
 
 

University of Birmingham

Turbulence modelling and turbulent inlet on a blunt
plate
Vita, Giulio; Hemida, Hassan; Baniotopoulos, C

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Vita, G, Hemida, H & Baniotopoulos, C 2018, Turbulence modelling and turbulent inlet on a blunt plate: a
numerical study. in AL Materazzi & I Venanzi (eds), Proceedings of the XIV Conference of the Italian Association
for Wind Engineering - IN-VENTO 2016. Morlacchi University Press, XIV Conference of the Italian Association
for Wind Engineering, Terni, Italy, 25/09/16.

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 27/03/2019

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 12. May. 2024

https://birmingham.elsevierpure.com/en/publications/e43c2899-05f2-4a65-9c3c-9dd2b25103cd


IN-VENTO 2016 
XIV Conference of the Italian Association for Wind Engineering 

25-28 September 2016, Terni, Italy 

Turbulence modelling and turbulent inlet on a blunt plate: a numerical study 

Giulio Vita, Hassan Hemida and Charalampos Baniotopoulos 

Department of Civil Engineering, School of Engineering, University of Birmingham 
Birmingham, United Kingdom 

Corresponding author: Giulio Vita, g.vita@bham.ac.uk 

Abstract 

Free Stream Turbulence is usually disregarded as a governing parameter in the assessment of aerodynamic forces. 
However, an effect is noticeable on the aerodynamic coefficients if turbulence is added at the inlet. In this work, 
the performance of different sub-grid scale (SGS) models of large-eddy simulation (LES) is investigated against 
their capability to describe the separation bubble of a blunt plate under a turbulent inlet. This is aimed at starting 
a broader research on the actual role of turbulence on the aerodynamic behaviour. Together with the 
Smagorinsky, the dynamic and the WALE SGS models, also the URANS k-ε and k-  SST have been compared. 
The results show that whether URANS is able to accurately describe the undisturbed case, it gives a wrong 
turbulent inlet in the other one. Although the LES technique can improve the accuracy of this complex 
configuration, the choice of a suitable averaging time strongly affects the validation of the model. It was found 
that the role of the SGS eddies is not preponderant. Then a complex system of equations may lead to instability 
of the solver and prohibitive time step requirements. Among the SGS models investigated, the Smagorinsky SGS 
model, using a damping function to tackle the near-wall behaviour, qualifies then as a good candidate for further, 
more complex, geometries 

1 Introduction 

In the assessment of the aerodynamic loads for a variety of bluff bodies in the Atmospheric 
Boundary Layer (ABL), the common practice advices not to take into account Free Stream Turbulence 
(FST) as an essential parameter (Simiu & Scanlan, 1986). This assumption, is based on the 
interpretation of the role of the length scale of turbulence on the aerodynamics. In fact, the integral 
length scale of turbulence is usually much larger than the height of the boundary layer of the object of 
interest. It is then acceptable to consider turbulence as a slow fluctuation of the mean velocity, which 
does not modify the flow pattern (Buresti, 2012). Miley (Miley, 1982) pointed out that the boundary 
layer of an aerofoil is only sensitive to the turbulent fluctuations on the order of the size of the aerofoil 
boundary layer itself. The FST has an effect on the unsteady variation of the real angle of attack, 
which can be well neglected in experiments and simulations. Simms (Simms, Schreck, Hand, & 
Fingersh, 2001) further stresses Miley’s discussion, adding that as the small scales carry a least 
quantity of energy, they do not affect the performance of an aerofoil. Therefore, inflow turbulence can 
be well neglected, as it was done for the famous NREL Ames Wind Turbine (Hand, Simms, & 
Fingersh, 2001). 

Nonetheless, the interaction of bluff bodies and FST represent a niche of the research. It was found 
that FST acts differently with boundary (BL) and shear layers (SL). Three basic mechanisms have 
been conjectured. Turbulence i) promotes the transition to turbulence for BL and SL, ii) enhances the 
mixing of SL and the entrainment of turbulence in the near wake, and iii) is itself distorted by the 
mean-flow past the bluff body (Zdravkovich, 1997). However, it is unclear which turbulence statistics 
are suitable for the understanding of such a complex interaction. A thorough discussion on these 
aspects was provided by Bearman and Morel (Bearman & Morel, 1983), but an elucidative answer is 
still awaited. As a conclusive statement, the effect of the largest scales of turbulence seems to be 
weaker than that of the smaller scales (Bearman, 2006; Nakamura & Ohya, 2006). Investigation of the 
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3 Methodology 

3.1 Large Eddy simulation and Sub-Grid Scale modelling 

In this work different turbulence modelling techniques are investigated. Both the URANS and the 
Large Eddy Simulation (LES) were implemented. In LES, the sub-grid scale (SGS) eddies are 
modelled, using the definition of an eddy viscosity νsgs to simulate their influence with the larger 
scales. Among the various SGS models, the classic Smagorinsky approach (Lilly, 1966) was chosen, 
together with the dynamic Germano (Germano, Piomelli, Moin, & Cabot, 1991; Lilly, 1992) and the 
Wall Adapting Local Eddy-viscosity (WALE) (Nicoud & Ducros, 1999) model for comparison. 

The Smagorinsky-Lilly SGS model, as implemented in openFoam, assumes that a kinematic sub-
grid scale viscosity νsgs can be defined such that the residual stress tensor τij is proportional to the 
strain rate Sij of the resolved flow (like the Boussinesq assumption for RANS). Therefore, τij can be 
written: 

 τij=-2ρνsgsSij+
1

3
Riiδij=-ρνsgs

∂ui

∂xj
+
∂uj

∂xi
+

1

3
τiiδij (1) 

where  indicates the filtering operation and νsgs is defined, up to a constant, as (Pope, 2000):  

 νsgs= Csgs∆
2

S = Csgs∆
2

2SijSij    with    Csgs=0.17 (2) 

This formulation leads to an unphysical behaviour near the wall. To overcome this issue, a damping 
function, such as the van Driest approach (Van Driest, 1956), is used: 

 lsgs=Csgs∆ 1-e-y+ A+⁄     with    A+=26 (3) 

The Germano model remedies the limitation of a constant model coefficient by filtering a second time 
the SGS stresses. This approach provides a dynamic calculation of the model constant. The Germano 
identity (4) relates the Leonardt stresses Lij to the sub-test Tij and the sub-grid stresses τij; 

 Lij=uiuj-uiuj=Tij-τij;   Tij=uiuj-uiuj; (4) 

The SGS stresses are then formulated using the definition of SGS viscosity following eq. (2). 
Substituting with eq. (4), the asymmetric part of the SGS stresses is found: 

 Mij=Tij-
1

3
Tkkδij=-2CsΔ

2
S Sij;     mij=τij-

1

3
τkkδij=-2CsΔ

2|S|Sij;     Lij
a=Lij-

1

3
Lkkδij=Mij-mij (5) 

The dynamic constant Cs can be evaluated by contracting eq. (5).  

 Cs=
1

2

LijSij

MijSij
 (6) 

In the present work an evaluation of Cs  based on the minimisation of the error eij  related to the 
Leonardt stresses, as proposed by Lilly, was used: 

 
∂eij

∂Cs
=0;     

∂2eij

∂Cs
2 >0;     Cs=

1

2

LijMij

Mij
2  (7) 

The WALE model is an algebraic model of the Smagorinsky family, overcoming the major 
drawbacks of the method that are the lack of an effect due to the vorticity of the SGS, i.e. the 
deviatoric part of τij , and the following incorrect near-wall behaviour. The model is based on the 
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choice of a suitable spatial operator that respects some mathematical constraints and is based on the 
traceless symmetric part of the strain tensor S . The eddy viscosity associated with the model reads: 

 νsgs= CwΔ
2

Sij
dSij

d 3 2⁄

SijSij
5 2⁄

+ Sij
dSij

d 5 4⁄     with    Cw=0.5 (8) 

The formulation of the model itself allows for a more stable computation and an increased accuracy of 
the near-wall behaviour, which in turn gives a lessen requirement of the near-wall mesh. Moreover, 
this is well-suited for complex geometries as it is only computed locally without any dynamic 
adjustment. 

4 Numerical details 

To investigate the effect of various SGS models, a series of simulations have been made, in order to 
gain confidence with every computational technique. The various simulations are stated in Table 1. 
Two geometries have been modelled, based on the desired turbulence at the inlet. The turbulent inflow 
case reproduces the couplet d-l=5-100 of the experimental setup, described in Section 2. The smooth 
inflow case is the undisturbed condition subject to a constant inlet velocity of 20 m s⁄ . Using the 
available computational sources of the computational cluster BlueBEAR at the University of 
Birmingham, both openFoam v.3.0.1 (3D simulations) and Ansys CFX v.16.2 (2D simulations) have 
been used.  

Table 2. List of simulations and software used. 

Computational models 

Turbulence models 
2D model 

Turbulent inflow Smooth inflow 
1 URANS k-ε CFX CFX 
2 URANS k-ω SST CFX CFX 
3 LES Smagorinsky CFX CFX 
4 LES Dynamic Germano CFX CFX 
5 LES WALE CFX CFX 

 3D model 
6 LES Smagorinsky openFoam openFoam 

In order to set up the model, the meshing strategy was chosen: a set of four grids have been 
implemented. The 3D simulations rely on a structured grid at an earlier stage of the research, therefore 
the y+≈1 requirement is not respected for the 3D results. The grids show the following number of 
elements: 

- Smooth inlet C-grid 2,858,700 hexahedrical elements with 27 blocks; 
- Turbulent inlet O-grid/C-grid 7,681,000 hexahedrical elements with 25 blocks. 
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6 Conclusions, recommendations and further steps of research 

In this preliminary work different turbulence modelling techniques have been assessed in their 
performance in modelling the separation bubble of a blunt flat plate, which occurs under a turbulent 
inlet. The comparison has focused in particular on different SGS models within the LES technique. It 
has been found that the Smagorinsky model is the most performant method, as the results are closer to 
the experimental ones, once agreed upon the correct refinement of the near-wall mesh, the use of a 
suitable damping function, and the proper choice of the time-step and averaging time, which takes into 
account computational costs and stability issues. The role of the SGS eddies is nevertheless not as 
important as that of the mesh, as it is shown by the 3D simulation and its accuracy. It is though unclear 
whether these conclusions can be stated in general for a set of 3D models.  
This could represent a further step in the research of the role of SGS modelling in LES. 
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