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ABSTRACT Water crystallisation was studied at a range of concentrations (20%-60% solids) in 

sucrose and gum arabic systems. Increasing sucrose concentration reduced nucleation temperature 

by 26 °C compared to equilibrium values; crystal growth rates decreased by up 95% (from 8x10-5 

m/s with 40% sucrose to 4x10-6 m/s with 60% w/w) for 7 oC supercooling, while addition of 

carboxymethyl cellulose (CMC) - higher viscosity - resulted in 40% slower growth rates (60% 

sucrose). Ice crystal shape changed from dendritic (-16 oC) to rounded edges (-24 oC) as 

temperature decreased. For gum arabic, increasing supercooling (from 2 oC to 10 oC) resulted in 

faster growth rates (up to 3 times) for the 50% system, while the 60% solution showed rates < 

6x10-6 m/s. Controlling water crystallisation during freezing is critical in manufacturing of 

frozen/freeze-dried (bio)products, although little information is available on the behaviour of 

concentrated systems (i.e. >40% solids). Despite presenting significant challenges (i.e. limited 

water availability and mobility), processing such concentrated systems could increase energy 



 3 

efficiency, as less water is processed. Results from this systematic investigation of crystal growth 

kinetics in concentrated carbohydrate systems demonstrate that crystal growth can be promoted 

despite kinetic limitations and reveal potential to reduce energy demand during freezing/freeze-

drying by processing less water.  

 

 

KEYWORDS water crystallisation; crystal growth; carbohydrates; high solid concentration 

 

1 Introduction  

Freezing is an important processing and preservation operation in food manufacturing that 

involves lowering the temperature of the material below its freezing point 1,2. During freezing part 

of the water crystallises to ice, and the acquired ice morphology largely determines the quality and 

properties of the frozen foods. For example, during freezing of fish, meat and vegetables, large 

number of small sized ice crystals are usually preferable to small number of large sized crystals, 

as large crystals may penetrate the cell walls causing tissue damage and consequent loss of 

quality3,4. Ice cream is another representative example, where ice crystal size determines 

mouthfeel: too large and the ice cream feels ‘gritty’; too small and the ice cream melts too easily5,6. 

Freezing is also the first step of freeze-drying, in which the frozen ice crystals are further 

sublimated, leaving a dry, porous structure7,8. Again, it is important to effectively control ice crystal 

formation, as the porosity and properties of the dried food largely depend on the ice crystal 

morphology created during the first freezing step6.  
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Ice crystal morphology depends on the formulation and freezing conditions, which affect 

nucleation and growth. Nucleation is stochastic9 and, although some mechanisms – e.g. addition 

of ice crystal seeds in secondary nucleation - can increase the repeatability of crystallisation10, it is 

difficult to control. Similarly, crystal growth will be determined by a series of factors (e.g. 

formulation, process conditions) that can complicate ice crystal formation. 

 The inherent complexity of crystallisation is increased when freezing low-water content systems 

due to the reduced water availability for crystal formation and the increased system’s viscosity that 

limits molecular mobility10,11. In addition, water crystallisation temperature will decrease in 

concentrated systems, moving closer to the glass transition temperature, where water mobility is 

again very limited12. Kinetic and operational limitations combine to result in a narrow working 

area, as illustrated in Figure 1 for the water-sucrose system14. 

Such limitations might be overcome by adding ice crystal seeds to promote water 

crystallisation13. After adding the seed, water molecules diffuse to and are incorporated into the 

crystal lattice structure forming a stable nucleus that can grow to a larger crystal. Seeded systems 

are used in applications such as freeze concentration of fruit juice14 or water waste treatment15, but 

have not been exploited for structuring purposes. In addition, secondary nucleation can occur at 

much lower supercooling – i.e. higher temperatures - than primary nucleation9,16. This can be 

advantageous in terms of energy demand: operating at higher temperatures implies lower 

refrigeration loads and thus economic and environmental benefits. Research that helps to 

understand and control crystallisation phenomena in high concentrated systems is thus needed.  
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Figure 1. Adapted phase diagram of the water-sucrose system 14. The blue area represents the 

potential working area for industrial applications of high concentrated systems freezing 

processes. 

 

The aim of this work is to give better understanding of water crystallisation mechanisms at a 

range of solute concentrations, with a focus on carbohydrate-based systems. Primary 

crystallisation was investigated by Differential Scanning Calorimetry (DSC) and cryo-X-ray 

diffraction in sucrose systems up to 60% solids. Likewise, an optical method has been developed 

that allows visualisation of crystallisation under a microscope and it was used to study crystal 

growth in concentrated systems. To illustrate the methodology, the effect of temperature, 

concentration, viscosity and formulation on crystal growth kinetics and morphology was 

investigated.  

 

 

2. Materials and methods 
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2.1 Materials  

Sucrose solutions (20%, 30%, 40%, 50%, and 60% solids w/w) were prepared by mixing the 

solute with distilled water while stirring (Stuart CB162 hotplate stirrer) at room temperature until 

the solution was clear. Gum Arabic solutions were prepared by adding powder to distilled water 

under vigorous stirring until reaching final concentrations of 50% and 60% solids w/w. The beaker 

was then covered and stirring was maintained until the solute was fully dissolved (typically 24 h-

36 h). Foam formed during gum arabic systems preparation was manually discarded. 

Sucrose/CMC (carboxymethyl cellulose) solutions were prepared with a fixed water content (40% 

w/w): one with 59% sucrose and 1% CMC, and the other with 59.5% sucrose and 0.5% CMC. In 

those, sucrose was first dissolved, and the required CMC amount was then added and mixed at 

room temperature until full dissolution was achieved. 

 

2.2 Methods 

2.2.1 Differential Scanning Calorimetry (DSC) 

The thermal behaviour of the sucrose solutions (20%-60% w/w) was investigated on a Mettler 

Toledo DSC2 differential scanning calorimeter. Around 20 mg (exact weight recorded) of each 

solution was placed into a 40 µL aluminium pan that was then sealed and the material was cooled 

down from room temperature to -70 °C and reheated to 20 °C at constant rate of 1 °C/min. All 

scans were triplicated using a sealed empty pan as reference. The fraction of ice formed during 

crystallisation (primary nucleation) can be calculated from DSC results using 17,18: 

 
(1) 

where ΔH (J g-1 sample) is the area below the DSC peak for each sample divided by the sample’s 

exact weight and  ΔHw = 334 J g-1  is the latent heat of fusion of water. 

 
Ice fraction = ΔH

ΔHw



 7 

 

2.2.2 Cryo-X-Ray Diffraction (Cryo-XRD) 

Cryo-X-Ray diffraction curves for the 60% sucrose solution were obtained in a powder 

diffractometer (Siemens D5000) equipped with an Oxford low temperature cryostream. Of the 

investigated sucrose systems, this is the one with the highest concentration and thus the most 

challenging in terms of crystallisation – and therefore the most interesting and relevant one. 

Approximately 0.01 mL of the solution was cooled down from room temperature to -70 °C and 

then reheated to 20 °C at a constant rate of 1 °C/min to replicate the DSC experimental conditions. 

Experiments were conducted in triplicate, with the samples being scanned at: -20 °C, -30 °C, -40 

°C, and -70 °C. 

 

2.2.3 Optical experiments 

Ice crystal growth has been further monitored by adding an ice seed into the supercooled 

concentrated solution. The apparatus used for the experiments combines a temperature-controlled 

stage (Linkam, LTS 120) with an optical microscope (Leica Z16 APO). The peltier stage ensures 

temperature stability and accuracy (±0.1 oC), while a camera mounted on the microscope allows 

crystal growth to be recorded.  

During these experiments, one droplet (0.1 mL) of the concentrated sample was emptied into the 

cavity of a single-cavity glass slide and it was placed onto the peltier stage. A smaller droplet (10% 

sucrose solution for experiments with sucrose and distilled water for experiments with gum arabic) 

was also placed onto the cooling stage to create the seeds. The system was then cooled down at 1 

°C/min, to the desired supercooling. Once the temperature reached this value (accuracy and 
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stability ensure by the peltier stage control), the seed was added into the centre of the supercooled 

droplet, and subsequent growth was recorded (1 frame per second). 

 

2.2.4 Crystal growth measurements 

Image analysis of the crystallisation snapshots was carried out (ImageJ software) to measure 

experimental crystal growth rates. A typical post-processing image is shown in Figure 2(a), where 

the white area in the centre is the crystallised region and the dark area that surrounds the crystal is 

the supercooled liquid (the bright circle is the reflection of the microscope’s lighting, which was 

ignored during image processing).  

 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Example of image processing (scale bar 5 mm). (a) Image of ice region with its edge 

enclosed; (b) Same crystallised region with its area highlighted. This area was assumed to be a 

disk, and an equivalent radius was calculated from it; (c) Radius of the equivalent area calculated 

using Equation (1). The slope of the straight lines (best fitting to a first order polynomial) defines 

the growth rate of the system. 
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The area S (mm2) of the solid region was measured (see Figure 2(b)) and the radius r (mm) of 

an area-equivalent circle calculated using: 

 
(2) 

The equivalent radii r were plotted as a function of time (see Figure 2(c)), and the growth rate 

was determined as the slope of the best linear fitting. 

Three different seed volumes were tested (1 μL, 3 μL, and 5 μL) to evaluate the effect of the 

seed size on the crystal growth rate, and showed little effect on ice crystal growth kinetics (data 

not shown). Therefore, for the optical experiments a volume of 3 µL was used to create the seed 

as this was large enough to handle easily and small enough to allow space for crystal growth 

observations under the microscope.  

 

2.2.5 Activation Energy 

The activation energy of the process is related to the crystal growth rate via an Arrhenius-type 

relationship14,19,20: 

𝐺 = 𝐴𝑒%
&'(
)* + (3) 

where G is the growth velocity (m/s), Ea is activation energy (J mol-1), R is gas constant (J mol-1 

K-1), T is the absolute temperature (K) and A (m s-1) is a pre-exponential factor. The apparent 

activation energy Ea can be estimated from the slope of an Arrhenius plot21, where lnG is plotted 

against the inverse of the absolute temperature 1/T. Similarly, the activation energy required for 

diffusion-controlled growth, Ea
D (J mol-1), can be estimated from a plot of lnDsw vs. 1/T 21, where 

Dsw (m s-1) is the self-diffusivity of water in the supercooled solution, which can be calculated 

through22: 

p
sr =
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𝑙𝑛
𝐷/0
𝐷0,2

= −
∆𝐸
𝑅𝑇 −

𝑦0	𝑉;0∗ + 𝜁𝑦/𝑉;/∗

𝑦0(𝐾00 𝛾⁄ )D𝐾/0 − 𝑇E,0 + 𝑇F + 𝑦/(𝐾0/ 𝛾⁄ )D𝐾// − 𝑇E,/ + 𝑇F
 (4) 

where ∆𝐸 is the activation energy, Dw,0 is a constant and 𝑦0	and 𝑦/	 are the mass fractions of 

water and solute, respectively. The Free-Volume parameters (Kww, Ksw, Kws, Kss, 𝑉;0∗, 𝑉;0/∗ , 𝜁	𝛾 ) are 

all available in literature22 for relevant carbohydrate systems. If Ea >Ea
D , then the growth process 

is either temperature or kinetic-controlled21.  

 

3 Results and discussion 

3.1 DSC (Enthalpy measurements) 

DSC freezing curves for the sucrose solutions (20% - 60% concentration) are shown in Figure 

3(a). All samples exhibited an exothermal peak during cooling corresponding to water 

crystallisation (primary nucleation). Increasing sucrose concentration decreased the onset 

temperature of crystallisation from -19 °C (for the 20% solution) to -37 °C (for the 60% solution). 

These crystallisation temperatures are lower than reported14 equilibrium freezing temperatures 

obtained from a DSC melting curve. At equilibrium, the freezing and melting temperatures 

coincide and for the 60% sucrose systems the authors reported equilibrium freezing temperature 

of -11.4 °C. The difference between the crystallisation temperature determined during freezing 

and the equilibrium freezing temperatures (up to 26 °C difference for the 60% solids system) 

reflects the increasing supercooling required for crystallisation (primary nucleation) to occur. 

Figure 3(b) shows the crystallisation enthalpy ∆𝐻 (J g-1 sample) as a function of solids 

concentration, together with the data expected if all the water in the sample was solidified ΔHideal 

(J g-1 sample): 
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(a) 

 

(b) 

Figure 3. (a) Differential Scanning Calorimetry (DSC) thermograms of sucrose solutions 

(20%, 40%, 60% solids) with a cooling rate of 1 °C/min. The magnified figure shows the 

crystallisation peak of the 60% system. (b) Absolute value of enthalpy change of water 

crystallisation at different sucrose concentration (dots: experimental data; line: linear fitting). 

Experiments were triplicated and error bars are not distinct as they are smaller than the size of 

the dots.  

 

 (5) 

The measured ∆𝐻 values decreased monotonically on increasing sugar concentration from 

approx. 255 (J g-1 solution) for the 20% sucrose solution to 74 (J g-1 solution) for the 60% sucrose 

system. This dependence of ∆𝐻 on the solids content of the system can be fit to a linear model23,24:  

∆𝐻 = 𝐴 − 𝐵𝑤/ (6) 

 where ws (wt. %) is the solids concentration and the estimated constants are A=338 J g-1, and 

B=4.5 J g-1.  

wideal HfractionsolidH D×-=D )1(
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As crystallisation progresses, freeze-concentration occurs in the non-crystallised portion of the 

system. The maximum ice content (strongly dependent on cooling rates) was estimated by linear 

extrapolation from Equation (6) to ΔH=0 J g-1 19,24,25, resulting in a maximum concentration of ca. 

76% for sucrose. This agrees with reported values ranging between 69% and 78% 23-25. Ice fraction 

values obtained using Equation (1) are presented in Figure 3(b), showing a reduction on ice formed 

from 76% to 22% as the solids increased from 20% to 60%.  

 

3.2 X-ray Diffraction  

Primary crystallisation was further studied using low temperature X-ray diffraction and results 

for the 60% sucrose solution are summarised in Figure 4(a). Samples were first cooled from room 

temperature to -70 °C and then heated to room temperature at a constant rate of 1 °C/min. Scans 

were conducted at -20 °C (i), -30 °C (ii), -40 °C (iii) and -70 °C (iv) during cooling, and then -40 

°C (v), -30 °C (vi) and -20 °C (vii) during heating. In order to reduce potential annealing effects 

due to the scanning process (each scan requires approximately 10 min acquisition time at the 

selected temperature), different scans in Figure 4(a) were acquired in separate cooling/heating 

cycles. Direct comparison of the peak intensities between scans is therefore limited.  

No crystal peaks can be seen in data sets (i) and (ii), indicating that neither water nor sucrose 

crystallisation occurred on cooling the solution at temperatures higher than -30 °C. This may be 

attributed to the high viscosity of the 60% solids solution and the sparse spatial distribution of 

water26. On further temperature reduction (≤-40 °C and up to -70 °C) peaks at 22.7°, 24.1°, 25.6°, 

39.9°, 43.6° and 47.2° are evident - see data set (iii) and (iv) in Figure 4(a) - and can be identified 

as ice crystals peaks27. Water crystallisation took place at a temperature between -30 °C and -40 

°C, which in agreement with the DSC cooling curve of the same (60% sucrose) system that showed 
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an exothermal peak at -37 °C (Figure 3(a)). No sucrose crystals were observed within the 

temperature range studied, which is in accordance with the sucrose-water phase diagram shown in 

Figure 1 19.  

 

 

(a) 

 

(b) 

Figure 4. (a) X-ray diffraction patterns for the 60% sucrose solution. (b) Intensity ratio I44/I40 

calculated from XRD patterns (iv, v, vi and vii) as a function of temperature during heating of 

60% sucrose. 

 

During heating from -70 °C to -20 °C, the crystal structure persisted even at -20 °C (see graph 

(vii) in Figure 4(a)). However, as the temperature increased, the peak intensities in the XRD scans 

changed. For example, there was a shift in the highest peak from that at 24.1° in the -40 °C scan 

to that at 22.7° in the -20 °C scan (see data sets (v) and (vii) in Figure 4(a)). This change in the 

crystal peak patterns indicates a transition of ice crystals into different forms as discussed below. 

Three different main forms of frozen water can be identified at atmospheric pressure: hexagonal 

crystal, cubic crystal, and amorphous26. In XRD scanning, hexagonal ice crystals are indicated by 
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peaks at 22°, 24°, 26°, 34°, 40°, 44° and 47°, while cubic ice crystals show peaks at 24°, 40°, and 

47° coincidently26. Cubic ice is a metastable form and it is typically the form acquired during 

freezing of water to temperatures above -80 °C 28. Below this temperature, ice is usually in 

hexagonal form29. Cubic ice will typically transform to hexagonal with time and the rate of 

transformation strongly depends on temperature28. The ratio of hexagonal/cubic ice can be 

calculated from the intensity ratio of the peaks at 44° and 40°: I44/I40 
30. The minimum value is 0, 

when all the ice is in cubic form. This will gradually increase as the percentage of hexagonal ice 

increases in the system until a maximum value at 0.8, which indicates that all the ice is in hexagonal 

form - the value of 0.8 is the intensity ratio of peak 44° and 40° for pure hexagonal ice26,27. Intensity 

ratios calculated from Figure 4(a) are displayed in Figure 4(b). For temperatures ≤-40 °C, the scans 

indicated a mixture of cubic and hexagonal ice crystals with I44/I40 value of 0.28±0.01 (triplicate 

experiments). This suggests that, in this temperature range, water mobility is too low to form 

hexagonal crystals on the time scale of the experiment. When the sample was heated up to -30 °C, 

the I44/I40 ratio rose to 0.39, indicating a shift from cubic to hexagonal ice. Further temperature 

increase up to -20 °C resulted in the maximum ratio value (i.e. I44/I40 = 0.82), meaning that all the 

ice in the sample has changed into hexagonal form. These results are in agreement with reported31 

XRD patterns of ice crystals in highly concentrated glucose solutions that described the 

transformation of cubic ice crystals into hexagonal ones during heating. 

 

3.3 Crystal growth in concentrated systems 

DSC and cryo-XRD results demonstrate that primary nucleation (i.e. spontaneous 

crystallisation) becomes increasingly difficult as solids concentration increases, with 26 °C 

supercooling required for crystallisation to occur spontaneously in a 60% sucrose solution (cooling 
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rate 1 oC/min), as shown in Figure 3(a) (zoomed scan). Therefore, to study crystal growth at higher 

- and industrially more relevant - temperatures, an ice seed was added to a supercooled solution 

and crystal growth was observed under the microscope. Supercooling (ΔΤ) was defined as the 

difference between the droplet’s temperature prior the addition of the seed crystal32, controlled by 

the Linkam stage, and the equilibrium freezing temperature. As the Biot number of the supercooled 

droplets (before the addition of the seed crystal) was Bi < 0.1, the temperature of the samples was 

assumed to be that of the stage34 for supercooling calculation purposes. Equilibrium freezing 

temperatures for the 40%, 50%, and 60% sucrose solutions were assumed at -4.4 °C, -7.0 °C, and 

-11.4 °C, respectively. For the 60% system, preliminary results confirmed that supercooling up to 

9 °C (temperature of -20 °C) was insufficient to induce nucleation at the experimental time scale 

- i.e. no crystals were observed after 1 hour, as shown in Figure 5(a),(b) and (c) - while after the 

addition of an ice seed crystal growth occurred in a time scale of minutes (Figure 5 (d),(e) and (f)), 

even at supercooling as low as 5 °C, this is T= -16 °C. 

 

3.3.1 Crystal growth in sucrose solutions  

The effect of both solute content and supercooling (ΔΤ) on the growth rate of ice crystals was 

investigated for solutions with concentrations of sucrose between 40% and 60% w/w. The 

dependence of the growth rate on ΔT was described by a power law of the form33: 

 

 
(a) 

 
(b) (c) 
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(d) 

 
(e) 

 
(f) 

Figure 5. Microscope images for the system without seed recorded at (a) 0 min (b) 30 min (c) 

60 ; Microscope images for the system with seed recorded (d) 0 min (e) 1 min and (f) 2 minutes 

after adding ice seed into a 60% sucrose droplet at -20 °C. Scale bar=5mm. Bright circles in 

the images are due to LED light reflection. 

 

 

𝐺 = 𝑘K𝛥𝑇E (7) 

where G (m s-1) is the crystal growth velocity, kG is the growth rate constant (m oC-1 s-1) and g is 

an order parameter.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6. (a) Effect of supercooling and concentration on crystal growth rate (G) in sucrose 

systems with 40% (squares), 50% (crosses) and 60% (dots) solids; (b) Arrhenius plot of crystal 

growth from seed: logarithm of crystal growth rate as a function of reciprocal of the 

temperature; (c) (i) Effect of temperature and viscosity (addition of CMC) on growth rate from 

sucrose solutions with 40% water content; Zoom-in images of ice crystals developed from 

60% sucrose solutions at (ii) 13 °C supercooling (-24 °C) and (iii) 5 °C supercooling (-16 °C). 

Image width: 4mm. CMC curves are overlapping; (d) Effect of supercooling and concentration 

on crystal growth of gum arabic systems. In (a), (c) and (d) lines correspond to the power law 

fit defined in equation (5). 

 

Figure 6(a) presents the variation of measured crystal growth velocities at different ΔT, as well 

as the fit of Equation (7) for each concentration of sucrose (lines). Results showed higher crystal 

growth velocities as supercooling increased: up to 4 times higher for the 40% system as ΔT 

increased from 3 oC to 7 oC, and twice as fast for the 60% sucrose when ΔT increased from 5 oC 

to 13 oC. In addition, the 40% and 50% sucrose systems showed a faster rise (higher slope) of 

experimentally measured growth rates for ΔT > 4.5 oC. Although this observation is based on a 

single point below ΔT= 4.5 oC (albeit for triplicated experiments), it is in accordance with previous 
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studies on sucrose systems that identified ΔT=4.5 oC as the critical supercooling marking the 

change from thermally controlled growth to kinetically controlled ice crystal growth in sucrose 

solutions34.  

Crystal growth rates were slower on increasing solid concentration (see Figure 6(b)). For 

example, at ΔT = 7 oC the growth rate was reduced by 70% (from 8x10-5 to 2.4x10-5 m s-1) as the 

sucrose concentration increased from 40% to 50%, and by 95% (to 4x10-6 m s-1) on further increase 

to 60% sucrose. Similar trends were found for the estimated growth rate constant kG, which 

decreased an order of magnitude - from 4.88 x10-6 m oC-1s-1 to 4.08 x10-7 moC-1s-1- as the initial 

sucrose content increased from 40% to 60% w/w (values listed in Table 1, alongside estimated 

order parameters g for all the investigated systems). The estimated g values for the sucrose systems 

are in the range between 1.2 and 1.5, which is consistent with reported values, typically between 

1 and 2.4 33-37. Adding solids both slows down heat transfer and reduces molecular mobility38, 

which causes a significant decrease of the crystal growth rate: as ice forms from water, sucrose 

molecules must be displaced from the ice front, and this becomes more difficult with increasing 

solids concentrations. 

Table 1. Growth rate constants (m oC-1s-1), order parameter and coefficient of determination 

obtained from regression analysis within a 95% interval of confidence using Equation (7) for all 

the system studied. 

 kG g R2 

40% sucrose 4.88 x 10-6 1.46 0.97 

50% sucrose 1.37 x 10-6 1.47 0.98 

60% sucrose 4.07 x 10-7 1.22 0.96 
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59.5% sucrose + 0.5% CMC 1.75 x 10-7 1.39 0.88 

59% sucrose + 1% CMC 1.67 x 10-7 1.40 0.89 

    

50% gum Arabic 1.19 x 10-5 0.71 0.89 

60% gum Arabic 2.45 x 10-6 0.37 0.88 

 

Figure 6(b) presents the Arrhenius plot – i.e. lnG vs. 1/T – for the investigated sucrose systems. 

Activation energy values were estimated from the slopes of the lines. Data in this graph suggest 

that for 40% and 50% sucrose solutions two slopes can be fitted in the Arrhenius plots, with ΔT = 

4.5 oC as the change point. The smaller slopes observed for ΔT > 4.5 oC indicate a decrease of the 

activation energy for lower temperatures, compared to that at ΔΤ < 4.5 °C, as listed in Table 2. 

This slope reduction indicates a growth rate less dependent on temperature19, thus suggesting a 

shift in the controlling mechanism of ice crystal growth in sucrose systems for ΔT > 4.5 oC 34.  

For the investigated conditions, all the sucrose systems presented estimated Ea values larger than 

the theoretical Ea
D (see Table 2), especially those corresponding to higher temperatures and thus 

slower growth rates (smoother slope in Figure 6(a), Ea1 in Table 2), which indicates that diffusion 

is not the main controlling growth mechanism. As temperature decreased, diffusion effects became 

increasingly significant21, and Ea2 values get closer to EaD ones, (see Table 2). In addition, 

increasing the solid concentration was associated to a slope decrease in the Arrhenius plot, and 

thus a decrease in the activation energy as well19:  the 60% solution exhibited lower activation 

energy values, compared to the 40% and 50% solids systems, revealing a shift towards a more 

diffusion-controlled growth mechanism. 

To calculate the theoretical EaD values used in this analysis, the self-diffusivity of water in 

sucrose solutions was calculated using Equation (4) and published sucrose-water parameters22 
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Table 2. Activation energy obtained from regression analysis within a 95% interval of confidence 

using the Arrhenius plot of Equation (3) for all the system studied.  

 Ea1 (kJ/mol) 

ΔT<4.5oC 

Ea2(kJ/mol) 

ΔT>4.5oC 

Ea
D(kJ/mol) 

40% sucrose 336.64 103.88 46.41 

50% sucrose 519.37 101.79 40.27 

60% sucrose - 77.62 37.54 

    

59.5% sucrose + 0.5% CMC 87.19 -  

59% sucrose + 1% CMC 73.96 -  

    

50% gum Arabic 76.37 -  

60% gum Arabic 48.18 -  

 

 

3.3.2 Crystal morphology 

Different crystal shapes were observed depending on the growth rate, examples for 60% sucrose 

(40% water) systems are shown in Figure 6(c). The close-ups of the ice crystals in Figure 6(c) 

show crystals with smooth and round edges when crystallisation occurred at high supercooling 

(ΔΤ of about 10 °C), while at slower crystallisation (ΔΤ of about 5 °C) dendritic crystal patterns 

were obtained. The latter are characteristic of diffusion controlled solid/liquid interface 

dynamics39. The effect of supercooling on the morphology of the crystals formed has been also 
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reported at lower solid concetrations34: dendritic crystals in 20% sucrose droplets at ΔT = 13.5 °C, 

while cellular structures were obtained in the same system at ΔT = 18 °C. 

 

3.3.3 Sucrose-CMC systems 

To investigate the effect of viscosity on the ice crystal growth rate, the viscosity of the system 

was increased by adding CMC while maintaining the water content constant at 40%, as described 

in Section 2.1. Results presented in Figure 6(c) reveal decreasing growth velocities as the viscosity 

of the system increased, with an overall 40% reduction of the growth rate on addition of the 

thickening hydrocolloid. Adding 0.5% or 1% CMC showed marginal differences in determining 

crystal growth kinetics. The estimated kG values obtained for the solutions with CMC (see Table 

1) followed the same trend: the systems with CMC presented values very similar and 

approximately 35% lower than those of the solution without CMC. The change in viscosity 

(addition of CMC) showed little effect on the estimated activation energies, (see Table 2). 

 

 

3.3.4 Gum arabic  

Growth rates at different crystallisation temperatures in 50% and 60% gum arabic systems are 

shown in Figure 6(d). The equilibrium freezing temperature employed for supercooling 

calculations was obtained from literature40 and previous work41: -6.2 °C and -15 °C for the 50% 

and 60% gum arabic solutions, respectively. 

For the 50% gum arabic system, crystallisation was observed at supercooling ΔT = 2 °C and 

crystals grew at a rate of 1.67x10-5 m s-1. When supercooling increased from ΔT =2 °C to ΔT =10 

°C, the growth rate increased monotonically reaching a maximum at ΔT =10 °C (G=6.81x10-5 m 
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s-1), while further temperature decrease (see point at ΔT =12 °C) appeared to have little effect on 

the growth rate, albeit within experimental error. This might indicate a change in the limiting 

mechanism of crystallisation from thermally-controlled to kinetically-controlled39 that cannot be 

properly described using the power law given by equation (7) (R2 = 0.89, in Table 1). 

Increasing solid concentration to 60% slowed down crystal growth significantly to values below 

6x10-6 m s-1. For the 60% gum arabic system, the minimum supercooling required for crystal 

growth was ΔT =1 °C. With increasing supercooling from ΔT =1 °C to ΔT =9 °C, the growth rate 

appeared to increase, although maintaining low values (almost an order of magnitude lower) in 

comparison to the 50% solution. The Ea estimated for the 60% gum arabic system (Ea = 48.17 

kJ/mol) was slightly lower than the one for the 50% solution (Ea = 76.37 kJ/mol), but closer to the 

theoretical diffusion-controlled values calculated for sucrose solutions (see Table 2).  

 

3.3.5 Comparison between sucrose & gum arabic systems 

Direct, quantitative comparison of ice crystallisation in sucrose solutions and gum arabic is 

limited due to the different nature of the material: sucrose is a disaccharide of glucose and fructose, 

whereas gum arabic is a complex mixture of polysaccharides and glycoproteins. However, a 

qualitative comparison may be relevant to this work, as it can help to understand the role of 

molecular weight in similarly concentrated carbohydrate systems. 

Compared with the case of sucrose solutions, water crystallisation in gum arabic was faster (by 

1.5x10-5 m s-1) at 50% solids and slower (by about 3x10-5 m s-1) at 60% concentration for similar 

supercooling. Sucrose has been reported to be more effective in terms of slowing down water 

crystallisation than many hydrocolloids38 and this may be the case of 50% solids. However, on 

increasing concentration to 60% it appears that the high molecular weight hydrocolloid induces 
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faster water crystallisation rates. This might result from the high viscosity of the highly 

concentrated gum arabic system, and also from the existence of air bubbles in the sample (at this 

concentration it was impossible to free the system completely of all air bubbles). Molecular 

mobility is limited in high viscous systems and thus crystal growth is retarded. Air bubbles may 

delay water crystallisation in two ways: (i) by slowing down the rate of heat transfer due to poor 

thermal conductivity42 and (ii) physically, by taking the space in solution which might slow down 

mass transfer43. 

 

4 Conclusions 

This work demonstrates the potential to control ice crystal formation during cooling at a range 

of concentrations, specifically for highly concentrated systems (up to 60% solids) by 

understanding the link between ice crystallisation and both formulation (e.g. viscosity of the 

system, solids content) and freezing conditions (e.g. supercooling; nucleation). Primary 

crystallisation was studied using DSC and XRD, while crystal growth was studied with a novel 

optical device that allows microscopic visualisation of the system under well controlled 

supercooled conditions. Results presented highlight the difficulties associated with spontaneous 

(primary) crystallisation in highly concentrated systems and reveal the potential of promoting and 

controlling crystal growth by addition of a crystal seed in such challenging systems. The findings 

of this work have also revealed the influence of formulation (e.g. solid content, water mobility) 

and crystallisation conditions (e.g. supercooling) on crystal morphology, which has a direct impact 

on the design of novel processes targeting relevant (bio)product microstructures.  

Overall, this work represents a significant contribution to the understanding of water 

crystallisation dynamics in concentrated systems, which is critical to expand the range of operation 
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of current freezing and/or freeze-drying operations. In particular, these findings can also help to 

the design of optimal and more sustainable manufacture methods, as processing highly 

concentrated systems can help to reduce both energy demand and water usage during 

crystallisation processes. 

 

ACKNOWLEDGMENTS 

The authors would like to thank financial support received from InnovateUK (grant no. 

TS/K003909/1) and EPSRC (grant no. EP/K011820/1). 

 
REFERENCES 

1. Aguilera, J.M. Why food microstructure? J. Food Eng. 2005, 67, 3-11. DOI: 

10.1016/j.jfoodeng.2004.05.050. 

2. Joardder, M.U.H.; Kumar, C.; Karim, M.A. Food structure: Its formation and relationships 

with other properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1190-1205. DOI: 

10.1080/10408398.2014.971354. 

3. Sanz, P.D.; De Elvira, C.; Martino, M.; Zaritzky, N.; Otero, L.; Carrasco, J.A. Freezing 

rate simulation as an aid to reducing crystallization damage in foods. Meat Sci. 1999, 52, 

275-278. DOI: 10.1016/S0309-1740(99)00002-9. 

4. Sigurgisladottir, S.; Ingvarsdottir, H.; Torrissen, O. J.; Cardinal, M.; Hafsteinsson, H. 

Effects of freezing/thawing on the microstructure and the texture of smoked Atlantic 

salmon (Salmo salar). Food Res. Int. 2000, 33, 857-865. DOI: 10.1016/S0963-

9969(00)00105-8. 



 25 

5. Hartel, R.W. Ice crystallization during the manufacture of ice cream. Trends Food Sci. 

Technol.  1996, 7, 315-321. DOI: 10.1016/0924-2244(96)10033-9. 

6. Petzold, G.; Aguilera, J.M. Ice morphology: fundamentals and technological applications 

in foods. Food Biophys. 2009, 4, 378:396. DOI: 10.1007/s11483-009-9136-5. 

7. Ishwarya, S.P.; Anandharamakrishnan, C. Spray-Freeze-Drying approach for soluble 

coffee processing and its effect on quality characteristics. J. Food Eng. 2015, 149, 171-

180. DOI: 10.1016/j.jfoodeng.2014.10.011. 

8. Fissore, D.; Pisano, R.; Barresi, A. A. Applying quality-by-design to develop a coffee 

freeze-drying process. J. Food Eng. 2014, 123, 179-187. DOI: 

10.1016/j.jfoodeng.2013.09.018. 

9. Hartel, R.W.; Chung, M.S. Contact nucleation of ice in fluid dairy products. J. Food Eng. 

1993, 18, 281-296. DOI: 10.1016/0260-8774(93)90091-W. 

10. Hartel, R.W.; Ergun, R.; Vogel, S. Phase/state transitions of confectionery sweeteners: 

thermodynamic and kinetic aspects. Compr. Rev. Food Sci. Food Saf. 2011, 10, 17-32. 

DOI: 10.1111/j.1541-4337.2010.00136.x. 

11. Goff, H.D.; Sahagian, M.E. Glass transitions in aqueous carbohydrate solutions and their 

relevance to frozen food stability. Thermochim. Acta 1996, 280/281, 449-464. DOI: 

10.1016/0040-6031(95)02656-8. 

12. Luyet, B. The problem of structural instability and molecular mobility in aqueous solutions 

"solidified" at low temperatures (present status and future prospects). Biodynamica 1966, 

10, 1-32. 



 26 

13. Roos, Y.H.; Taylor, S. Phase Transitions in Foods. Elsevier Science, London, 1995. 

14. Omran, A.M.; King, C.J. Kinetics of ice crystallization in sugar solutions and fruit juices. 

AIChE J. 1974, 20, 795-803. DOI: 10.1002/aic.690200422. 

15. Shirai, Y.; Wakisaka, M.; Miyawaki, O.; Sakashita, S. Effect of seed ice on formation of 

tube ice with high purity for a freeze wastewater treatment system with a bubble-flow 

circulator. Water Research 1999, 33, 1325-1329. DOI: 10.1016/S0043-1354(98)00335-2. 

16. Garside, J.; Mersmann, A.; Nývlt, J. Measurement of crystal growth and nucleation rates. 

IChemE, Rugby, UK, 2002. 

17. Levine, H.; Slade, L. A polymer physico-chemical approach to the study of commercial 

starch hydrolysis products (SHPs). Carbohydr. Polym. 1986, 6, 213-244. DOI: 

10.1016/0144-8617(86)90021-4. 

18. Roos, Y.; Karel, M. Amorphous state and delayed ice formation in sucrose solutions. Int. 

J. Food Sci. Technol. 1991, 26, 553-566. DOI: 10.1111/j.1365-2621.1991.tb02001.x 

19. Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry: Quanta, Matter, and Change. 

OUP Oxford, 2013. 

20. McNaught, A.D. Compendium of chemical terminology. Blackwell Science Oxford, 1997. 

21. Mullin, J.W. Crystallization. 4th Edition. Elsevier Science, Oxford, 2001. 

22. Van Der Sman, R.G.M.; Meinders, M.B.J. Moisture diffusivity in food materials. Food 

Chem.  2013, 138, 1265-1274. DOI: 10.1016/j.foodchem.2012.10.062. 



 27 

23. Roos, Y.; Karel, M. Phase transitions of amorphous sucrose and frozen sucrose solutions. 

J. Food Sci. 1991, 56, 266-267. DOI: 10.1111/j.1365-2621.1991.tb08029.x. 

24. Schawe, J.E.K. A quantitative DSC analysis of the metastable phase behavior of the 

sucrose–water system. Thermochim. Acta 2006, 451, 115-125. DOI: 

10.1016/j.tca.2006.09.015. 

25. Furuki, T. Effect of molecular structure on thermodynamic properties of carbohydrates. A 

calorimetric study of aqueous di- and oligosaccharides at subzero temperatures. 

Carbohydr. Res. 2002, 337, 441-450. DOI: 10.1016/S0008-6215(01)00332-9. 

26. Dowell, L.G.; Moline, S.W.; Rinfret, A.P. A low-temperature X-ray diffraction study of 

ice structures formed in aqueous gelatin gels. Biochim. Biophys. Acta 1962, 59, 158-167. 

DOI: 10.1016/0006-3002(62)90706-0. 

27. Dowell, L.G.; Rinfret, A.P. Low-temperature forms of ice as studied by X-ray diffraction. 

Nature 1960, 188, 1144-1148. DOI: 10.1038/1881144a0. 

28. Murphy, D. Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal 

ice. Geophys. Res. Lett. 2003, 30, 2230. DOI: 10.1029/2003GL018566. 

29. Fletcher, N.H. The Chemical Physics of Ice. Cambridge University Press, 1970. 

30. Murray, B.J.; Knopf, D.A.; Bertram, A.K. The formation of cubic ice under conditions 

relevant to Earth's atmosphere. Nature 2005, 434, 202-205. DOI: 10.1038/nature03403. 



 28 

31. Thanatuksorn, P.; Kajiwara, K.; Murase, N.; Franks, F. Freeze–thaw behaviour of aqueous 

glucose solutions—the crystallisation of cubic ice. Phys. Chem. Chem. Phys. 2008, 10, 

5452. DOI: 10.1039/b802042f. 

32. Young, F.E.; Jones, F.T. Sucrose hydrates. The sucrose-water phase diagram. J. Phys. 

Chem. 1949, 53, 1334-1350. DOI: 10.1021/j150474a004. 

33. Teraoka, Y.; Saito, A.; Okawa, S. Ice crystal growth in supercooled solution. Int. J. Refrig. 

2002, 25, 218-225. DOI: 10.1016/S0140-7007(01)00082-2. 

34. Hindmarsh, J.P.; Russell, A.B.; Chen, X.D. Measuring dendritic growth in undercooled 

sucrose solution droplets. J. Cryst. Growth 2005, 285, 236-248. DOI: 

10.1016/j.jcrysgro.2005.08.017. 

35. Hallett, J. Experimental studies of the crystallization of supercooled water. J. Atmos. Sci. 

1964, 21, 671-682. DOI: 10.1175/1520-0469(1964)021<0671:ESOTCO>2.0.CO;2. 

36. Kallungal, J.P.; Barduhn, A.J. Growth rate of an ice crystal in subcooled pure water. AIChE 

J. 1977, 23, 294-303. DOI: 10.1002/aic.690230312. 

37. Ayel, V.; Lottin, O.; Faucheux, M.; Sallier, D.; Peerhossaini, H. Crystallisation of 

undercooled aqueous solutions: Experimental study of free dendritic growth in cylindrical 

geometry.  Int. J. Heat Mass Transfer 2006, 49, 1876-1884. DOI: 

10.1016/j.ijheatmasstransfer.2005.10.036. 

38. Budiaman, E.R.; Fennema, O. Linear rate of water crystallization as influenced by 

temperature of hydrocolloid suspensions. J. Dairy Sci. 1987, 70, 534-546. DOI: 

10.3168/jds.S0022-0302(87)80038-3. 



 29 

39. Shibkov, A.A.; Zheltov, M.A.; Korolev, A.A.; Kazakov, A.A.; Leonov, A.A. Crossover 

from diffusion-limited to kinetics-limited growth of ice crystals. J. Cryst. Growth 2005, 

285, 215-227. DOI: 10.1016/j.jcrysgro.2005.08.007. 

40. Mothé, C.G.; Rao, M.A. Thermal behavior of gum arabic in comparison with cashew gum. 

Thermochim. Acta 2000, 357/358, 9-13. DOI: 10.1016/S0040-6031(00)00358-0. 

41. Malik, N.; Gouseti, O.; Bakalis, S. Effect of freezing on microstructure and reconstitution 

of freeze-dried high solid hydrocolloid-based systems. Food Hydrocolloids 2018, 83, 473-

484. DOI: 10.1016/j.foodhyd.2018.05.008. 

42. Sofjan, R.P.; Hartel, R.W. Effects of overrun on structural and physical characteristics of 

ice cream. Int. Dairy J. 2004, 14, 255-262. DOI: 10.1016/j.idairyj.2003.08.005.  

43. Cook, K.L.K.; Hartel, R.W. Mechanisms of ice crystallization in ice cream production. 

Compr. Reviews Food Sci. Food Saf. 2010, 9, 213-222. DOI: 10.1111/j.1541-

4337.2009.00101.x. 

  



 30 

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval 

to the final version of the manuscript.  

 

Funding Sources 

InnovateUK (grant no. TS/K003909/1) and EPSRC (grant no. EP/K011820/1). 


