
 
 

University of Birmingham

Multi-source transfer learning for non-stationary
environments
Du, Honghui; Minku, Leandro L.; Zhou, Huiyu

DOI:
10.1109/IJCNN.2019.8852024

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Du, H, Minku, LL & Zhou, H 2019, Multi-source transfer learning for non-stationary environments. in 2019
International Joint Conference on Neural Networks (IJCNN). Neural Networks (IJCNN), International Joint
Conference on, IEEE Computer Society, International Joint Conference on Neural Networks (IJCNN 2019),
Budapest, Hungary, 14/07/19. https://doi.org/10.1109/IJCNN.2019.8852024

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024

https://doi.org/10.1109/IJCNN.2019.8852024
https://doi.org/10.1109/IJCNN.2019.8852024
https://birmingham.elsevierpure.com/en/publications/bc757e68-3bdf-4ffe-9ffb-784a910870d7


Multi-Source Transfer Learning for Non-Stationary
Environments

Honghui Du
Department of Informatics

University of Leicester
Leicester, United Kingdom

hd168@leicester.ac.uk

Leandro L. Minku∗
School of Computer Science

University of Birmingham
Birmingham, United Kingdom

L.L.Minku@cs.bham.ac.uk

Huiyu Zhou
Department of Informatics

University of Leicester
Leicester, United Kingdom

hz143@leicester.ac.uk

Abstract—In data stream mining, predictive models typically
suffer drops in predictive performance due to concept drift. As
enough data representing the new concept must be collected for
the new concept to be well learnt, the predictive performance
of existing models usually takes some time to recover from
concept drift. To speed up recovery from concept drift and
improve predictive performance in data stream mining, this work
proposes a novel approach called Multi-sourcE onLine TrAnsfer
learning for Non-statIonary Environments (Melanie). Melanie is
the first approach able to transfer knowledge between multiple
data streaming sources in non-stationary environments. It creates
several sub-classifiers to learn different aspects from different
source and target concepts over time. The sub-classifiers that
match the current target concept well are identified, and used
to compose an ensemble for predicting examples from the target
concept. We evaluate Melanie on several synthetic data streams
containing different types of concept drift and on real world data
streams. The results indicate that Melanie can deal with a variety
drifts and improve predictive performance over existing data
stream learning algorithms by making use of multiple sources.

Index Terms—concept drift, non-stationary environment,
multi-sources, transfer learning.

I. INTRODUCTION

Many real world applications produce data in a streaming
fashion, i.e., as a sequence of observations that arrive over
time. Examples include prediction of customer behaviour,
credit card approval, fraud detection, software effort esti-
mation, software defect prediction, etc. A challenge in data
stream mining is how to describe a given target probability
distribution accurately without knowing the whole data stream
beforehand. This challenge is exacerbated by the fact that data
streams may suffer from concept drifts, i.e., changes in the
underlying joint probability distribution of the problem [1].
We refer to a given joint probability distribution as a concept.

One of the reasons why concept drift exacerbates this
challenge is that, when a previously unseen joint probability
distribution is encountered, existing approaches depend on the
arrival of new data to learn an appropriate model of this new
distribution. The accuracy of such approaches tends to be poor
during the period of time where insufficient data has been
received for training. A possible solution to this issue is to
use information learned from different sources to speed up the
learning of a new target concept, and thereafter improve the

∗ The corresponding author.

accuracy of the estimation. This is called transfer learning [2].
For example, when predicting the behaviour of a given target
customer, data on other (source) customers may be helpful
to improve predictive performance on the target customer.
Therefore, transfer learning has the potential to speed up
adaptation to concept drift, improving predictive performance
in data stream mining.

However, transfer learning is typically defined as an offline
learning approach, and almost no work investigates transfer
learning in non-stationary data streaming environments [3].
No existing approach can transfer knowledge from different
data streaming sources to a given data streaming target in
non-stationary environments. And yet, applications where the
target domain produces a data stream would typically have
source domains that also produce data streams. For example,
when predicting customer behaviours, both the source and
target customers can produce data streams. This paper thus
investigates the following research question: can multi-source
transfer learning improve the predictive performance in data
stream mining? When and why? The assumption is that both
the source and target domains produce data streams and may
suffer from concept drift.

To answer this question, we propose a novel approach called
Multi-sourcE onLine TrAnsfer learning for Non-statIonary En-
vironments (Melanie). Melanie uses online ensemble learning
to produce sub-classifiers (base learners) that can represent
different parts of the source and target joint probability distri-
butions. When a new joint probability distribution has to be
learned (e.g., in the beginning of the learning or after a concept
drift), Melanie can transfer knowledge from sub-classifiers that
are found to be relevant to the new distribution to improve
predictive performance. Experiments show that Melanie can
improve predictive performance after concept drifts and can
quickly obtain good performance at the early learning stage,
when there are few target training examples available.

The paper is organised as follows. Section II introduces
related work. Section III presents the problem statement.
Section IV explains the proposed approach Melanie. Section V
presents the experimental setup. Section VI analyses Melanie’s
predictive performance with synthetic and real world data
streams, and compares it with existing approaches. Section
VII presents conclusions and future work.



II. RELATED WORK

Sections II-A, II-B and II-C discuss the three main types of
approach related to this work.

A. Transfer Learning

Transfer learning is typically defined for offline learning
problems [2]. Let DS = {

(
x
(i)
S , y

(i)
S

)
}Ni=1 denote a data set

from a source domain DS = {XS , pS(x)} and source task
TS = {YS , pS(y|x)}, where x

(i)
S ∈ XS , y(i)S ∈ YS , XS is

the input space, YS is the output space, pS(x) is the marginal
probability distribution and pS(y|x)} is the posterior probabil-
ity distribution. Similarly, define the target data, domain and
task as follows: DT = {(x(i)T , y

(i)
T }Mi=1, DT = {X , pT (x)},

and TT = {YT , pT (y|x)}. The goal of transfer learning is
to use the knowledge learnt from the source to improve the
predictive performance of a predictive model hT (x) : X → Y
for the target, despite the fact that the source and target
tasks and domains may differ. Transductive transfer learning
approaches transfer knowledge when DS 6= DT and TS = TT .
Inductive transfer learning approaches transfer knowledge
between different tasks (e.g. TS 6= TT ) while DS = DT
or DS 6= DT . The single source domain definition can be
extended to multi-source [3], [4]. In some situations, transfer
learning may have a negative impact on target learning. This is
referred to as negative transfer, and is one of the big challenges
in transfer learning [2].

Transfer learning approaches can also be divided into four
categories [2], [4]: instance transfer, feature-representation
transfer, relational-knowledge transfer and parameter transfer.
Among them, parameter transfer approaches share parameters
or priors between the source and target. A well known example
is TaskTradaBoost [5]. It re-weights sub-classifiers learnt on
the source concept by their performance on the target concept.
This is particularly interesting in the context of this paper,
because it enables knowledge to be transferred through sub-
classifiers. This could potentially be used to eliminate the need
for storing training examples, which is desirable when dealing
with data streams. However, this potential is not exploited by
TaskTradaBoost, which still an offline learning approach that
requires the whole training set to be available beforehand.

Overall, offline transfer learning approaches require data
sets to be available beforehand, being impractical for dealing
with data streams. None of them have automated procedures
to continuously learn over time and adapt to concept drifts
that may affect the target and source concepts when dealing
with data streams.

B. Data Stream Learning in Non-stationary Environments

A data stream is a sequence D = {(x(t), y(t))}∞t=1, where
(x(t), y(t)) ∼ p(t)(x, y), x(t) ∈ X and y(t) ∈ Y . Data stream
learning uses D to train a sequence of predictive models
f (t)(x) : X → Y able to generalise to unseen examples
from p(t)(x, y). In online learning, at each time t, a machine
learning algorithm only has access to f t−1 and (x(t), y(t))
to create f t. This paper concentrates on online learning –

its efficiency makes it more adequate for applications where
multiple data streams need to be processed, as is the case
presented in this paper.

Data streams are often generated by non-stationary environ-
ments, which are environments where concept drift may occur
[3], [6]. Approaches for data stream learning in non-stationary
environments that are able to learn example-by-example rather
than chunk-by-chunk [7] are particularly interesting in the
context of this paper, as several of them are online learning
approaches [8], [9]. Such approaches can be further divided
into active and passive approaches [6], [7]. Active approaches
trigger adaptation mechanisms such as the creation of new
models from scratch when concept drift defection methods
trigger drift alarms [6]. An example of state-of-the-art active
approach is Adaptive Random Forest (ARF) [10]. Examples
of drift detection methods include Drift Detection Method
(DDM) [11], and Early Concept Drift Detection (ECDD) [12].
Passive approaches adopt mechanisms to continuously adapt to
any drifts that the environment may suffer, without relying on
concept drift detection methods [6], [7]. A popular approach
is Dynamic Weighted Majority (DWM) [9].

Despite having mechanisms to learn data streams, none of
these approaches perform transfer learning. In particular, none
of them are able to operate in multi-source scenarios.

C. Data Stream Transfer Learning in Non-stationary Environ-
ments

Very few approaches perform transfer learning in non-
stationary environments [3]. An example is the online in-
ductive parameter transfer learning approach Dynamic Cross-
company Mapped Model Learning (Dycom) [13]. It creates
different offline models for different sources, and an online
learning model for the target. Each source model is associated
to a function that maps predictions made by the source models
to the target concept. This function is learnt in an online way
and is able to react to concept drift. However, Dycom assumes
that only the target arrives in the form of a data stream that
may suffer concept drift; the sources are trained offline.

Other two online inductive parameter transfer learning ap-
proaches are Diversity for Dealing with Drifts (DDD) [8] and
Online Window Adjustment Algorithm (OWA) [14]. DDD
uses a very highly diverse ensemble to transfer knowledge
from the old concept. OWA transfers knowledge from the
old concept through a weighted average of the old and new
models. However, neither DDD nor OWA can benefit from
different sources. Knowledge can only be transferred from the
immediate previous target state to the current target state.

Recently, a new chunk-based inductive parameter transfer
approach called Diversity and Transfer-based Ensemble Learn-
ing (DTEL) was proposed [15]. It transfers the structure of a
decision tree created with an old chunk of data to the concept
represented by the new chunk. It assumes that the old structure
is relevant to the new concept. Similar to DDD, it does not
consider different sources, with the transfer occurring between
a single previous target concept and the new target concept.
In addition, this is a chunk-based approach, presenting the



common chunk-based problems of delaying update to concept
drift until a whole new chunk of data received, and assuming
that a whole chunk of data always belongs to the same concept.

III. PROBLEM STATEMENT

This paper tackles the problem of transferring knowledge
from one or more sources (DSi

, TSi
, i ∈ N) to a target

(DT , TT ), where the sources and target are represented by data
streams, instead of fixed data sets. The data streams come from
non-stationary environments, where the distributions underly-
ing DSi

, DT , TSi
, TT may suffer concept drift. Therefore,

the aim of the transfer is to improve predictive performance
especially during the initial learning stage and after concept
drift, when there is little target data to learn from. We will
investigate inductive transfer learning, as concept drifts may
cause changes in TT and TSi

over time.

IV. THE PROPOSED ALGORITHM

In this section, we present our proposed algorithm Multi-
sourcE onLine TrAnsfer learning for Non-statIonary Environ-
ments (Melanie). Melanie is the first approach able to transfer
knowledge from both multi-sources and old concepts at the
same time, where both sources and target are represented by
data streams that may suffer concept drift. It achieves that by
using an online inductive parameter transfer strategy.

Melanie considers that a given source or target concept
is composed of several different sub-concepts. We define a
source sub-concept as a sub-area of the source input space
X ′S ∈ XS associated to its task T ′S : X ′S → Y . A target sub-
concept can be defined in a similar way. Melanie’s general
idea is to maintain different sub-classifiers (base learners) that
may better represent different source and target sub-concepts.
When learning a new target joint probability distribution (e.g.,
in the beginning of the learning or after a concept drift),
Melanie identifies which existing sub-classifiers match this
new distribution well, i.e., which sub-classifiers represent sub-
concepts that share similarities with the new distribution’s
sub-concepts. These sub-classifiers are then used to transfer
knowledge from previously seen source or target distributions
to learn the new target distribution more efficiently.

Melanie’s pseudocode is shown in Algorithm 1. When an
example

(
x(t), y(t)

)
from a new source or the target i is

received for the first time, Melanie creates one online learning
ensemble for this source or target (line 1 to 4). Any online
learning ensemble can potentially be used, e.g., online boost-
ing or online bagging [16]. The idea is that the diversity of
the sub-classifiers of such ensembles will cause them to better
represent different sub-concepts, facilitating the identification
of sub-classifiers whose knowledge could be transferred to the
current target. In the pseudocode, we use the index i to refer to
any source or target, i.e., i ∈ {S1, S2, · · · , Sn, T}. Therefore,
Melanie will have generated n+ 1 online learning ensembles
H1
i in total after all sources and target have generated at least

one training example. The set M contains the indexes of all
sources and targets for which an online learning ensemble has
already been generated.

Algorithm 1: Multi-sourcE onLine TrAnsfer learning for
Non-statIonary Environments (Melanie)

Input:
(
x(t), y(t)

)
∈ Di i ∈ {S1, S2, · · · , Sn, T}; M ,

set of already seen sources or target, initialised
with ∅; Time forgetting factor 0 ≤ θ ≤ 1;
Parameter 0 ≤ δ ≤ 1; Performance index
0 ≤ λ ≤ 1; Online Learning approach ensemble
size K; Classifier pool Hi = ∅

1 if i /∈M then
2 M ←M ∪ i
3 Ji ← 1 (Initialise number of online learning

ensembles associated to i)
4 Initialise online learning ensemble H1

i

5 Hi ← Hi ∪H1
i

6 Ł
h
Ji,k

i

← 0, α
h
Ji,k

i

← 0, ∀k < K

7 if DriftDetectioni
(
x(t), y(t)

)
= true then

8 Initialise a new online learning ensemble HJi+1
i

9 Ji ← Ji + 1
10 Ł

h
Ji,k

i

← 0, α
h
Ji,k

i

← 0, ∀k < K

11 Hi ← Hi ∪HJi
i

12 if i = T then
13 Łhj,k

i′
← 0, αhj,k

i′
← 0, ∀i′ ∈M , j < Ji′ , k < K

14 OnlineLearningApproach{HJi
i ,
(
x(t), y(t)

)
}

15 if i = T then
16 for all i′ ∈M , j ≤ Ji′ , k ≤ K do
17 Calculate the loss of each sub-classifier

L(hj,ki′ (x
(t))) =∑

y(j) 6=y(t) argmax(0, P (y
(j))− P (y(t)) + δ)

where P (y) is the predicted probability of
hj,ki′ (x

(t)) = y
18 Compute each sub-classifier performance with

time forgetting factor
A

(t)

hj,k

i′
= θA

(t−1)
hj,k

i′
+ (1− L(hj,ki′ (x(t))))

19 α
(t)

hj,k

i′
= 1∑t

t′=1
θ(t′−1)A

(t)

hj,k

i′

20 for all i′ ∈M , j ≤ Ji′ , k ≤ K do
21 ωhj,k

i′
=

1∑
i′′∈M

∑J
i′

j′=1

∑K
k=1(α

(t)

h
j′,k
i′′

>λ? α
(t)

h
j′,k
i′′

:0)
α
(t)

hj,k

i′
, α

(t)

hj,k

i′
≥ λ

0, otherwise

where (testCondition ? v1 : v2) retrieves v1 if
testCondition is true, and v2 otherwise.

Each ensemble H1
i is composed of K sub-classifiers h1,ki ,

where 1 ≤ k ≤ K. Line 6 is used to initialise the weights
associated to each sub-classifier. These weights will be used
to identify which sub-classifiers currently match the target
distribution well. Each source and target i is associated to
a pool of online learning ensembles Hi. The newly created
ensemble H1

i is added to its corresponding pool Hi (line 5).
This pool will receive additional ensembles when i suffers
concept drift, as explained next. Therefore, each source/target
is associated to a pool of ensembles, where each ensemble may



represent a different concept observed in that source/target.
Each time a new training example

(
x(t), y(t)

)
of the source

or target i is received, the system runs a concept drift detection
method for i (line 7). Any drift detection method could poten-
tially be used, e.g., DDM [11]. If the drift detection method
requires monitoring a predictive model representing i, the
most recent ensemble HJi

i is used for that. If a concept drift
is detected, Melanie creates a new online learning ensemble
HJi+1
i , initialises its weights, and puts it into the pool of

ensembles Hi (line 7 to line 11). If the received example
belongs to the target domain, all weights of all sub-classifiers
ωhj,k

i
, ∀i, j, k, are reset (line 13), to re-identify which sub-

classifiers match the current target distribution well.
After checking for concept drift, the most recent ensemble

HJi
i created for the source or target i is trained on the

current example (line 14). If the example belongs to the target
(line 15), it is used to update the weight ωhj,k

i
of each sub-

classifier (line 16 to line 21). The weight of each subclassifier
is proportional to its accuracy on the target examples, giving
exponentially less importance to older examples. How much
less importance is controlled based on a pre-defined parameter
θ, 0 ≤ θ ≤ 1. The use of θ helps to deal with non-stationary
environments, and with the fact that source ensembles may
be updated on new examples before a given target example is
received. Weight calculation is explained next.
A

(t)

hj,k
i

represents how well a sub-classifier performs on the

target (line 18). When t = 1, A(1)

hj,k
i

= 1 − L(hj,ki (x(1))),

where L(hj,ki (x(1))) calculated based on the probabilities
given by the sub-classifiers. When the next target examples
are received (t > 1), we use the time forgetting factor to
multiply the previous value of A(t)

hj,k
i

. Therefore, θ can reduce
the contribution of older data and increase the importance of
newer data.

After that, we let A(t)

hj,k
i

be divided by the normalisation

factor
∑t
t′=1 θ

(t′−1) (line 19). Thus, α(t)

hj,k
i

(line 19) represents
the current performance of each sub-classifier through a value
between 0 and 1. This enables us to interpret this performance
as a percentage, to decide whether to use or not to use a given
sub-classifier for predictions to the current target concept. For
instance, when dealing with binary classification problems, we
will not use any learner whose accuracy is worse than that
of a random classifier for making predictions. This is done
by assigning weight zero to any sub-classifier associated to
α
(t)

hj,k
i

<= λ, where λ = 0.5 (line 21). The weights of all sub-

classifiers associated to α
(t)

hj,k
i

> λ are set to their predictive

performance α
(t)

hj,k
i

normalised by the sum of the predictive

performances of all the sub-classifiers associated to α(t)

hj,k
i

> λ

(line 21).
This means that any sub-classifier that is incompatible with

the current target is prevented from being used for predic-
tions, avoiding negative transfer. The other sub-classifiers all
contribute towards predictions, i.e., they are all used to transfer

knowledge to the current target. The extent to which they
contribute is determined by their weight.

When a prediction needs to be made, we multiply the cor-
responding weights of the sub-classifiers with the probabilistic
prediction made by each sub-classifier. All sub-classifiers hj,ki ,
i ∈ M , j ∈ {1, · · · , Ji}, k ∈ {1, · · · ,K} are considered for
this. Afterwards, we get the sum of the weighted predicted
probabilities of each class and use majority vote to decide the
predicted class.

V. EXPERIMENT SETUP

This paper aims to answer the following research question:
can multi-source transfer learning improve the predictive per-
formance in data stream mining? When and why? For that, we
proposed Melanie. We now present the setup of experiments
made to answer this research question through Melanie.

A. Data Sets

1) Artificial Data Sets: The artificial data sets consist of
two real value input variables and a binary output. Each
class in a given source or target is associated to a Gaussian
distribution. Three different target scenarios are generated by
varying the number of target training examples of each class
(class size) in {50, 500, 5000}, simulating small, medium
and large sample size. All the source data sets have 5000
examples for each class. We evaluate the algorithm under three
different situations (no concept drift, abrupt concept drift, and
incremental concept drift). All source training data was used
for training before the target data started to be presented. The
parameters of the Gaussians used to create the data sets are
presented in Section VI, together with the analysis of the
results of the experiments that use them.

2) Real World Data Sets: Two widely used real world data
sets Electricity (ELEC2) [11], [17] and Weather [18], [19]
were used. ELEC2 has 5 numeric input features and one
binary output, and contains 45312 examples. Weather has 8
numeric input features and one binary output, and contains
18159 examples. Both data sets are likely to contain concept
drifts, given the conditions under which they were generated.
Further details on these data sets are omitted due to space
restrictions, and can be found at [11], [17]–[19].

To simulate if the sources do or do not share the same
concept as the target, we extracted some examples from the
real world data sets in two ways. First, to keep the original
distribution, we randomly extract PS = 30%, 60%, 90% of
the instances for each class label in each day from the ELEC2
data set as the source domain. For instance, each day has 48
examples. If UP label has 15 examples and DOWN label has
33 examples in one day, we randomly pick 4, 9, 13 instances
from UP label and 9, 19, 29 instances from DOWN label
to compose three source domain data sets representing three
different evaluation scenarios. The target domain has the rest
PT percentage of the data. For the weather data set, we extract
PS = 30%, 60%, 90% of the examples for each class label
in each month as the source domain and use the rest PT
percentage of the data as the target. All the instances keep



their original chronological order. This way can also simulate
the case where both source and target are producing data over
time. Second, to simulate the case where the source and target
do not share the same concept, we extract the first PS = 30%,
60%, 90% instances of the data sets. The rest PT% of the data
composes the target domain.

B. Compared Approaches and Parameter Choice

In order to check whether multi-source transfer learning
can improve predictive performance in data stream mining,
we compared the following approaches:
• Melanie: Online Bagging [16] and Online Boosting

[16] were investigated as Melanie’s ensemble learning
approaches, and DDM [9] was used as the drift detection
method. These approaches have been chosen due to their
popularity. Other online learning approaches and drift
detection methods can be investigated as future work.

• Melanie without any sources: this is the same as
Melanie, but without using any sources. It will enable us
to know whether Melanie is able to benefit from sources.

• Existing data stream learning approaches for non-
stationary environments: Dynamic Weighted Majority
(DWM) [9], Adaptive Random Forest (ARF) [10], DDM
[9] with Online Bagging, and DDM with Online Boosting
were compared against Melanie. This enables us to know
to what extent transfer learning can be helpful in view
of existing approaches for dealing with concept drift.
The first two are widely used approaches, available in
the MOA [20] framework. The latter two make use of
the same base ensemble learning algorithms and drift
detection method as Melanie, helping us to check whether
Melanie’s use of multi-sources is beneficial.

• Baselines: Online Bagging and Online Boosting [16],
which do not have mechanisms to cope with concept drift.

The sub-classifiers of all approaches were Hoeffding Trees
[21] except for ARF, which uses a variation of Hoeffding Tree
called ARFHoeffding Tree [10], [20]. Other sub-classifiers will
be investigated as future work. To facilitate the comparisons
and create readable plots to compare accuracies over time, the
comparisons are separated into three groups: (1) approaches
using Online Bagging, (2) approaches using Online Boosting
and (3) Melanie against approaches that are not based on
Online Bagging or Online Boosting.

For all the approaches, we chose parameters based on grid
search. For Melanie, we investigated θ = 0 : 0.1 : 1 and
δ = 0.05. The λ value is set to 0.5, as we are dealing with
binary classification problems. For Online Bagging and Online
Boosting, the size of the sub-classifiers is varied in 1:1:30.
For DWM, β was investigated in 0:0.1:1, period p = 1, and
weight threshold for removing sub-classifiers 0.01. For ARF,
the number of trees is in 10:1:30 (MOA restricts minimum
ARF ensemble size as 10).

C. Performance Metrics

The performance of the compared approaches was measured
based on the accuracy on the target examples. When using

TABLE I: Multi-Source Data Set Distributions.

Domain Class Center Covariance matrix
Target Class 0 (2, 3)

(
2 0
0 2

)
Class 1 (7, 8)

(
2 0
0 2

)
Source 1 Class 0 (−3, 6)

(
3 0
0 2

)
Class 1 (7, 8)

(
3 0
0 2

)
Source 2 Class 0 (2, 1)

(
1 0
0 2

)
Class 1 (7, 8)

(
1 0
0 2

)

(a) Each class size is 50 (b) Each class size is 5000

Fig. 1: Accuracy on data sets with no concept drift.

artificial data sets, the accuracy was calculated in a prequential
way and was reset to zero upon concept drift [8]. This enables
us to measure the performance on each concept separately,
without being affected by the performance on the previous
concepts. For the real world data sets, as we do not know
when concept drift happens, accuracy was calculated over a
sliding window [22] whose size is a percentage of the data
stream, corresponding to the percentage used in [9].

All stochastic approaches (which are all approaches except
for DWM) were run 30 times, and the average accuracy across
these 30 runs is reported.

Friedman tests on each data set were used to check if there
is significant difference between any pair of approaches. If
there is, Nemenyi Post-Hoc test was used to identify which
pair of approaches is really different from each other.

VI. EXPERIMENT RESULTS

This section presents the results of the experiments on
artificial (Section VI-A) and real world (Section VI-B) data
sets. Table II presents the rank of each approach on each data
set.

A. Experiments on Artificial Data

1) Multi-sources effect: This experiment aims to investigate
whether the use of different sources by Melanie can help to
improve accuracy under different amounts of target training
data, when dealing with stationary environments. In particular,
we would like to test the hypothesis that Melanie can benefit
from multiple sources to improve accuracy when there is a lack
of source training data. We would also like to check whether
or not they the use of sources could be detrimental to accuracy
when there is abundant target training data, or when sources
do not match the target exactly. Table I lists the distributions
of the target and source domains used in this experiment.



TABLE II: Friedman Ranks on Each Data Set.

Data Set No Drift Abrupt Incremental ELEC2 Weather
Similar Non-similar Similar Non-similar

Class size or PS 50 500 5000 50 500 5000 50 500 5000 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3
Melanie(Online Bagging) without source 7.3 4.5 2.3 7.8 5.1 4.1 5.7 5.4 4.8 7.4 5.2 3.6 3.9 2.8 3.6 5.6 7.0 7.5 6.9 5.9 6.0
Melanie(Online Bagging) with source one 3.8 1.7 9.0 - - - - - - - - - - - - - - - - - -
Melanie(Online Bagging) with all sources 2.0 3.5 6.2 2.1 1.0 1.3 2.7 2.0 2.8 4.5 2.2 2.7 2.3 2.5 2.2 7.4 6.5 8.2 4.4 5.3 5.2
Melanie(Online Boosting) without source 5.0 8.3 6.1 3.1 3.3 5.3 5.9 7.1 7.2 4.4 1.6 2.1 2.6 2.4 2.2 5.5 5.8 5.3 5.2 6.3 8.2
Melanie(Online Boosting) with source one 3.6 7.9 11.8 - - - - - - - - - - - - - - - - - -
Melanie(Online Boosting) with all sources 1.1 5.4 10.4 1.2 2.0 3.1 3.1 3.2 3.9 8.2 2.4 1.9 2.2 2.4 2.1 4.3 2.3 4.4 2.8 4.0 8.0
DDM(Online Bagging) 8.2 6.0 3.7 8.6 7.1 5.9 5.5 5.7 4.5 6.4 9.6 9.3 9.3 9.3 9.4 6.0 7.2 6.8 7.4 8.3 6.7
DDM(Online Boosting) 11.4 10.9 8.8 4.9 8.8 8.8 6.8 6.5 6.6 4.3 6.9 7.2 7.3 7.1 7.1 3.3 4.7 3.9 5.9 5.1 3.4
Online Bagging 8.2 6.0 3.7 9.0 9.9 10.0 8.0 7.0 6.8 6.6 9.0 9.6 9.2 9.7 9.6 6.0 6.7 6.0 7.0 6.5 6.0
Online Boosting 11.4 11.8 8.8 4.9 5.9 7.0 8.2 8.8 9.0 4.3 7.6 7.7 7.1 7.8 7.8 3.3 4.1 3.0 5.4 4.4 4.0
Dynamic Weighted Majority 9.5 2.8 1.2 6.8 4.8 1.9 4.3 3.5 3.5 6.6 5.7 5.4 6.0 5.8 5.6 9.7 9.1 8.4 5.9 7.5 6.5
Adaptive Random Forest 6.3 9.3 6.0 6.7 7.0 7.5 5.0 5.8 6.0 2.3 4.6 5.4 5.0 5.2 5.5 3.9 1.7 1.6 4.1 1.6 1.1
Friedman’s p-values were always < 2.2× 10−16. The best approach and the approaches not significantly different from it according to the Nemenyi test

are in bold.

The Friedman ranking of the approaches on each no drift
data set is shown in Table II. Figure 1 shows two representative
results across time. Other figures were omitted due to space
restrictions. When each class size was 50, Melanie with two
sources obtained the best performance, followed by Melanie
with one source and no source. The fact that the sources did
not match the target exactly was not detrimental to Melanie’s
accuracy.

The more target examples were received, the more similar
the accuracy of the approaches became (see e.g., Figure 1a).
When the class size was 500, Melanie with sources still
obtained competitive ranking (see Table II). When the class
size was 5000, Melanie obtained worse ranking than other
approaches such as DWM. However, the magnitude of the
differences in accuracy among all approaches was very small
(see e.g., Figure 1b). Therefore, even though Melanie had a
detrimental effect, this detrimental effect was very small.

These experiments show that Melanie was able to benefit
from different sources, and this was particularly helpful during
the periods where there is not enough target data to learn from.
Once the amount of target data becomes sufficient, source data
becomes unnecessary.

It is also worth noting that, since the data in this experiment
have no concept drift, Melanie without source and DDM
usually had the same sub-classifiers as Online Bagging or
Online Boosting. And yet, Melanie (Online Boosting) without
source still outperformed DDM (Online Boosting) and Online
Boosting, for all class sizes. The differences in accuracy were
statistically significant according to Nemenyi tests. The same
is valid when using Online Bagging for class sizes of 500 and
5000. As the main difference between Melanie without sources
and these other approaches is its weighting strategy, this
suggests that Melanie’s weighting strategy is more adequate.

2) Abrupt Concept Drift: This experiment considers that
the target data streams have one abrupt concept drift in the
middle of the target data stream, and the source concept
follows the distribution of the target concept that is valid after
the drift. It enables us to check whether Melanie with this
source is able to obtain good accuracy by identifying that
this source is useful after the drift, and by preventing any
detrimental effect that could potentially be caused by using it
before the drift, when it does not match the target well. Table

TABLE III: Abrupt Concept Drift Data Sets Distributions.
Domain Class Center Covariance matrix

Target before Concept Drift Class 0 (2, 3)

(
1 0
0 2

)
Class 1 (7, 8)

(
1 0
0 2

)
Target after Concept Drift Class 0 (2, 9)

(
1 0
0 2

)
Class 1 (5, 4)

(
1 0
0 2

)
Source Class 0 (2, 9)

(
1 0
0 2

)
Class 1 (5, 4)

(
1 0
0 2

)

III shows the parameters of the abrupt drift data sets.
Based on Friedman and Nemenyi tests (Table II), we can

see that Melanie with source presented the best results over
all the abrupt drift data sets. Larger improvements in accuracy
occurred mainly in the beginning of the learning period and
after the drift (see e.g., Figures 2a, 2b, 2c and 2d). Similar to
Section VI-A1, the more target examples were received, the
more similar the accuracies of different approaches became,
meaning that the use of different sources is helpful during
the periods when target examples are not abundant. This is
an encouraging result, which demonstrates that Melanie can
speed up recovery from concept drift. In particular, it man-
aged to speed up recovery from concept drift in comparison
to other approaches specifically designed for non-stationary
environments, such as DDM, DWM and ARF.

Sometimes, DWM obtained slightly better accuracy than
Melanie with source before the drift, after enough examples
from the target concept were received (see e.g., Figure 2b).
However, the improvement in accuracy was very small com-
pared to the benefit provided by Melanie with source in the
beginning of the learning period and after concept drifts.

Overall, Melanie with source was particularly helpful to
speed up adaptation to new concepts.

3) Incremental Concept Drift: The parameters of the in-
cremental concept drift data sets are shown in Table IV. For
the class sizes of 50, 500, 5000, at each 100, 1000, and
10000 time steps, the centres of the Gaussian of class 0
and class 1 move towards each other by 1 unit, until the
Gaussians of class 0 and 1 swap location. Six different sources
are available, one corresponding to each intermediate concept
between the original concept and the new concept. The aim is
to check whether Melanie can identify which source models



(a) Abrupt; class size of 50 (b) Abrupt; class size of 50

(c) Abrupt; class size of 5000 (d) Abrupt; class size of 5000

(e) Incremental; class size of 50 (f) Incremental; class size of 50

(g) Incremental; class size of 500 (h) Incremental; class size of 5000

Fig. 2: Accuracy on abrupt and incremental concept drift data.

to emphasise, to improve predictive performance during and
right after the drift.

Based on Friedman and Nemenyi (Table II), we can see
that Melanie (Online Bagging) with source performs best on
incremental drift data sets after concept drift, for all target class
sizes. Figures 2e, 2f, 2g and 2h show representative examples
of Melanie (Online Bagging) with source’s outperforming
accuracy. This shows that Melanie can be frequently helpful
to recover from gradual drifts, given that not enough examples
belonging to intermediate target concepts will be received for
approaches to learn them well without knowledge transfer.

B. Experiments on Real-World Data

1) ELEC2 Data: Based on Friedman and Nemenyi tests
(Table II), Melanie (Online Boosting) with source and Melanie

TABLE IV: Incremental Concept Drift Data Sets Distributions.
Domain Class Center Covariance matrix

Target before concept Class 0 (2, 3)
(
1 0
0 2

)
Class 1 (7, 8)

(
1 0
0 2

)
Target after concept drift Class 0 (7, 8)

(
1 0
0 2

)
Class 1 (2, 3)

(
1 0
0 2

)
Source 1 Class 0 (2, 3)

(
1 0
0 2

)
Class 1 (7, 8)

(
1 0
0 2

)
Source 2 Class 0 (3, 4)

(
1 0
0 2

)
Class 1 (6, 7)

(
1 0
0 2

)
Source 3 Class 0 (4, 5)

(
1 0
0 2

)
Class 1 (5, 6)

(
1 0
0 2

)
Source 4 Class 0 (5, 6)

(
1 0
0 2

)
Class 1 (4, 5)

(
1 0
0 2

)
Source 5 Class 0 (6, 7)

(
1 0
0 2

)
Class 1 (3, 4)

(
1 0
0 2

)
Source 6 Class 0 (7, 8)

(
1 0
0 2

)
Class 1 (2, 3)

(
1 0
0 2

)

(a) ELEC2 similar; PS = 0.9 (b) ELEC2 similar; PS = 0.3

(c) ELEC2 non-similar; PS = 0.9 (d) Weather non-similar; PS=0.9

Fig. 3: Accuracy on ELEC2 and Weather data.

(Online Bagging) with source hold the best and second best
performance on over all ELEC2 data sets with non-similar
source. Melanie without source was also competitive. For data
sets with similar source, Melanie (Online Boosting) with and
without source achieved the top two accuracies when PS was
0.3 and 0.6. Figures 3c, 3a and 3b show some representative
results.

The probable reason for the good results achieved by
Melanie is that concept drifts are likely to occur very fre-
quently in this data set [8], causing the number of target
examples from a given concept to be relatively small even
for the cases with smaller PS . As with Section VI-A1, using
dissimilar sources still helped to improve accuracy. Moreover,
the fact that Melanie without source was competitive on a data
set likely to contain concept drifts also indicates that Melanie’s
maintenance of old target sub-classifiers can be helpful to deal
with drifts. These results also demonstrate that Melanie can
not only enable learning over time in the target, but also in



TABLE V: Summary of Friedman rank with drift data sets.

Approaches Average Rank
Melanie(Online Bagging) without source 5.46
Melanie(Online Bagging) with source 3.63
Melanie(Online Boosting) without source 4.64
Melanie(Online Boosting) with source 3.42
DDM(Online Bagging) 7.39
DDM(Online Boosting) 6.03
Online Bagging 7.92
Online Boosting 6.13
Dynamic Weighted Majority 5.94
Adaptive Random Forest 4.45

the source domain.

C. Weather Data

Based on Friedman and Nemenyi tests (Table II), ARF
performed best when PT was larger. Overall, Melanie was
not helpful but not really much detrimental either, as the
magnitude of the differences in accuracy between Melanie
and the top ranked approaches were small. An example of
representative result is shown in Figure 3d. Still, Melanie
with source preformed better in beginning of the learning
period in most cases with similar sources and in all cases
with non-similar sources. The probable reason for Melanie not
to outperform others is the fact that no drift detections were
performed by DDM in this data set. The high variance of
accuracy throughout the learning could mean that no concept
drifts that are more significant than the inherent variability and
noise in the training examples are present. Therefore, source
data is only useful in the beginning of the learning period,
when there are not enough target training examples.

D. Summary and Answer to the Research Question

Table V is the summary of Friedman rank of each approach
in each data set. We can see that Melanie (Online Boosting)
with source has the best average rank across data sets. Overall,
our experiments show that multi-sources can be helpful for
improving accuracy in data stream mining. The more similar
the source and target domains are, and the smaller the number
of target training examples, the larger the benefit provided
by multi-sources. The use of multi-sources was able to speed
up recovery from concept drift, by leading to better accuracy
especially during and right after the drifts. This is because
Melanie was able to identify and benefit from cases when the
source sub-concepts matched the target, enabling predictions
to be performed based on extra data that are compatible with
the target or with intermediate concepts. Such data is only
necessary when there are not enough target training examples
representing the current target or intermediate concept.

VII. CONCLUSION AND FUTURE WORK

This work introduced multi-source transfer learning for
non-stationary environments, and proposed the first approach
(Melanie) able to transfer knowledge between different data
streaming sources and a data streaming target.

We performed experiments with several different data sets
to evaluate Melanie and check whether multi-sources can be
beneficial to improve accuracy in data stream mining. The
results show Melanie can transfer and pick the most suitable

knowledge under variety of scenarios with and without concept
drift, improving accuracy especially during periods of time
when there is not a large amount of target training data.
As such, multi-source transfer learning can help to speed up
adaptation to concept drift. Melanie was also usually able to
avoid negative transfer.

Future work includes a sensitivity analysis of Melanie’s
parameters; an investigation of Melanie with other types
of sub-classifiers, online learning ensembles, drift detection
methods and data sets; and an extension of Melanie to tackle
class imbalance.
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