp yEGR

]>
(12)

where pim is the intake manifold (boost) pressure, pem is the
exhaust manifold pressure, Wcomp is the compressor mass flow
rate and yEGR is the EGR rate (which is the ratio of EGR mass
flow rate to the sum of EGR and compressor mass flow rates).
There are m = 3 actuators:

u =
[
uthr uEGR uVGT

]>
(13)

where uthr is the throttle valve, uEGR is the EGR valve
and uVGT is the VGT vane. The outputs of interest are the
boost pressure and EGR rate, so that y =

[
pim yEGR

]>
.

The dynamical model is parametrised by an engine speed
Ne and fuel rate wfuel, and the pair (Ne, wfuel) as known
as an operating point. For each engine operating point, there
exists an input setpoint uss stored in the memory of the
engine control unit (ECU), which induces an associated steady
state xss as the steady state of the system when input uss

is held fixed. For a given operating point (Ne, wfuel), we
refer to (uss, xss) as the operating condition at that operating
point. Using experimental data from a test diesel engine at
one particular operating point (N∗e , w

∗
fuel), we identified using

least-squares a local linear model with (A,B) trimmed about

the operating condition (x∗ss, u
∗
ss). The system is constrained

by upper and lower bounds for states, saturation constraints
for the inputs, and slew rate constraints.

The results of the system model identification for the
local linear model at (N∗e , w

∗
fuel) appear in Figure 2. The

identification data was obtained by perturbing the system about
the steady-state operating condition with a sum-of-sinusoids
input signal. An open-loop simulated trajectory of the states
(ie. given only the initial condition and sequence of inputs)
using the identified model is compared against the obtained
data to indicate the model fit. Diesel-engine dynamics are
known for being highly nonlinear, sometimes requiring an 8th-
order nonlinear model to faithfully describe [28]. Using a 4th-
order local linear model, Figure 2 shows that the dynamics are
still reasonably well-captured about the operating condition
(x∗ss, u

∗
ss). Although performing simulations with a higher-

order nonlinear model is likely to lead to more accurate tuning
results, for the purposes of demonstration and computational
efficiency, we proceed in this paper with using the 4th-order
local linear model to generate simulations.
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-0.5

0

0.5

1

Data

Simulation

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40

Time (s)

-1

0

1

Fig. 2. System identification results for the 4th-order local linear model of
the diesel engine air-path. The vertical axes are in normalised units.

We tune MPC to regulate the diesel engine at the operat-
ing condition for (N∗e , w

∗
fuel). To parametrise the Q and R

matrices, the 15-length vector is introduced:

(θ,α,φ)

= (θ1, θ2, θ2, θ3, θ4, θ5, θ6, α1, α2, α3, α4, α5, α6, φ1, φ2, φ3)
(14)



with the box-constraints −π ≤ θ < π, −π ≤ φ < π and
0 ≤ α < π/2. Using sθ := sin θ and cθ := cos θ as shorthand,
we parametrise Q and R firstly with the Givens rotations:

WQ =


cθ1 −sθ1 0 0
sθ1 cθ1 0 0
0 0 1 0
0 0 0 1



cθ2 0 −sθ2 0
0 1 0 0
sθ2 0 cθ2 0
0 0 0 1



×


cθ3 0 0 −sθ3

0 1 0 0
0 0 1 0
sθ3 0 0 cθ3




1 0 0 0
0 cθ4 −sθ4 0
0 sθ4 cθ4 0
0 0 0 1



×


1 0 0 0
0 cθ5 0 −sθ5

0 0 1 0
0 sθ5 0 cθ5




1 0 0 0
0 1 0 0
0 0 cθ6 −sθ6

0 0 sθ6 cθ6

 (15)

WR =

cφ1 −sφ1 0
sφ1 cφ1 0
0 0 1

cφ2 0 −sφ2

0 1 0
sφ2 0 cφ2


×

1 0 0
0 cφ3 −sφ3

0 sφ3 cφ3

 (16)

and then hyperspherical coordinates:

DQ = diag




cα1

sα1cα2

sα1sα2cα3

sα1sα2sα3cα4


 (17)

DR = diag


 sα1sα2sα3sα4cα5

sα1sα2sα3sα4sα5cα6

sα1sα2sα3sα4sα5sα6

 (18)

to form Q = WQDQW
>
Q and R = WRDRW

>
R . Then P

is fixed with respect to Q and R by solving the discrete-
time algebraic Riccati equation in (9) (for which MATLAB
provides a routine with the dare command).

For this demonstration, we design a simple meta-cost func-
tion from a convex combination of time-domain characteristics
of the output response. The meta-cost function is expressed by:

J
(
Y{Q,R,P}

)
= σ1RT1 + σ2ST1 + σ3OS1 + σ4US1

+ σ5RT2 + σ6ST2 + σ7OS2 + σ8US2 (19)

with
∑8

i=1 σi = 1, where each characteristic is defined in
Table I.

In this particular case study we choose σ1 = 0.3, σ2 = 0.01,
σ3 = 0.02, σ4 = 0.01, σ5 = 0.1, σ6, σ7 = 0.45, σ8 = 0.01.
MPC is implemented with the QPKWIK algorithm [29] as the
QP solver in closed-loop simulation with the identified linear
model, using the formulation (5). Each simulation is initialised
with the operating condition of a nearby operating point and
run for 5 seconds of simulation time. If a trajectory fails to rise
or settle within this time, then the corresponding characteristic
is taken to be 5 seconds.

TABLE I
DESCRIPTION OF TIME-DOMAIN CHARACTERISTICS USED IN THE

META-COST, FOR A TRAJECTORY STARTING FROM ITS INITIAL CONDITION
RELATIVE TO A FINAL VALUE OF 0.

Characteristic Description
RT1 10% to 90% rise time (seconds) of pim
ST1 2% settling time (seconds) of pim
OS1 Overshoot (proportion) of pim
US1 Undershoot (proportion) of pim
RT2 10% to 90% rise time (seconds) of yEGR

ST2 2% settling time (seconds) of yEGR

OS2 Overshoot (proportion) of yEGR

US2 Undershoot (proportion) of yEGR

A. Results

In the numerical experiments, we perform multiple op-
timisation trials for the meta-cost tuning of diesel engine
control. In half of the trials, we use the re-parametrisation
method presented in this paper (referred to as the ‘angular’
parametrisation). As a point of comparison, we use in the
other half of the trials a parametrisation where WQ and WR

are still parametrised as before, however DQ and DR are now
parametrised simply by their diagonal elements (as positive
real numbers). This gives rise to an optimisation problem
over an unbounded search space with a 16-length vector
decision variable and we refer to this parametrisation as the
‘unbounded’ parametrisation.

We test both parametrisations using each algorithm men-
tioned in Section IV. For SA, PSO and GA, implementations
are available from MATLAB’s Optimization Toolbox. A
routine for CMA-ES is available from [30]. These implemen-
tations come pre-packaged with bound-constraint handling ca-
pability. Algorithm settings (with the exception of termination
conditions) are left at their default. Code for implementing
NGF was written from scratch, where bound-constraints are
handled through projection.

Each optimisation trial is initialised from the value which
yield the identity matrices (or a positive scaling thereof) for
Q and R (except when using algorithms PSO and GA, which
did not require initial guesses). A budget of 20, 000 function
evaluations is assigned to each optimisation trial, and all
other termination conditions are suppressed. Each trial returns
the best meta-cost function value encountered along the run.
However, note that since some algorithms (namely CMA-ES,
PSO and GA) are population-based, each trial may terminate
with slightly in excess of 20, 000 function evaluations. As all
these algorithms operate on randomness, an average of 50
trials are taken and reported alongside the sample standard
deviation. A table of the results is reported in Table II.

Figure 3 also plots the comparison of the output trajectories1

between the initial {Q,P,R} (with meta-cost value of 0.9303)
and the tuned {Q,P,R} from the best trial in the sample of
CMA-ES with angular parametrisation (which had meta-cost
value of 0.2802). This depicts the overall improvement in the

1The raw time-series data is commercially sensitive and therefore not
included.



TABLE II
RESULTS OF OPTIMISATION TRIALS (50 RUNS PER ROW, EACH RUN WITH

20, 000 FUNCTION EVALUATION BUDGET).

Algorithm Parametrisation Mean Std. Dev.
CMA-ES Angular 0.3235 0.0357
CMA-ES Unbounded 0.3213 0.0295
NGF Angular 0.3812 0.0874
NGF Unbounded 0.5523 0.0295
SA Angular 0.4542 0.0313
SA Unbounded 0.5872 0.0430
PSO Angular 0.3432 0.0603
PSO Unbounded 0.3673 0.0441
GA Angular 0.3721 0.0531
GA Unbounded 0.5305 0.0570

controller with the tuning approach, where the tuned controller
has visibly reduced the amount of overshoot in both outputs.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1
Normalised Boost Pressure

Initial

Tuned

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-1

-0.5

0

0.5

1
Normalised EGR Rate

Initial

Tuned

Fig. 3. Normalised output responses of initial (meta-cost: 0.9303) and tuned
(meta-cost: 0.2802) controllers.

For each algorithm, we compare the sample of trials ob-
tained from the angular parametrisation against the sample
of trials obtained from the unbounded parametrisation. The
Wilcoxon-Mann-Whitney rank-sum test [31] is performed to
test the null hypothesis that the distribution of trials is equal,
against the alternative that a trial using the angular parametri-
sation is stochastically smaller. We test at the 5% level of
significance and list the results in Table III.

TABLE III
WILCOXON-MANN-WHITNEY TEST RESULTS FOR THE DIFFERENCE IN

PARAMETRISATIONS.

Algorithm p-value Statistically significant?
CMA-ES 0.5261 No
NGF 5.754× 10−13 Yes
SA 1.070× 10−16 Yes
PSO 0.0102 Yes
GA 1.79× 10−16 Yes

B. Discussion

Table III shows that there was a statistically significant
advantage in using the angular parametrisation for algorithms
NGF, SA, PSO and GA. In tandem with the suggestions
already provided in Section IV-A, we suggest an informal
explanation for this phenomenon. For this particular case
study, local minima may have been ‘more dispersed’ over
an unbounded search space compared to a box-constrained
search space. Compounded with the slight difference in search
dimension, an algorithm may have been more efficient at
finding local minima with the angular parametrisation in a
given budget of function evaluations.

As for CMA-ES, we observe that there was no statistically
significant difference from choosing the angular parametrisa-
tion over the unbounded parametrisation. Resuming discussion
from Section IV, a further property of IGO flow is that of
‘invariance’. Loosely speaking, an algorithm with invariance
generalises results on a single problem to a larger class of
problems. For example, as CMA-ES operates based on the
ordinal ranking of fitness rather than absolute fitness values,
it is invariant to strictly positive monotonic transformations
of the objective function. Under certain conditions, IGO flow
is also invariant to a re-parametrisation of the search space
[21]. However, this result does not include the case where
the re-parametrisation changes the search dimension and fur-
thermore, the formal guarantee of invariance does not carry
over when obtaining implementable discrete-time and finite-
sample algorithms from IGO flow (the only takeaway is that
CMA-ES is ‘more invariant’ than other algorithms). Hence it
is an open question how algorithm performance is affected
by a re-parametrisation which changes the search dimension.
The empirical results in this paper support the notion that
invariance features of CMA-ES may also transfer to such a
scenario.

Although is not the main scope of this paper to compare
algorithms (since this requires consideration of a wider class
of objective function landscapes), we briefly comment that
in this particular case study, CMA-ES also achieved the
lowest average meta-cost for both angular and unbounded
parametrisations, tested to be statistically significant against
the other algorithms with the exception of PSO on angular
parametrisation (p-values reported in Table IV).

TABLE IV
WILCOXON-MANN-WHITNEY TEST RESULTS FOR THE DIFFERENCE IN

ALGORITHM COMPARED TO CMA-ES.

Algorithm Parametrisation p-value Statistically significant?
NGF Angular 3.5× 10−5 Yes
SA Angular 1.2× 10−17 Yes
PSO Angular 0.0715 No
GA Angular 2.0× 10−6 Yes
NGF Unbounded 6.4× 10−18 Yes
SA Unbounded 3.5× 10−18 Yes
PSO Unbounded 3.6× 10−8 Yes
GA Unbounded 3.5× 10−18 Yes



VII. CONCLUSIONS

The proposed parametrisation method was found to improve
optimisation performance on NGF, SA, PSO and GA, while
there appeared to be no significant disadvantage when used
with CMA-ES. This suggests some merit in choosing the
proposed parametrisation in problems of a similar nature
regarding the tuning of MPC cost matrices with a meta-
cost function. Moreover, the box-constrained parametrisation
alleviates any numerical issues stemming from the decision
variables growing unbounded. The results presented warrant
further investigation (theoretical and applied) into establishing
the benefits of this re-parametrisation, as well as studying the
invariance properties of CMA-ES when the re-parametrisation
involves a change in the search dimension. The work could
also be extended to using a nonlinear diesel engine model
in simulation for offline tuning, and implementing the tuned
MPC on a physical diesel engine.
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APPENDIX A
CLOSED-LOOP STABILITY

We illustrate the concept of closed-loop stability with a
simple example. Consider the linear dynamical system x+ =
Ax + Bu with a full-state feedback control law u = κ (x).
Then the closed-loop stability refers to the stability of the
dynamical system x+ = Ax + Bκ (x). Suppose a one-
dimensional example where x ∈ R, u ∈ R with A = 1.2,
B = 1 and a linear control law κ (x) = −0.1x. The closed-
loop system is then x+ = 1.1x, which is unstable at the origin
because ‖x‖ → ∞ as time k → ∞, for all initial conditions
x0 6= 0.

Now suppose κ (x) = −0.3x. Then the closed-loop system
x+ = 0.9x is stable at the origin because ‖x‖ → 0 as time
k →∞, for any initial condition. The results found in Section
V and within [25] extend closed-loop stability guarantees
for linear constrained systems to more complicated feedback
control laws of forms similar to (5).


