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Abstract. Wind Energy technology represents the most technically advanced and diffused renewable resource. The 
willingness to foster its economical profitability has brought to new uses of the technology, especially in 
unconventional locations. In particular, the Urban environment is promising in reducing the costs associated e.g. to 
the large infrastructure wind farms require. However, several technical and non-technical issues remain unsolved, 
spacing from the understanding of the actual wind resource available to the actual response of wind turbines. This 
contributes to foment the lack of confidence in wind energy and its societal acceptance. The lack of knowledge is an 
issue that adds sharply to NIMBYism rhetoric mechanisms. In this work, various possibilities and limits of Urban 
Wind Energy are introduced, with a focus on the urban wind resource. A suitable high-rise building configuration is 
taken as a reference and simulated using CFD, to discuss the possible strategies in optimising the positioning of 
wind turbines, which strongly depend on their relationship with the built environment. The challenges related to 
such a methodology are also introduced, with special reference to the necessity of accurately modelling the 
signature turbulence for the reliable aerodynamic design of the new generation of small and medium size wind 
turbines. 
 

1 INTRODUCTION 
By 2050, 66 per cent of world’s inhabitants is estimated to be residing in urban areas [1]. The population is also 

estimated to increase steadily to 7.4 billion people. As an effect, the expected scenario is the continuous growth of 
urban areas. The concept of sustainable development gleams as the main world institutions face the risks this growth 
means to humanity [2]. However, the concept of sustainability immediately links to the concept of energy. Endless 
research has been dedicated to the understanding of the best Energy Mix to tackle the demanding request of energy 
and the problems renewable source inevitably experience, especially regarding their stochastic variability [3], 
however an unambiguous solution is still awaited and renewable have some difficulty in affirming their role in the 
Energy Mix, especially regarding their social acceptance. This is particularly true for wind energy. If on one hand 
wind energy is recognised to be a robust and one of the most promising way of providing sufficient energy to meet 
society’s needs with minimum waste, yet more research is needed to increase their efficiency, reliability, 
affordability, and safety to the standards of traditional technologies [4].  
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2 BRIEF REVIEW OF URBAN WIND ENERGY DEFICIENCIES 

2.1 Is Urban Wind Energy worth investigating? 

Urban Wind Energy is a recently developed niche of wind energy, dealing with the harvesting of wind energy 
within urban premises. The necessity of creating such a research niche has emerged for a variety of reasons. 

i) The small wind energy market involves a large number of businesses and numerous workplaces [10]; ii) The 
fiasco of a large percentage of urban applications has been noticed [11]; iii) The necessity of improving the energy 
performance of single buildings shows that microgeneration could represent a factual advance; iv) The intrinsic 
difference of the wind resource in the urban environment, if compared with the usual flat terrain conditions, poses 
different premises to the design and assessment process [12]; (v) Harvestable wind energy is indeed present in the 
urban environment and enhanced by the presence of buildings, which can represent a not-irrelevant share out of the 
global wind energy capacity [11].  

To understand this last point, if a typical Jordanian household is taken as reference, then it would require 5’089 
kWh/y of electricity [13]. As the average sized small wind turbine has been estimated being 0.85 kW [10], then 
supposedly installing such wind turbines in the optimal position would still yield roughly 30% of the rated power on 
a yearly base, considering factors such as the variability of the wind. A yearly electricity production of 0.85 kW ൈ 
0.3 ൈ 365 ൈ 24 h ൌ 2’233.8 kWh/y would be then achieved. This simple and very rough emphasises that 
theoretically a Jordanian household could save almost half of the electricity expenses by installing a small wind 
turbine, in supposedly optimal conditions. However, reality is much more complicated, as the attention to the correct 
positioning of wind turbines around a building has only recently gained attention following resounding failures of 
applications. As many detractors criticise the efficiency of urban wind and strong difficulties are experienced by 
municipalities and pundits to convince the general public of the possible benefits of implementing wind energy. The 
reason for that is strongly related to our lack of understanding of the actual power produced by WECs, which means 
in turn, the lack of a convincing optimisation strategy for the positioning of the devices for gaining a reliable 
production of energy. 

2.2 How to arrange Wind Turbines within the Built Environment? 

Besides non-technical issues and social acceptance [Ref.], the positioning of WECs within the urban 
environment is undoubtedly the core issue with Urban Wind Energy. This immediately translates to a new type of 
WT, meaning the Building Augmented Wind Turbine (BAWT, also Integrated or Environment: BIWT, BWET, or 
BWT). The building must be interpreted not only as a support for WTs, but also as a way of enhancing wind energy 
harvesting, by locally diverting and concentrating the wind flow. This can be put into practice in many ways (Fig.2). 
The mutual positioning of BAWTs within the built environment encompasses a number of typical situations:  

i) WTs mounted on top of buildings (Fig. 2b-i), which represent the large majority of the applications;  
ii) WTs mounted on the façade of buildings (Fig. 2b-ii);  
iii) WTs which are integrated within the building itself using its shape as a local catalyser for the inflow wind 

(Fig. 2b-iii) [14], [15]; 
iv) WTs mounted in the vicinity of buildings (Fig. 2b-iv), which might include bigger WTs [16] and can be 

transposed to the case of complex terrain onshore wind energy [17]. 
Being wind energy a resource harvested on large areas of land, the concept of Distributed generation rises [18]. 

UWE and BAWT can be accounted as a first attempt of Distributed Wind Turbines (DWT). Energy generation with 
DWTs could represent the final scope of current urban wind energy applications: to multiply the number of devices, 
with an efficient positioning, in order to provide a reliable share of energy at the consumption site [19]. 
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It has been shown that the shape of the roof itself has a major impact on these parameters. Toja-Silva et al. [25] 
in particular developed further the studies of Abohela [24] towards the assessment of the best shape for wind energy 
purposes. They have found that having a curved roof enhanced the possibilities for wind energy harvesting. 
However, the criteria chosen for defining the optimal location are not universally agreed, therefore more research on 
the performance of wind turbines in a turbulent environment is needed.  

Khauyllirina et al. [33] studied the effect of two adjacent high-rise buildings with the aim of exploiting the street 
canyon effect. These works confirm the importance of the understanding of the wind pattern, the possibility of 
enhancing the wind energy resource and the choice of the proper wind turbine for use. 

The large majority of UWE applications involve existing buildings. These are characterised by the presence of a 
flat roof. This is particularly true for high-rise buildings. Computational Fluid Dynamics is a popular tool in the 
assessment of the flow pattern around buildings [34]. Many works have investigated the flow pattern on rooftop of 
high-rise buildings. It appears that the research is actually converging towards the necessity of proposing accurate 
flow data for the specific configuration of interest, stated the extreme variability of conditions a single building 
shape can have. 

2.3 Research gap and aim of this work 

It is difficult to state the precise limits of the needed knowledge. The built environment offers an opportunity to 
the global renewable energy market and could give a contribution to the energy mix towards the abatement of costs. 
However, this brief review has immediately prompted the issues to be addressed to make any statement on the topic: 

i) the aerodynamic response of WECs under turbulent inflows; 
ii) the flow pattern around buildings and the detection of relevant parameters;  
iii) the possible ways of enhancing wind energy harvesting using buildings; 
iv) the social acceptance and the mediation with non-technical issues. 
This work is an attempt of enhancing the discussion about the importance of the correct assessment of the 

turbulence pattern around buildings, more than the estimation of the mean velocities, for the rightful success of 
UWE applications. To fulfil this aim, following objectives are envisaged: 

i) To investigate the flow around a model high-rise building using a steady-state CFD RANS simulation; 
ii) To validate the model using available experimental data [35]; 
iii) To give a preliminary comparison with higher quality CFD LES data, focusing on turbulence quantities. 

3 EXPERIMENTAL SETUP AND METHODOLOGY 

3.1 The experimental setup 

In this work, the geometry of the computational domain is taken from the experiment by Hemida et al. [36], 
carried out in a series of wind tunnel experiments at the Atmospheric Boundary Layer (ABL) Wind Tunnel Lab of 
the Ruhr-University of Bochum (RUB), within the scope of the COST-Action TU1304 WINERCOST. The RUB 
wind tunnel has a cross section of 1.6m × 1.8m and a length of 9.4m, in an open tunnel configuration with fan 
behind the test section (Fig.3a). The ABL is simulated equipping the wind tunnel inlet with a castellated barrier, 
turbulence generator fins, and roughness cubes (from 3.6cm to 1.6cm) working as roughness elements (Fig.3b). The 
high-rise building model has a 1:300 scale, with a height-to-width ratio of H D⁄ =3, where H=400mm and 
D=133.3mm (Fig.3b). Fig.3d shows the model mounted on the rotating test table of the wind tunnel.  

Results include the velocity pattern above the rooftop, measured using a hot wire anemometer at different 
locations of the roof (1, 2, 3, 4 in Fig.3c) and surface pressure on the rooftop. However, this technique does not 
account for reversed flow, so results have been interpreted accordingly to detect separation. A specific focus has 
been given to turbulence intensity; it has been measured re. the velocity components in the y and z directions, u and 
w, for z/D>0.1. Time histories of each signal have been obtained using a length window of 131s, and all results are 
referred to the width of the model D=133.3mm and the reference velocity uref=uሺzൌHሻ=15.85m/s (Fig.4a). 
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5 CONCLUSIONS AND NEXT STEPS 

This preliminary results show the need of a high-fidelity approach for the modelling of the turbulence pattern 
around building for wind energy harvesting. 

The flow pattern around a building has been modelled and validated using both the RANS and the LES 
approach, showing little difference in the results. In fact, the quality of an LES simulation strongly depends on the 
actual averaging time used, which is confirmed by the whole totality of the literature. 

A brief critical literature review has been made, showing the necessity of more studies about the physical 
phenomena involving the interaction of turbulence with bluff bodies, especially for practical applications involving 
the urban environment. 

Future work will provide more averaging time to the LES simulation to validate the fluctuating pattern, in the 
scope of understanding the actual turbulence pattern at the inflow of a supposedly nearly place wind energy 
converter. 
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