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SHARP QUADRATURE ERROR BOUNDS FOR THE
NEAREST-NEIGHBOR DISCRETIZATION OF THE REGULARIZED

STOKESLET BOUNDARY INTEGRAL EQUATION\ast 

MEURIG T. GALLAGHER\dagger , DEBAJYOTI CHOUDHURI\ddagger , AND DAVID J. SMITH\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The method of regularized stokeslets is a powerful numerical approach to solve the
Stokes flow equations for problems in biological fluid mechanics. A recent variation of this method
incorporates a nearest-neighbor discretization to improve accuracy and efficiency while maintaining
the ease of implementation of the original meshless method. This new method contains three sources
of numerical error: the regularization error associated with using the regularized form of the boundary
integral equations (with parameter \varepsilon ), and two sources of discretization error associated with the
force and quadrature discretizations (with lengthscales hf and hq). A key issue to address is the
quadrature error; initial work has not fully explained observed numerical convergence phenomena.
In the present manuscript we construct sharp quadrature error bounds for the nearest-neighbor
discretization, noting that the error for a single evaluation of the kernel depends on the smallest
distance (\delta ) between these discretization sets. The quadrature error bounds are described for two
cases: disjoint sets (\delta > 0) that are close to linear in hq and insensitive to \varepsilon , and contained sets
(\delta = 0) that are quadratic in hq with inverse dependence on \varepsilon . The practical implications of these
error bounds are discussed in reference to the condition number of the matrix system for the nearest-
neighbor method, with the analysis revealing that the condition number is insensitive to \varepsilon for disjoint
sets, and grows linearly with \varepsilon for contained sets. Error bounds for the general case (\delta \geq 0) are
revealed to be proportional to the sum of the errors for each case.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . quadrature error bounds, regularized stokeslets, stokes flow, boundary integral
equation

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35Q35, 65G99, 65M15, 76D07, 76M25, 76Z05

\bfD \bfO \bfI . 10.1137/18M1191816

1. Introduction. The development of numerical methods for the solution of
Stokes flow has had significant impact on the study of problems in biological fluid
dynamics [1, 14, 15, 20, 21, 23] and vice versa. While there have been many powerful
methods developed over the past few decades, one of the most effective and accessible
tools for solving such problems is the method of regularized stokeslets, conceived of
and developed by Cortez and colleagues [2, 7, 8, 9, 10, 11], and recently extended
to incorporate the use of the fast multipole method [16]. A key advantage of this
method over previous offerings is the meshless nature of implementation, saving the
significant investment of time and effort required to generate a mesh (particularly
when dealing with complex biomolecular or cellular structures), with the potential to
aid automation for applications in image analysis. These methods have had significant
impact on a wide-ranging set of applications; a Google Scholar search on September
27, 2018 for the term ``regularized stokeslets"" yields approximately 40 to 50 results
per year over the past five years.

A new variation on the method of regularized stokeslets was recently proposed by
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B140 M. T. GALLAGHER, D. CHOUDHURI, AND D. J. SMITH

Smith [18], who uses a nearest-neighbor discretization of the regularized stokeslet
boundary integral equation to improve the accuracy and efficiency of the classic
Nystr\"om discretization [8] while retaining the advantages of a meshless method. The
computational efficiency of this new method, together with its extension to problems
of locomotion in Stokes flow [12], enables the study of previously computationally
intractable problems such as improving the detailed modelling of the embryonic node
of mice and zebrafish to incorporate Brownian and other effects, thus improving phys-
iological accuracy.

Mathematical details of the nearest-neighbor discretization will be provided in
subsection 1.1. For now we note that the sources of error for the method are threefold:
the regularization error associated with using a regularized form of the boundary
integral equations (with regularization parameter \varepsilon ), and two sources of discretization
error associated with approximating the integral of the kernel at quadrature points
with fine discretization lengthscale hq, and with approximating the forces with coarser
discretization lengthscale hf . While the original paper of Smith [18] provided an
initial estimate of the error for the nearest-neighbor method in terms of these two
discretization lengthscales and the regularization parameter, these error bounds were
noted not to be sharp, as they did not fully replicate the sensitivity to \varepsilon suggested by
the analysis (and seen in the classic Nystr\"om discretization).

The relationship between the regularization parameter \varepsilon and the error, as well
as finding ways of reducing this dependence, have been of key concern to several
authors working with regularized stokeslet methods. Noting that the value of \varepsilon has
the most significant impact when evaluating the regularized stokeslet S\varepsilon (\bfitx ,\bfity ) at
\bfitx = \bfity , Barrero-Gil [3] proposed introducing a dense patch of ``auxiliary stokeslets""
about such points and observing the averaged value of S\varepsilon over these patches. By then
requiring \varepsilon to be equal to this fine discretization lengthscale, Barrero-Gil demonstrated
a reduced number of kernel operations when compared to the Nystr\"om discretization,
as well as a weakened dependence on the regularization parameter \varepsilon . The present
method involving a pair of grids is simple to implement, and we will compare its
efficiency and accuracy with the method of Barrero-Gil in section 5.4.

There have been many excellent recent works on reducing quadrature errors and
creating high-accuracy methods for solving the boundary integral equations (see, for
example, [5, 22, 20, 1, 6, 19]). The nearest-neighbor method does not aim to compete
with these relatively more complex approaches for accuracy. Instead the objective is
to strike a balance between accuracy, efficiency, and ease of use, the latter specifically
through avoiding the need to generate a smooth surface geometry or ``mesh."" The
present method has a significantly reduced error compared to the classical (Nystr\"om)
discretization, while retaining a simplicity which enables its implementation by non-
experts for the investigation of many biologically relevant problems in Stokes flow.
Indeed we argue that the major interest in regularized stokeslet methods among the
biological fluid mechanics community over the past decade is largely because of its
ease of use.

In the present work we not only provide the detailed analysis for calculating
sharp error bounds for the nearest-neighbor discretization (section 2), in doing this
we uncover why the original work did not see the dependence on the regularization
parameter \varepsilon and detail the situations where this dependence exists. We then also
consider how these errors scale up in solving a practical problems (section 3). Each
of these analyses are then confirmed with numerical experiments (section 4). These
results will provide clear guidance for the best choices of discretization lengthscales
and regularization parameter for given computational scenarios.
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SHARP ERROR BOUNDS FOR THE NEAREST-NEIGHBOR METHOD B141

1.1. Mathematical background. The dimensionless form of the Stokes flow
equations, which describe the very low Reynolds number fluid dynamics associated
with sperm and cilia, is given by

(1.1)  - \bfnabla p+\nabla 2\bfitu = 0, \nabla \cdot \bfitu = 0,

augmented with the no-slip, no-penetration boundary condition \bfitu (\bfitX ) = \.\bfitX for
boundary points \bfitX , where the overdot denotes time-derivative.

Regularized stokeslet methods involve representing the flow field around a body
B by an integral of the form

(1.2) uj(\bfitx ) =  - 1

8\pi 

\int \int 
B

S\varepsilon 
jk(\bfitx ,\bfity )fk(\bfity )dS\bfity ,

where S\varepsilon 
jk is the velocity part of the solution to the Stokes flow equations (1.1) driven

by a smoothed point force in the k-direction, with regularization parameter \varepsilon > 0.
The most widely-studied example [8] is for three-dimensional (3D) flow and takes the
form

(1.3) S\varepsilon 
ij(\bfitx ,\bfity ) = \delta ij

| \bfitx  - \bfity | 2 + 2\varepsilon 2

(| \bfitx  - \bfity | 2 + \varepsilon 2)3/2
+

(xi  - yi)(xj  - yj)

(| \bfitx  - \bfity | 2 + \varepsilon 2)3/2
.

The limiting form of this kernel is the classical stokeslet or Oseen tensor,

(1.4) Sjk(\bfitx ,\bfity ) =
\delta jk

| \bfitx  - \bfity | +
(xj  - yj)(xk  - yk)

| \bfitx  - \bfity | 3 .

Regularized stokeslet methods are implemented numerically by imposing (1.2)
for \bfitx = \bfitX \in B together with the condition \bfitu (\bfitX ) = \.\bfitX (collocation), followed
by discretization of the unknown traction \bfitf (\bfity ) and the numerical quadrature. The
original (Nystr\"om) discretization of (1.2), by Cortez, Fauci, and Medovikov [8], takes
the form

(1.5) uj(\bfitX [m]) =
1

8\pi 

Q\sum 
q=1

S\varepsilon 
jk(\bfitX [m],\bfitX [q])Fk[q],

where \{ \bfitX [1], . . . ,\bfitX [Q] \in B\} is a set of quadrature points, and the discretized force
at \bfitX [q] is written as Fk[q] =  - fk(\bfitX [q])dS(\bfitX [q]). This method has the major advan-
tage of implementational simplicity, a property which has resulted in its widespread
adoption; caveats are that the regularization parameter \varepsilon and discretization size h
must be chosen in proportion, and that the typical size of the linear system (3Q\times 3Q)
may be much larger than would be required by a classical boundary integral method
to achieve converged results. This scaling then limits the applications of the method
when considering large or complex problems.

The constant-panel boundary element discretization suggested by Smith [17] takes
the form

(1.6) uj(\bfitx [m]) =
1

8\pi 

N\sum 
n=1

fk[n]

\int \int 
Bn

S\varepsilon 
jk(\bfitx [m],\bfity )dS\bfity ,

where \{ B1, . . . , BN\} is a partitioning of the surfaceB (mesh) with centroids \bfitx [n] \in Bn,
and the discretization of the traction on Bn is denoted fk[n]. Because the near-field
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B142 M. T. GALLAGHER, D. CHOUDHURI, AND D. J. SMITH

of the regularized stokeslet is rapidly-varying (resembling the function (r2 + \varepsilon 2) - 1/2

as r \rightarrow 0), this traction discretization need not be as refined as the quadrature dis-
cretization in (1.5), i.e., one can take N \ll Q. The stokeslet integral in (1.6) is still
evaluated numerically via quadrature. However, in contrast to (1.5), the quadrature
discretization does not affect the number of degrees of freedom of the resulting linear
system. The boundary element discretization is therefore more efficient and accurate
than the Nystr\"om method; however, it has the disadvantage of requiring true mesh
generation rather than a simple list of surface points.

To attempt to combine the implementational simplicity of the Nystr\"om method
with the efficiency and accuracy of the boundary element discretization, Smith [18]
proposed the use of a meshless nearest-neighbor method. Two discretizations are
generated, a ``coarse force"" set \scrF = \{ \bfitx [1], . . . ,\bfitx [N ]\} and a ``fine quadrature"" set \scrQ =
\{ \bfitX [1], . . . ,\bfitX [Q]\} , with N < Q. The force at the quadrature points \bfitf (\bfity )dS(\bfitX [q]) is
approximated by its value at the nearest force point via a nearest-neighbor interpo-
lation denoted \scrN : \{ 1, . . . , Q\} \rightarrow \{ 1, . . . , N\} . The nearest-neighbor operator can be
expressed by the binary matrix

(1.7) \nu [q, n] =

\left\{   1 if n = argmin
\^n=1,...,N

| \bfitx [\^n] - \bfitX [q]| ,

0 otherwise.

Using this discretisation the regularized stokeslet boundary integral (1.2) can be ap-
proximated by the quadrature rule

 - 
\int \int 

B

S\varepsilon 
jk(\bfitx ,\bfity )fk(\bfity )dS\bfity \approx 

Q\sum 
q=1

S\varepsilon 
ij(\bfitx ,\bfitX [q])fj(\bfitX [q])dS(\bfitX [q])

\approx 
Q\sum 

q=1

S\varepsilon 
ij(\bfitx ,\bfitX [q])

N\sum 
n=1

\nu [q, n]fj(\bfitx [n])dS(\bfitx [n]),(1.8)

resulting in the linear system

(1.9) uj(\bfitx [m]) =
1

8\pi 

N\sum 
n=1

\Biggl( 
Q\sum 

q=1

S\varepsilon 
jk(\bfitx [m],\bfitX [q])\nu [q, n]

\Biggr) 
Fk[n],

where \bfitF [n] = \bfitf (\bfitx [n])dS(\bfitx [n]). We note here that, as with the traction, the weights
dS(\bfitx [n]) vary much more slowly than the stokeslets, motivating the form of (1.9).

Smith [18] conducted an initial analysis of the error associated with the nearest-
neighbor method (1.9). In addition to a regularization error O(\varepsilon ) found by Cortez,
Fauci, and Medovikov [8], the error associated with discretization of the traction is
O(hf ) (where hf characterizes the fineness of the force points), and the error associ-
ated with numerical quadrature was estimated to be O(\varepsilon  - 2h2

fhq) +O(h - 1
f hq), where

hq characterizes the fineness of the quadrature points; formal definitions found in (2.2)
and (2.3). It was noted that this error bound was not sharp because numerical exper-
iments suggested that the error does not diverge for very small values of \varepsilon . Indeed,
the choice of hf as the lengthscale for quadrature discretization error was somewhat
arbitrary. In the present manuscript we will address this issue further. It will be
shown that the quadrature error for a single evaluation of the kernel depends on the
shortest distance from the force discretization (\scrF ) to the quadrature discretization
(\scrQ ), denoted by \delta . The error of the full problem is then discussed in terms of three
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SHARP ERROR BOUNDS FOR THE NEAREST-NEIGHBOR METHOD B143

F ∩Q = ∅ (δ > 0)

F ∩Q 6= ∅

F ⊂ Q

F 6⊂ Q

F = Q

(δ = 0)

(δ ≥ 0)

(δ = 0)

Disjoint

Contained

General

Nearest-neighbor discretisations

Classic (Nyström) discretization

Fig. 1. Schematic detailing of the characterizations for potential force (\scrF ) and quadrature
(\scrQ ) discretization sets with \delta , denoting the minimum distance between the discretizations, defined
in (2.1). Each choice is further shown as belonging to either the set of nearest-neighbor or classic
(Nystr\"om) discretizations.

distinct cases (detailed in Figure 1): (i) when \delta > 0, i.e., the force and quadrature
sets are disjoint, (ii) when \delta = 0, i.e., every force point is also a quadrature point, and
(iii) when the force and quadrature sets are nondisjoint, but \delta = 0 for some points.

2. Analysis of the quadrature error for a single kernel evaluation. The
principal challenge regarding numerical quadrature concerns evaluation where the
kernel is rapidly-varying, i.e., where | \bfitx  - \bfity | is ``small."" For the Nystr\"om discretization
the near-field part of the integral is primarily evaluated in the sum (1.5) when q = m.
It is clear that this evaluation is problematic as \varepsilon \rightarrow 0 because S\varepsilon 

jk(\bfitx ,\bfitx ) \rightarrow \varepsilon  - 1 as

\varepsilon \rightarrow 0. This divergence also underlies the O(\varepsilon  - 2h2
fhq) term in the nearest-neighbor

error estimate. A key advantage of the nearest-neighbor method, however, is that this
situation can be avoided by ensuring that the force and quadrature discretizations are
disjoint. We will denote the minimum distance between the discretizations by

(2.1) \delta = min
q=1,...,Q

min
n=1,...,N

| \bfitx [n] - \bfitX [q]| .

If any overlap \bfitx [n] = \bfitX [q] occurs, then clearly \delta = 0. We also recall from [18] the
definitions characterizing the fineness of the force and quadrature discretizations,

hf = max
m=1,...,N

min
n=1,...,N ;n \not =m

| \bfitx [m] - \bfitx [n]| ,(2.2)

hq = max
p=1,...,Q

min
q=1,...,Q;q \not =p

| \bfitX [p] - \bfitX [q]| .(2.3)

We note then that we can characterize the choices of force (\scrF ) and quadrature
(\scrQ ) discretizations for the nearest-neighbor method as one of three possibilities:

1. Disjoint, \scrF \cap \scrQ = \varnothing (\delta > 0).
2. Contained, \scrF \subset \scrQ (\delta = 0).
3. General, \scrF \cap \scrQ \not = \varnothing with \scrF \not \subset \scrQ (\delta \geq 0).

These cases are illustrated in the schematic provided in Figure 1, with the classic
(Nystr\"om) discretization (which has \delta = 0) included for comparison.

We will develop detailed analyses of the quadrature error of, in order, the disjoint
case (subsection 2.2) and the contained case (subsection 2.3). These will be based

on analysis of the error of approximation of
\int 2\pi 

0

\int 1

0
K(r)rdrd\theta , where K(r) = (r2 +

\varepsilon 2) - 1/2, which captures the near-singular behavior of the kernel S\varepsilon 
jk(\bfitx ,\bfity ) for small

| \bfitx  - \bfity | . In section 3 we will discuss how the quadrature errors scale for practical
problems and explore the general case of mixed disjoint and contained quadrature
sets.
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B144 M. T. GALLAGHER, D. CHOUDHURI, AND D. J. SMITH

2.1. Previous analysis. As discussed by Smith [18], an estimate of quadrature
error can be made using the mean value inequality | K(r) - K(0)| \leqslant M1r, where M1

is a bound on | K \prime (r)| . Because K \prime (r) =  - r(r2 + \varepsilon 2) - 3/2, we have for all constants
a > \varepsilon :

1. In the region 0 \leqslant r \leqslant a, the bound M1 = O(\varepsilon  - 2).
2. In the region a \leqslant r, the bound M1 = | K \prime (a)| .

Smith [18] used the above to split the quadrature into three regions, (i) 0 < r < hf , (ii)

hf < r < h
1/2
f , and (iii) h

1/2
f < r < 1. The quadrature errors can be estimated from

the values of M1, the area of the region, and the quadrature spacing. The resulting
error estimates, for each region in turn, are then (i) O(\varepsilon  - 2h2

fhq), (ii) O(h - 1
f hq), and

(iii) O(h - 1
f hq).

2.2. The disjoint case. To expand upon this analysis we first address the case
for which \delta > 0. This entails that there is an inner region 0 \leqslant r < \delta which contains no
quadrature points, i.e., the region is neglected from the numerical quadrature. The
error associated with this neglect can be calculated as

(2.4) L(\delta , \varepsilon ) =

\int 2\pi 

0

\int \delta 

0

K(r)rdrd\theta = 2\pi 
\Bigl[ 
(\delta 2 + \varepsilon 2)1/2  - \varepsilon 

\Bigr] 
= O(\delta ).

This error estimate is valid provided 0 < \delta , \varepsilon \ll 1 regardless of the relative sizes of \varepsilon 
and \delta .

The remaining error can be calculated by an approach similar to subsection 2.1.
To achieve a sharp error estimate, we will consider a sequence of annuli \delta \leqslant r < h\phi 1

q ,

h\phi 1
q \leqslant r < h\phi 2

q , . . ., where \phi 1 = 1 and \phi 1 > \phi 2 > . . . (this analysis deals with the case
\delta < hq; if \delta \geqslant hq the error is no worse). The quadrature error for the first annulus is

\delta  - 2h2\phi 1+1
q and for the nth annulus is O(h

2(\phi n - \phi n - 1)+1
q ).

Therefore, it is clear that taking \phi n  - \phi n - 1 to be small and negative will yield
a close-to-optimal error estimate. For example, for any fixed integer P > 3 we may
take \phi n = 1  - (n  - 1)/P for n = 1, . . . , P + 1. The error for the first annulus is

O(\delta  - 2h3
q) = O((hq/\delta )

2hq), and for the remaining annuli is O(h
1 - 2/P
q ). The total

error over P annuli is therefore O((hq/\delta )
2hq) + O(Ph

1 - 2/P
q ). By taking increasingly

large values of P , the latter term approaches linear convergence. Therefore, provided
hq/\delta = O (1), quadrature convergence is linear in hq and insensitive to \varepsilon .

In summary, the total error estimate (including regularization error, force dis-
cretization error, and quadrature error) for the nearest-neighbor regularized stokeslet
method with disjoint discretizations is

(2.5) E1 = O(\varepsilon ) +O(hf ) +O((hq/\delta )
2hq) +O(Ph1 - 2/P

q )

for any integer P > 3, where \delta is the minimum distance from the force discretization
to the quadrature discretization, as defined in (2.1).

2.3. The contained case. The analysis of subsection 2.1 is based on three
regions parameterized by hf . The argument is, in fact, valid with hf replaced by any
lengthscale \lambda > \varepsilon /

\surd 
2 so that the local maximum of | K \prime (r)| appears inside the inner

circle 0 \leqslant r < \lambda . By arguments similar to the above (based on taking annuli of radius
\lambda 1 - (n - 1)/P ) we then have the total error estimate

(2.6) O(\varepsilon ) +O(hf ) +O(\varepsilon  - 2\lambda 2hq) +O(P\lambda  - 2/Phq).
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SHARP ERROR BOUNDS FOR THE NEAREST-NEIGHBOR METHOD B145

Taking \lambda = \varepsilon 1/2h
1/2
q yields an error

(2.7) E2 = O(\varepsilon ) +O(hf ) +O(\varepsilon  - 1h2
q) +O(P\varepsilon  - 1/Ph1 - 1/P

q ).

As \varepsilon \rightarrow 0, the dominant term in the above is O(\varepsilon  - 1h2
q), which has the very advan-

tageous property of being quadratic in hq, but an unwanted inverse dependence on
\varepsilon . It is, therefore, clear for the contained case that we cannot expect it to be able to
reduce \varepsilon independently of hq.

3. Practical implications of the quadrature error. Having developed the
analysis to understand the quadrature error inherent in a single evaluation of the
kernel, it is of practical use to assess how this error scales in a full application of
the nearest-neighbor discretization (when solving a resistance problem, for example).
When numerically constructing and solving the matrix system A\bfitchi = \bfitb the relative
error in the calculation of \bfitchi in terms of small deviations in the construction of matrix
A, \Delta A, is bounded by

(3.1)
\bigm\| \bigm\| \bigm\| \Delta \bfitchi 

\bfitchi 

\bigm\| \bigm\| \bigm\| \leq 
\bigm\| \bigm\| A - 1

\bigm\| \bigm\| \bigm\| \bigm\| A\bigm\| \bigm\| \bigm\| \bigm\| \Delta A
\bigm\| \bigm\| \bigm\| \bigm\| A\bigm\| \bigm\| = cond (A)

\bigm\| \bigm\| \Delta A
\bigm\| \bigm\| \bigm\| \bigm\| A\bigm\| \bigm\| ,

where cond (A) represents the condition number of A, and \| \Delta A\| /\| A\| is the relative
error in the numerical construction of A. The analysis of section 2 provides the error
estimates for the size of \| \Delta A\| /\| A\| for both disjoint (subsection 2.2) and contained
(subsection 2.3) quadrature sets; to build an understanding of the error in a practical
application of the nearest-neighbor method it thus remains to understand how the
condition number of the matrix A behaves.

Each row of the matrix A consists of a diagonal entry which comes from eval-
uation of S\varepsilon 

ij (1.3) at the force and associated nearest-neighbor quadrature points.
Consequently, for numerically tractable numbers of quadrature points Q, the diago-
nal entries of A have lower bound,

(3.2) Aii \geq A \propto 
\Biggl\{ \bigl( 

\delta 2 + \varepsilon 2
\bigr)  - 1/2

for a disjoint quadrature set,

\varepsilon  - 1 for a contained quadrature set.

In the case when Q becomes large, then the change in the diagonal entries of A due
to the evaluation of S\varepsilon 

ij at many points will become significant; we will explore this
numerically in section 4. However, for practical densities of quadrature points this
source of error is insignificant compared to the dominant (\varepsilon  - 1) term. Denoting the
sum of the off-diagonal elements (corresponding to a surface integral over a fixed
area) by CQ, which will grow with increasing numbers of quadrature points Q, we
can apply the Gershgorin circle theorem [4] to show that all eigenvalues of A lie in a
circle of radius CQ about the diagonal values in (3.2). The ratio between the largest
and smallest eigenvalues (the condition number) is therefore bounded by

(3.3)
1/\varepsilon + CQ

1/\varepsilon  - CQ
\sim 1 + 2CQ\varepsilon 

for a contained quadrature set, and for a disjoint quadrature set, as \varepsilon \rightarrow 0,

(3.4)
1/\delta min + CQ

1/\delta max  - CQ
\sim \delta max

\delta min
(1 + CQ (\delta min + \delta max)) ,
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Fig. 2. Set up for numerical quadrature experiments. (a) The near-singular kernel K\varepsilon (r)
plotted for r < 1 with \varepsilon = 0.01. (b) Depiction of a disjoint quadrature set with hq = 1.33. (c)
Depiction of an contained quadrature set with hq = 0.125. (Figure in color online.)

where \delta min and \delta max are, respectively, the smallest and largest of the distances \delta 
(as calculated in (2.1)) between each force and quadrature discretization sets, with
\delta max \ll 1 (and assuming \delta max/\delta min = O (1)). Provided again that Q is not too large
(which will cause CQ to correspondingly increase), is clear that this method resolves
a problem that affects boundary element methods for Stokes flow by ensuring that
the condition number remains bounded as the size of the force elements approaches
zero.

The bounds that this analysis places on the condition number of the matrix A are
practically very useful when solving problems with the nearest-neighbor discretization.
There may be situations where it is desirable to discretize a subject with both disjoint
and contained quadrature sets; when considering a biological swimmer, for example,
it may be helpful to consider separately the discretization of flagellum and body. We
can thus consider the error of the general case as being composed of the error from
the disjoint case, E1 (2.5), plus the error from the contained case, E2 (2.7), multiplied
by the condition number of the matrix A.

4. Numerical experiments. We will now confirm the analysis through numeri-
cal experiments. Subsection 4.1 will consider the convergence of numerical quadrature
of the function K\varepsilon (r) = (r2 + \varepsilon 2) - 1/2 for a region including r = 0, subsection 4.2
will investigate the condition number of the matrix A, and subsection 4.3 the resis-
tance tensor, each relating to the problem of a prolate spheroid undergoing rigid body
motion.

4.1. Quadrature convergence. The function K\varepsilon (r) is illustrated in Figure 2a.
Two types of quadrature methods are illustrated: disjoint quadrature (Figure 2b) for
which the quadrature set does not include the origin, and contained quadrature (Fig-
ure 2c) for which the quadrature set does include the origin. Numerical results with
these quadrature sets are shown in Figure 3. The disjoint quadrature set (Figure 3a)
exhibits approximately linear convergence with hq and is insensitive to \varepsilon , as expected
from equation (2.5). The contained quadrature set performs very well for \varepsilon = 0.001,
exhibiting approximately quadratic convergence, as expected from (2.7). However, as
also predicted, the absolute error shows an approximate \varepsilon  - 1 dependence, becoming
highly inaccurate for \varepsilon \leqslant 10 - 5.

4.2. Condition number. To assess the condition number analysis of section 3
on a relevant problem we follow Smith [18] and construct the matrix A modeled on
the resistance problem of a prolate spheroid associated with rigid body motion. In
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Fig. 3. Convergence of numerical quadrature of the kernel K\varepsilon with number of points for four
values of the regularization parameter \varepsilon . (a) Disjoint quadrature set. (b) Contained quadrature set.
(Figure in color online.)
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Fig. 4. Analysis of the condition number and diagonal entries of the matrix A. Panel (a) plots
the condition number cond (A) against \varepsilon for a disjoint quadrature set, and shows the robustness of
the condition number to changes as \varepsilon \rightarrow 0. Panel (b) plots cond (A)  - 1 against \varepsilon for a contained
quadrature set, and shows approximate linear dependence with a slope of 1.02. Panel (c) shows the
minimum deviation of the diagonal entries of A away from 1/\varepsilon for large numbers of quadrature
points Q with a contained quadrature set. Panel (d) shows the CQ, the maximum sum of the off-
diagonal entries of A, multiplied by \varepsilon for large numbers of quadrature points Q with a contained
quadrature set. (Figure in color online.)

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

03
/1

3/
19

 to
 1

47
.1

88
.1

08
.1

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



B148 M. T. GALLAGHER, D. CHOUDHURI, AND D. J. SMITH

Fig. 5. Sketch of the nearest-neighbor discretization of a prolate spheroid. Here, the red dots
show the force discretization, with a disjoint quadrature set shown in light green. (Figure in color
online.)

Figure 4a we plot the condition number of A against decreasing values of \varepsilon for a
disjoint quadrature set and, as predicted, we see that the condition number plateaus
rapidly as \varepsilon \rightarrow 0. For a contained quadrature set we plot in Figure 4b cond (A)  - 1
against the same values of \varepsilon , where we see the approximate linear dependence on
this quantity with \varepsilon (the slope in the figure is calculated as approximately 1.02). To
assess the predictions regarding the diagonal entries of the matrix A, in Figure 4c
we plot the minimum increase in diagonal elements of A from 1/\varepsilon against increasing
numbers of quadrature points Q; here we clearly see that the diagonal terms are
indeed bounded with Aii \geq 1/\varepsilon . In Figure 4d we plot the maximum row sum of
off-diagonal entries CQ multiplied by \varepsilon . Here we see that \varepsilon CQ grows slowly with
Q; however, for computationally practical values of Q the size of \varepsilon CQ (and thus the
condition number of A) remain manageable. These numerical results agree with the
analysis of section 3, and give us confidence when using the calculated error bounds.

4.3. Resistance problem. To assess the analysis of section 2 on a relevant
problem we follow Smith [18] and calculate the resistance tensor of a prolate spheroid,
with an axis ratio of 5, associated with rigid body motion. This problem has the
added benefit of an analytical solution with which to compare [13]. A rendering
of the force and quadrature discretizations for this problem is shown in Figure 5.
We again test both disjoint and contained quadrature sets with results provided in
Figure 6. The disjoint case again shows approximately linear convergence with \delta  - 2h3

q

and, if \varepsilon \leq 10 - 3, is very robust to the choice of \varepsilon . This robustness is illustrated more
clearly in Table 1, which contains a selection of the values used to plot Figure 6a.
The contained case exhibits near linear convergence in \varepsilon  - 1h2

q for moderate values of
\varepsilon , and the error collapses onto a single curve. For this case we see, as predicted by
the analysis in section 2, a clear dependence on \varepsilon , with the relative error approaching
100\% for \varepsilon \leq 10 - 5. While we may naively expect the error to blow up for large \varepsilon  - 1h2

q,
the limit of small \varepsilon for a contained quadrature set leads to a calculation of zero force,
and thus a zero resistance tensor, over the prolate spheroid. This results in a relative
error of 100\% in the limit \varepsilon \rightarrow 0.

5. Conclusions. This paper has calculated sharp quadrature error bounds for
the nearest-neighbor regularized stokeslet discretization. We have shown that this
error depends on the shortest distance (\delta ) from the force discretization (\scrF ) to the
quadrature discretization (\scrQ ), and that the behavior of the quadrature error can be
characterised by two discrete cases. The total error in solving a Stokes flow problem
using the nearest-neighbor discretization is described by either of these cases, or by a
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Fig. 6. Absolute error in calculating the resistance tensor of a prolate spheroid undergoing
rigid body motion for (a) disjoint and (b) contained quadrature sets. In (a) we see convergence with
decreasing \delta  - 2h3

q, with an insert showing a zoomed view emphasizing the lack of \varepsilon dependence for

\varepsilon < 10 - 3. Panel (b) shows convergence with decreasing \varepsilon  - 1h2
q. Each panel has been calculated for

five values of the regularization parameter \varepsilon with fixed hf \approx 0.249. (Figure in color online.)

general, mixed case. We will now detail the characteristics of each of these cases in
turn.

5.1. The disjoint case, \bfscrF \cap \bfscrQ = \varnothing (\bfitdelta > 0). When the force and quadrature
discretizations are disjoint, the total error estimate for the nearest-neighbor regular-
ized stokeslet method is

E1 = O (\varepsilon ) +O (hf ) +O
\bigl( 
\delta  - 2h3

q

\bigr) 
+O

\Bigl( 
Ph1 - 2/P

q

\Bigr) 
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for any integer constant P > 3, where \varepsilon \ll 1 is the stokeslet regularization parameter,
and hf and hq are given by (2.2) and (2.3), respectively. In this case the quadrature
error is very robust to the choice of \varepsilon , with errors that are approximately linear in hq

when \delta \sim hq.
When solving practical problems (of the form A\bfitchi = \bfitb ) with a disjoint quadrature

set, the condition number of the matrix A is also robust to the choice of \varepsilon . This
ensures that, provided Q is not too large, the error in solving a practical problem
should remain E1; this error result has been validated through solving the resistance
problem of a prolate spheroid undergoing rigid body motion, as displayed in Figure 6a.

For this particular case of disjoint force and quadrature sets the regularization
error may be eliminated by choosing \varepsilon = 0 without affecting the quadrature error
(which is equivalent to the implementation of the boundary singularity method; see
[14]). However, the advantage of the regularized method (with nonzero \varepsilon ) is that the
calculated flow fields remain regular for many applications.

Table 1
Error in calculating the resistance tensor of a prolate spheroid undergoing rigid body motion

for a disjoint quadrature set (as depicted in Figure 6a). The error is calculated for five choices of
the regularization parameter \varepsilon and increasing \delta  - 2h3

q, with fixed hf \approx 0.249.

\delta  - 2h3
q

\varepsilon 2.282 3.355 4.805 5.975 9.101 13.75 23.40

10 - 2 1.603 1.619 1.929 2.712 3.666 10.40 20.66
10 - 3 0.4600 0.8547 1.560 2.072 3.699 10.55 27.35
10 - 4 0.4657 0.8602 1.564 2.081 3.702 10.55 27.52
10 - 5 0.4658 0.8603 1.564 2.081 3.702 10.55 27.52
10 - 6 0.4658 0.8603 1.564 2.081 3.702 10.55 27.53

5.2. The contained case, \bfscrF \subset \bfscrQ (\bfitdelta = 0). When the force and quadrature
discretizations are contained, the total error estimate for the nearest-neighbor regu-
larized stokeslet method is

E2 = O (\varepsilon ) +O (hf ) +O
\bigl( 
\varepsilon  - 1h2

q

\bigr) 
+O

\Bigl( 
P\varepsilon  - 1/Ph1 - 1/P

q

\Bigr) 
for any integer constant P > 3, where \varepsilon \ll 1 is the stokeslet regularization parameter,
and hf and hq are given by (2.2) and (2.3), respectively. In this case the quadrature
error is approximately quadratic in hq, but also has an unwanted inverse dependence
of \varepsilon . It is clear that in this case we are not able to reduce \varepsilon independently of hq.

When solving practical problems (of the form A\bfitchi = \bfitb ) with a contained quadra-
ture set, the condition number of the matrix A grows linearly with \varepsilon . This ensures
that, provided Q is not too large, the error in solving a practical problem should re-
main E2; this error result has been validated through solving the resistance problem
of a prolate spheroid undergoing rigid body motion, as displayed in Figure 6b.

The choice of \varepsilon = hq could therefore provide a good choice for balancing the
various error terms specifically for the contained case.

5.3. The general case, \bfscrF \not \subset \bfscrQ (\bfitdelta \geq 0). We have provided analyses for both
the disjoint and contained cases. It is conceivable that for practical purposes one may
wish to use separate discretizations for different elements of a problem (for example,
discretizing a swimmer's body and flagella differently), inducing the combination of
both disjoint and contained quadrature sets. The analysis of the condition number of
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the matrix system indicates that the total error for the solution of practical problems
with general force and quadrature sets should be proportional to the sum E1 + E2.

5.4. Discussion. The analyses were confirmed via numerical experiments: we
have tested the convergence of numerical quadrature of the kernel K\varepsilon (r) (subsec-
tion 4.1), assessed the change in condition number of the matrix system (subsec-
tion 4.2), and tested the calculation of the resistance tensor of a prolate spheroid
undergoing rigid body motion (subsection 4.3). Each of these numerical experiments
closely replicated the predictions of the analysis.

The analysis contained within the present work provides useful insight into the
error inherent in using the nearest-neighbor discretization; we believe that the ap-
plication of this analysis when choosing the parameters of the method for a given
problem of interest will be valuable in ensuring that the desired convergence criteria
are met.

The approach of the nearest-neighbor method reduces degrees of freedom while
retaining near field accuracy. For better scaling to large problems involving many
far-field evaluations it may be interesting to explore whether fast multipole imple-
mentations can be integrated into the nearest-neighbor method. If it is possible for
such adaptations to be made while keeping the ease of implementation and simplicity
of the present method, then this will surely be valuable. The present method com-
pares favorably with test cases of other methods. Comparison with the method of [3],
for the test case of a translating sphere, shows that for a similar number of stokeslet
evaluations the present method yields a reduced condition number and a slightly lower
relative error (we observe a 15\% reduction in relative error in our comparisons).

One area where the nearest-neighbor discretization may prove useful is in the sim-
ulation of biological microswimmers. The meshless nature of this method leaves open
the possibility for automated swimmer generation from the analysis of experimental
imaging data, an option which is far from straightforward for methods which require
the generation of a true mesh.
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