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Abstract

Szlachányi’s skew monoidal categories are a well-motivated variation of monoidal categories in which the
unitors and associator are not required to be natural isomorphisms, but merely natural transformations in
a particular direction. We present a sequent calculus for skew monoidal categories, building on the recent
formulation by one of the authors of a sequent calculus for the Tamari order (skew semigroup categories). In
this calculus, antecedents consist of a stoup (an optional formula) followed by a context (a list of formulae),
and the connectives unit and tensor behave like in intuitionistic non-commutative linear logic (the logic
of monoidal categories) except that the left rules may only be applied in stoup position. We show the
admissibility of two forms cut (stoup cut and context cut), and prove the calculus sound and complete with
respect to existence of maps in the free skew monoidal category. We then introduce an equivalence relation
on sequent calculus derivations and prove that there is a one-to-one correspondence between equivalence
classes of derivations and maps in the free skew monoidal category. Finally, we identify a subcalculus of
focused derivations, and establish that it contains exactly one canonical representative from each equivalence
class. As an end result, we obtain simple algorithms both for deciding equality of maps in the free skew
monoidal category and for enumerating any homset without duplicates, in particular, for deciding whether
there is a map. We have formalized this development in the dependently typed programming language
Agda.
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1 Introduction

Skew monoidal categories of Szlachányi [16] are a variation of monoidal categories

[13,3]. In a skew monoidal category, the unitors and associator are not required to be

natural isomorphisms, but only natural transformations in a particular direction: a

very simple definition, but with remarkably subtle properties. Szlachányi’s original

motivation was from quantum structures. In a different context, the first author of

this paper ran into skew monoidal categories studying a generalization of monads

to functors between different categories—relative monads [1].

Szachlányi’s paper was immediately noticed by Street, Lack and colleagues

who have by now published a whole series of papers about them [9,10,6,4,5, . . . ].

Mac Lane’s original coherence theorem for monoidal categories is often summarized

as “all diagrams commute”, but this is no longer true in the skew monoidal case: it

is not the case that there is at most one map between any two objects in the free

skew monoidal category on a set of generators (not even for one generator); also, it

is not so easy to give a simple necessary and sufficient condition for the existence of

such a map. Curiously, there is at most one map between any two objects in the free

skew semigroup category, so multiple maps originate from the presence of the unit.

As a step towards the coherence problem, Uustalu [17] showed that there is at most

one map between an object and an object in normal form, and exactly one map

between an object and that object’s normal form. Lack and Street [10] addressed

the coherence problem by proving that there is a faithful, structure-preserving func-

tor Fsk → Δ⊥ from the free skew monoidal category on one generating object to

the strictly associative skew-monoidal category of finite non-empty ordinals and

first-element-and-order-preserving functions. This analysis was further elaborated

by Bourke and Lack [4] with a more explicit description of the morphisms of Fsk,

although they still took as given the classical Tamari order [15], that is, the partial

order on fully-bracketed words induced by a non-invertible associative law (or what

can be equivalently seen as the free skew semigroup category on one generator).

In this paper, we present a sequent calculus for skew monoidal categories, build-

ing on a recent proof-theoretic analysis of the Tamari order by the third author

[18]. He observed that the Tamari order is precisely captured by a sequent calculus

very similar to Lambek’s original calculus [11] for (what is nowadays referred to

as) intuitionistic non-commutative linear logic, but with tensor as the only logical

connective, and with the tensor left rule restricted to only apply to the first formula

in the antecedent. The sequent calculus of [18] admits a strong form of cut elim-

ination known as focusing completeness (after Andreoli [2]), with the consequence

that valid entailments in the Tamari order are in one-to-one correspondence with

focused sequent calculus derivations.

The situation becomes significantly more subtle with the addition of a unit. As

we will explain, sequents now need to have an explicit “stoup”, corresponding to a

distinguished first position in the antecedent which can either be empty or contain

a formula. In particular, the left rules for unit and tensor can only be applied to a

formula inside the stoup. We will develop the metatheory of this sequent calculus,

and see that the presence of the stoup is crucial for adequacy with respect to skew
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monoidal categories.

After establishing the admissibility of two cut rules (stoup cut and context cut),

we prove that the sequent calculus is sound and complete with respect to the free

skew monoidal category in the sense that morphisms can be mapped to derivations

and vice versa. We then impose a certain notion of equivalence on sequent calculus

derivations in order to prove that these two mappings are inverses of each other

(i.e., that derivations in the sequent calculus and maps in the free skew monoidal

category are in bijection). Finally, we identify the subcalculus of focused derivations,

and show that every equivalence class of derivations contains exactly one focused

derivation. This means that the focused sequent calculus characterizes the free skew

monoidal category in a particularly appealing fashion. Moreover, as the focused

representation of a derivation can be easily computed, we get a simple algorithm for

deciding equality of morphisms in the free skew monoidal category: two morphisms

are equal if and only if they correspond to the same focused derivation. Also, since

focused derivations can be systematically searched for, we get an algorithm for

enumerating (without duplications) any homset, in particular, for deciding whether

a homset is inhabited.

Bourke and Lack [5] have recently related skew monoidal categories to what they

call skew multicategories, establishing a correspondence between skew monoidal cat-

egories and left representable skew multicategories. Their work is closely related to

ours: in sequent calculus terms, their “tight maps” (resp. “loose maps”) corre-

spond to derivations of sequents where the stoup is non-empty (resp. empty), while

their notion of “left” representability (which weakens the more standard notion of

representability for multicategories [12, Ch. 3]) is precisely analogous to the stoup

restriction on left rules. We intend to elaborate on this connection in a future paper.

This paper is organized as follows. In Section 2, we introduce skew monoidal

categories and the free skew monoidal category as a deductive calculus. In Section 3,

we introduce our sequent calculus, show that it admits the appropriate cut rules and

satisfies a number of equations reminiscent of the equations of a multicategory. In

Section 4, we present our soundness and completeness proofs of the sequent calculus

wrt. the categorical calculus, introduce our notion of equality of derivations for the

sequent calculus and prove that the derivations in the two calculi are in a bijection.

We develop focusing in Section 5. In Section 6, we conclude and outline some

avenues of future work.

We have fully formalized the development of Sections 2-5 in the dependently

typed programming language Agda.

Our Agda formalization is available at http://cs.ioc.ee/~niccolo/

skewmonseqcalc/. The formalization uses Agda 2.5.3 and Agda standard library

0.14.
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2 Skew monoidal categories

A skew monoidal category [16] is a category C together with a distinguished object

I, a functor ⊗ : C × C → C and three natural transformations

λA : I⊗A → A ρA : A → A⊗ I αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C)

satisfying the laws

(a) I⊗ I
λI

��
I

ρI
��

I

(b) (A⊗ I)⊗B
αA,I,B ��A⊗ (I⊗B)

A⊗λB��
A⊗B

ρA⊗B
��

A⊗B

(c) (I⊗A)⊗B

λA⊗B ��

αI,A,B �� I⊗ (A⊗B)

λA⊗B��
A⊗B

(d) (A⊗B)⊗ I
αA,B,I ��A⊗ (B ⊗ I)

A⊗B
ρA⊗B

		

A⊗ρB





(e) (A⊗ (B ⊗ C))⊗D
αA,B⊗C,D ��A⊗ ((B ⊗ C)⊗D)

A⊗αB,C,D
��

((A⊗B)⊗ C)⊗D

αA,B,C⊗D

��

αA⊗B,C,D�� (A⊗B)⊗ (C ⊗D)
αA,B,C⊗D��A⊗ (B ⊗ (C ⊗D))

Notice that (a)–(e) are directed versions of the original Mac Lane axioms [13]. Later,

Kelly [8] observed that, when λ, ρ and α are natural isomorphisms, laws (a), (c),

and (d) can be derived from (b) and (e). For skew monoidal categories, this is not

the case.

Skew monoidal categories arise more often that one would perhaps first think,

see [16,9,6,17]. The following are some examples from [17].

Example 2.1 A simple example of a skew monoidal category results from skewing

a numerical addition monoid.

View the partial order (N,≤) of natural numbers as a thin category. Fix some

natural number n and define I = n and x⊗ y = (x
.− n) + y where

.− is “truncating

subtraction”. We have λx : (n
.− n)+x = 0+x = x, ρx : x ≤ xmaxn = (x

.− n)+n,

αx,y,z : (((x
.− n) + y)

.− n) + z ≤ (x
.− n) + (y

.− n) + z (by a small case analysis).

Example 2.2 The category Ptd of pointed sets and point-preserving functions has

the following skew monoidal structure.

Take I = (1, ∗) and (X, p)⊗ (Y, q) = (X+Y, inl p) (notice the “skew” in choosing

the point). We define λX : (1, ∗)⊗(X, p) = (1+X, inl ∗) → (X, p) by λX (inl ∗) = p,

λX (inr x) = x (this is not injective). We let ρX : (X, p) → (X + 1, inl p) =

(X, p) ⊗ (1, ∗) by ρX x = inl x (this is not surjective). Finally we let αX,Y,Z :

((X, p) ⊗ (Y, q)) ⊗ (Z, r) = ((X + Y ) + Z, inl (inl p)) → (X + (Y + Z), inl p) =

(X, p)⊗ ((Y, q)⊗ (Z, r)) be the obvious isomorphism.

(We note that Ptd has coproducts too: (X, p) + (Y, q) = ((X + Y )/∼, [inl p])
where ∼ is the equivalence relation on X + Y induced by inl p ∼ inr q.)
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Example 2.3 Suppose given a monoidal category (C, I,⊗) together with a lax

monoidal comonad (D, e,m) on C. The category C has a skew monoidal structure

with ID = I, A⊗D B = A⊗DB. The unitors and associator are the following:

λD
A = I⊗DA

I⊗εA �� I⊗A
λA ��A

ρDA = A
ρA ��A⊗ I

A⊗e ��A⊗D I

αD
A,B,C = (A⊗DB)⊗DC

(A⊗DB)⊗δC�� (A⊗DB)⊗D (DC)
αA,DB,D(DC)��A⊗ (DB ⊗D (DC))

A⊗mB,DC��A⊗D (B ⊗DC)

A similar skew monoidal category is also obtained from any oplax monoidal monad.

Example 2.4 Consider two categories J and C with a functor J : J → C, and
assume that the left Kan extension LanJ F : C → C exists for every F : J → C. Then
the functor category [J , C] has a skew monoidal structure given by I = J , F ⊗G =

LanJF ◦ G. The unitors and associator are the canonical natural transformations

λF : LanJ J ◦ F → F , ρF : F → LanJ F ◦ J , αF,G,H : LanJ (LanJ F ◦ G) ◦H →
LanJ F ◦ LanJ G ◦ H. This category becomes properly monoidal under certain

conditions on J : ρ is an isomorphism if J is fully-faithful, and λ is an isomorphism

if J is dense. (This is the example from our relative monads work [1]. Relative

monads on J are skew monoids in the skew monoidal category [J , C].)
As our aim is to analyze the relationship of skew monoidal categories to a sequent

calculus with the methods of structural proof theory, we will find it convenient to

have an explicit description of the free skew monoidal category Fsk(At) over a set At
(whose elements we view as propositional letters, also called atoms) as a deductive

calculus.

The objects are given by the set Fma (of formulae). A formula is either an

element X of At (an atomic formula); I; or A⊗B where A, B are formulae.

The maps between two objects A and B are derivations of singleton-antecedent,

singleton-succedent sequents A ⇒ B constructed with the following inference rules

A ⇒ A
id

A ⇒ B B ⇒ C
A ⇒ C

comp A ⇒ C B ⇒ D
A⊗B ⇒ C ⊗D

⊗

I ⊗A ⇒ A
λ

A ⇒ A⊗ I
ρ

(A⊗B)⊗ C ⇒ A⊗ (B ⊗ C)
α

identified up to the least congruence
.
= given by the equations on Figure 1. In ad-

dition to the laws (a)–(e) above, these equations state that id and comp satisfy the

laws of a category, that ⊗ is functorial, and that λ, ρ and α are natural transfor-

mations. In the term notation for derivations, we write g ◦ f for comp f g to agree

with the standard categorical notation.
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...

.
f

A ⇒ B B ⇒ B
id

A ⇒ B
comp

.
=

..

.. f

A ⇒ B

..

.. f

A ⇒ B

.
= A ⇒ A

id

..

.. f

A ⇒ B
A ⇒ B

comp

..

.. f

A ⇒ B

..

.. g

B ⇒ C

..

.. h

C ⇒ D
B ⇒ D

comp

A ⇒ D
comp

.
=

.

..

.
f

A ⇒ B

.

..

.
g

B ⇒ C
A ⇒ C

comp

.

..

.
h

C ⇒ D
A ⇒ D

comp

A ⇒ A
id

B ⇒ B
id

A⊗B ⇒ A⊗B
⊗ .

= A⊗B ⇒ A⊗B
id

.

... f

A ⇒ C

.

... h

C ⇒ E
A ⇒ E

comp

.

..

.
g

B ⇒ D

.

..

.
k

D ⇒ F
B ⇒ F

comp

A⊗B ⇒ E ⊗ F
⊗

.
=

.

... f

A ⇒ C

.

... g

B ⇒ D
A⊗B ⇒ C ⊗D

⊗

..

.

.
h

C ⇒ E

..

.

.
k

D ⇒ F
C ⊗D ⇒ E ⊗ F

⊗
A⊗B ⇒ E ⊗ F

comp

I ⇒ I
id

.

.

.. f

A ⇒ B
I⊗A ⇒ I⊗B

⊗
I⊗B ⇒ B

λ

I⊗A ⇒ B
comp

.
= I⊗A ⇒ A

λ

.

.

.. f

A ⇒ B

I⊗A ⇒ B
comp A ⇒ A⊗ I

ρ

.

... f

A ⇒ B I ⇒ I
id

A⊗ I ⇒ B ⊗ I
⊗

A ⇒ B ⊗ I
comp

.
=

.

... f

A ⇒ B B ⇒ B ⊗ I
ρ

A ⇒ B ⊗ I
comp

(A⊗B)⊗ C ⇒ A⊗ (B ⊗ C)
α

.

.

.. f

A ⇒ D

.

.

.. g

B ⇒ E

.

.

.. h

C ⇒ F
B ⊗ C ⇒ E ⊗ F

⊗
A⊗ (B ⊗ C) ⇒ D ⊗ (E ⊗ F )

⊗

(A⊗B)⊗ C ⇒ D ⊗ (E ⊗ F )
comp

.
=

..

.

.
f

A ⇒ D

..

.

.
g

B ⇒ E
B ⊗ C ⇒ E ⊗ F

⊗
..
.
.
h

C ⇒ F

(A⊗B)⊗ C ⇒ (D ⊗ E)⊗ F
⊗

(D ⊗ E)⊗ F ⇒ D ⊗ (E ⊗ F )
α

(A⊗B)⊗ C ⇒ D ⊗ (E ⊗ F )
comp

I ⇒ I⊗ I
ρ

I⊗ I ⇒ I
λ

I ⇒ I
comp .

= I ⇒ I
id A ⇒ A⊗ I

ρ
B ⇒ B

id

A⊗B ⇒ (A⊗ I)⊗B
⊗ (A⊗ I)⊗B ⇒ A⊗ (I⊗B)

α
A ⇒ A

id
I⊗B ⇒ B

λ

A⊗ (I⊗B) ⇒ A⊗B
⊗

(A⊗ I)⊗B ⇒ A⊗B
comp

A⊗B ⇒ A⊗B
comp

.
= A⊗B ⇒ A⊗B

id

(I⊗A)⊗B ⇒ I⊗ (A⊗B)
α

I⊗ (A⊗B) ⇒ A⊗B
λ

(I⊗A)⊗B ⇒ A⊗B
comp .

=
I⊗A ⇒ A

λ
B ⇒ B

id

(I⊗A)⊗B ⇒ A⊗B
⊗

A⊗B ⇒ (A⊗B)⊗ I
ρ

(A⊗B)⊗ I ⇒ A⊗ (B ⊗ I)
α

A⊗B ⇒ A⊗ (B ⊗ I)
comp .

=
A ⇒ A

id
B ⇒ B ⊗ I

ρ

A⊗B ⇒ A⊗ (B ⊗ I)
⊗

((A⊗B)⊗ C)⊗D ⇒ (A⊗B)⊗ (C ⊗D)
α

(A⊗B)⊗ (C ⊗D) ⇒ A⊗ (B ⊗ (C ⊗D))
α

((A⊗B)⊗ C)⊗D ⇒ A⊗ (B ⊗ (C ⊗D))
comp

.
=

(A⊗B)⊗ C ⇒ A⊗ (B ⊗ C)
α

D ⇒ D
id

((A⊗B)⊗ C)⊗D ⇒ (A⊗ (B ⊗ C))⊗D
⊗ (A⊗ (B ⊗ C))⊗D ⇒ A⊗ ((B ⊗ C)⊗D)

α
A ⇒ A

id
(B ⊗ C)⊗D ⇒ B ⊗ (C ⊗D)

α

A⊗ ((B ⊗ C)⊗D) ⇒ A⊗ (B ⊗ (C ⊗D))
⊗

(A⊗ (B ⊗ C))⊗D ⇒ A⊗ (B ⊗ (C ⊗D))
comp

((A⊗B)⊗ C)⊗D ⇒ A⊗ (B ⊗ (C ⊗D))
comp

Fig. 1. Skew monoidal category equations
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A necessary condition for the existence of a map A ⇒ B is that A and B

have the same underlying frontier of atoms (where the frontier ∂A of a formula

A is defined by ∂X = X; ∂I = ( ); ∂(A ⊗ B) = ∂A, ∂B). However, this is not

sufficient. For example, there are no maps X ⇒ I ⊗ X, X ⊗ I ⇒ X or X ⊗ (Y ⊗
Z) ⇒ (X ⊗ Y ) ⊗ Z (typing the inverses of the unitors and the associator in the

monoidal case). Moreover, it is possible to have more than one map with the same

domain and codomain. The prototypical examples are ρI ◦ λI 	 .= idI⊗I : I⊗ I ⇒ I⊗ I,
id(X⊗I)⊗Y 	 .= (ρX ⊗ λY ) ◦ αX,I,Y and idX⊗(I⊗Y ) 	 .= αX,I,Y ◦ (ρX ⊗ λY ) (equal in the

monoidal case as variations of equations (a), (b)).

3 Sequent Calculus

We now introduce a sequent calculus for skew monoidal categories inspired by the

sequent calculus for the Tamari order [18].

Sequents are of the form S | Γ 
 A, where the succedent A is a single formula

and the antecedent is a pair of a stoup S and a context Γ. A stoup S is either

nothing (written −) or a single formula, while a context Γ is a (possibly empty) list

of formulae.

Derivations are constructed with the following inference rules:

A | 
 A
ax

A | Γ 
 C

− | A,Γ 
 C
pass

− | Γ 
 C

I | Γ 
 C
IL − | 
 I

IR

A | B,Γ 
 C

A⊗B | Γ 
 C
⊗L

S | Γ 
 A − | Δ 
 B

S | Γ,Δ 
 A⊗B
⊗R

(pass stands for ‘passivate’.) There are no primitive cut rules in this calculus, but

we will shortly see that two cut rules are admissible. (In Section 5, we will describe

a further restriction to focused derivations.)

Although these rules look very similar to the rules of the I, ⊗ fragment

of intuitionistic non-commutative linear logic (the sequent calculus of monoidal

categories)—in particular, there is no left exchange rule, weakening or contraction—

, there are two crucial differences. First, the left logical rules are restricted to apply

only at the leftmost end of the antecedent, to the formula within the stoup. This

restriction was present in the sequent calculus for the Tamari order [18]. Second,

and this is a new aspect, the stoup is allowed to be empty, permitting a distinction

between antecedents of the form A | Γ (with A inside the stoup) and antecedents

of the form − | A,Γ (with A outside the stoup). These ingredients are crucial for

obtaining the correspondence with skew monoidal categories.

Let us demonstrate these restrictions in action on a few examples. We will state
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the exact relationship of skew monoidal categories and our sequent calculus later,

but one of the results will be that there is a map A ⇒ B in the free skew monoidal

category iff the sequent A | 
 B is derivable (see Theorems 4.4 and 4.5).

In the sequent calculus of monoidal categories, one can build the derivation

X 
 X
ax

Y 
 Y
ax

X,Y 
 X ⊗ Y
⊗R

Z 
 Z
ax

X,Y, Z 
 (X ⊗ Y )⊗ Z
⊗R

X,Y ⊗ Z 
 (X ⊗ Y )⊗ Z
⊗L

X ⊗ (Y ⊗ Z) 
 (X ⊗ Y )⊗ Z
⊗L

corresponding to α−1
X,Y,Z : X ⊗ (Y ⊗ Z) ⇒ (X ⊗ Y ) ⊗ Z. Notice that the second

application of the ⊗L rule (counting from the bottom) is to the formula second

from the left in the antecedent. In the skew monoidal calculus, the corresponding

sequent has no derivation; attempts to build one fail:

??
X | Y ⊗ Z 
 X ⊗ Y

??
− | 
 Z

X | Y ⊗ Z 
 (X ⊗ Y )⊗ Z
⊗R

X ⊗ (Y ⊗ Z) | 
 (X ⊗ Y )⊗ Z
⊗L

??
X | 
 X ⊗ Y

??
− | Y ⊗ Z 
 Z

X | Y ⊗ Z 
 (X ⊗ Y )⊗ Z
⊗R

X ⊗ (Y ⊗ Z) | 
 (X ⊗ Y )⊗ Z
⊗L

(Thanks to cut-freeness, the sequent calculus admits a root-first proof search strat-

egy deciding derivability. We will say more about this in Section 5.)

In the same vein, one can build a derivation of X⊗ I 
 X in the sequent calculus

of monoidal categories (corresponding to ρ−1
X : X ⊗ I ⇒ X), but this relies on

applicability of IL to the second formula in an antecedent, and there is no derivation

of X ⊗ I | 
 X in the skew monoidal sequent calculus.

Finally, corresponding to λ−1
X : X ⇒ I ⊗X, one has the following derivation in

the sequent calculus of monoidal categories:


 I
IR

X 
 X
ax

X 
 I⊗X
⊗R

But there is no such derivation in the skew monoidal sequent calculus:

??
X | 
 I

??
− | 
 X

X | 
 I⊗X
⊗R

This time the reason is that, while the context can be split freely in an ⊗R inference,

the stoup formula must go to the first premise.

At the same time, derivations corresponding to λX , ρX , αX,Y,X can be smoothly

constructed in our calculus despite the restrictions. They are needed and appear in

the proof of Theorem 4.5 below.

As a more involved example, here is a derivation corresponding to the (inciden-

tally) unique map (X⊗ (I⊗Y ))⊗Z ⇒ (X⊗I)⊗ (Y ⊗Z) in the free skew monoidal
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category:

X | 
 X
ax − | 
 I

IR

X | 
 X ⊗ I
⊗R

Y | 
 Y
ax

− | Y 
 Y
pass

Z | 
 Z
ax

− | Z 
 Z
pass

− | Y, Z 
 Y ⊗ Z
⊗R

I | Y, Z 
 Y ⊗ Z
IL

I⊗ Y | Z 
 Y ⊗ Z
⊗L

− | I⊗ Y, Z 
 Y ⊗ Z
pass

X | I⊗ Y, Z 
 (X ⊗ I)⊗ (Y ⊗ Z)
⊗R

X ⊗ (I⊗ Y ) | Z 
 (X ⊗ I)⊗ (Y ⊗ Z)
⊗L

(X ⊗ (I⊗ Y ))⊗ Z | 
 (X ⊗ I)⊗ (Y ⊗ Z)
⊗L

The reader is invited to check that, in contrast, there is no derivation of the converse

sequent, although the sequent (X ⊗ I) ⊗ (Y ⊗ Z) 
 (X ⊗ (I ⊗ Y )) ⊗ Z is derivable

in the sequent calculus of monoidal categories.

We now proceed to some proof-theoretic results. We begin with the simple

observation that the left logical rules IL and ⊗L are invertible.

Lemma 3.1 (Invertibility of IL and ⊗L) The following rules are admissible.

I | Γ 
 C

− | Γ 
 C
IL−1

A⊗B | Γ 
 C

A | B,Γ 
 C
⊗L−1

Lemma 3.2 The following equations hold:

.... f

− | Γ � C

I | Γ � C
IL

− | Γ � C
IL−1

=

.... f

− | Γ � C

.... f

A | B,Γ � C

A⊗B | Γ � C
⊗L

A | B,Γ � C
⊗L−1

=

.... f

A | B,Γ � C

In contrast, the left structural rule pass is not invertible. For example, although

there is no derivation of X | 
 I ⊗ X (as we saw above), there is a derivation of

− | X 
 I⊗X:

− | � I
IR

X | � X
ax

− | X � X
pass

− | X � I⊗X
⊗R

Likewise, ⊗R is non-invertible, even when there is only one way to split the context

because it is empty. For example, the sequent X ⊗ Y | 
 X ⊗ Y is an instance of

ax, but X ⊗ Y | 
 X and − | 
 Y are both non-derivable.

The sequent calculus admits two different cut rules, one for substitution into the

stoup, one for substitution into the context.
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Proposition 3.3 (Admissibility of cuts) The following rules are admissible.

S | Γ 
 A A | Δ 
 C

S | Γ,Δ 
 C
scut

− | Γ 
 A S | Δ0, A,Δ1 
 C

S | Δ0,Γ,Δ1 
 C
ccut

Proof. The two cut rules are defined by mutual induction on the cut formula A,

with each rule requiring a separate induction on derivations.

We start with the definition of scut. Let f : S | Γ 
 A and g : A | Δ 
 C be two

derivations. The proof proceeds by induction on f .

• Case f =df ax. In particular, S = A and Γ is empty. We define:

A | � A
ax

.

.

.

.
g

A | Δ � C

A | Δ � C
scut

=df

.

.

.

.
g

A | Δ � C

• Case f =df pass f
′ for some f ′ : A′ | Γ′ 
 A. In particular, S = − and Γ = A′,Γ′.

We define:
.... f ′

A′ | Γ′ � A

− | A′,Γ′ � A
pass

.... g

A | Δ � C

− | A′,Γ′,Δ � C
scut

=df

.... f ′

A′ | Γ′ � A

.... g

A | Δ � C

A′ | Γ′,Δ � C
scut

− | A′,Γ′,Δ � C
pass

• Case f =df IL f
′ for some f ′ : − | Γ 
 A. In particular, S = I. We define:

.... f ′

− | Γ � A

I | Γ � A
IL

.... g

A | Δ � C

I | Γ,Δ � C
scut

=df

.... f ′

− | Γ � A

.... g

A | Δ � C

− | Γ,Δ � C
scut

I | Γ,Δ � C
IL

• Case f =df ⊗L f ′ for some f ′ : B | D,Γ 
 A. In particular, S = B⊗D. We define:

.... f ′

B | D,Γ � A

B ⊗D | Γ � A
⊗L

.... g

A | Δ � C

B ⊗D | Γ,Δ � C
scut

=df

.... f ′

B | D,Γ � A

.... g

A | Δ � C

B | D,Γ,Δ � C
scut

B ⊗D | Γ,Δ � C
⊗L

• Case f =df IR. In particular, S = −, Γ is empty and A = I.

− | � I
IR

.... g

I | Δ � C

− | Δ � C
scut

=df

.... g

I | Δ � C

− | Δ � C
IL−1

• Case f =df ⊗R f1 f2 for some f1 : S | Γ1 
 A1 and f2 : − | Γ2 
 A2. In particular,

Γ = Γ1,Γ2 and A = A1 ⊗ A2. At this point, we proceed by induction on the

derivation g : A1 ⊗A2 | Δ 
 C. Notice that g can neither be of the form pass nor
IR since the stoup of its endsequent is non-empty. Moreover, g can neither be of

the form IL since the stoup formula is not equal to I. Therefore, we only have to

check the three remaining cases.
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· Case g =df ax. In particular, Δ is empty and C = A1 ⊗A2. We define:

.

.

.

.
f1

S | Γ1 � A1

.

.

.

.
f2

− | Γ2 � A2

S | Γ1,Γ2 � A1 ⊗A2
⊗R

A1 ⊗A2 | � A1 ⊗A2
ax

S | Γ1,Γ2 � A1 ⊗A2
scut

=df

.

.

.

.
f1

S | Γ1 � A1

.

.

.

.
f2

− | Γ2 � A2

S | Γ1,Γ2 � A1 ⊗A2
⊗R

· Case g =df ⊗R g1 g2 for some g1 : A1 ⊗ A2 | Δ1 
 C1 and g2 : − | Δ2 
 C2. In

particular, Δ = Δ1,Δ2 and C = C1 ⊗ C2. We define:

.

.

.

.
f1

S | Γ1 � A1

.

.

.

.
f2

− | Γ2 � A2

S | Γ1,Γ2 � A1 ⊗A2
⊗R

.

.

.

.
g1

A1 ⊗A2 | Δ1 � C1

.

.

.

.
g2

− | Δ2 � C2

A1 ⊗A2 | Δ1,Δ2 � C1 ⊗ C2
⊗R

S | Γ1,Γ2,Δ1,Δ2 � C1 ⊗ C2
scut

=df

.... f1

S | Γ1 � A1

.... f2

− | Γ2 � A2

S | Γ1,Γ2 � A1 ⊗A2
⊗R

.... g1

A1 ⊗A2 | Δ1 � C1

S | Γ1,Γ2,Δ1 � C1
scut

.... g2

− | Δ2 � C2

S | Γ1,Γ2,Δ1,Δ2 � C1 ⊗ C2
⊗R

· Case g =df ⊗L g′ for some g′ : A1 | A2,Δ 
 C. We define:
.... f1

S | Γ1 � A1

.... f2

− | Γ2 � A2

S | Γ1,Γ2 � A1 ⊗A2
⊗R

.... g′

A1 | A2,Δ � C

A1 ⊗A2 | Δ � C
⊗L

S | Γ1,Γ2,Δ � C
scut

=df

.... f2

− | Γ2 � A2

.... f1

S | Γ1 � A1

.... g′

A1 | A2,Δ � C

S | Γ1, A2,Δ � C
scut

S | Γ1,Γ2,Δ � C
ccut

(Alternatively, the cuts on A1 and A2 can be performed in the other order.)

We continue with the proof of ccut. Let f : − | Γ 
 A and g : S | Δ0, A,Δ1 
 C

be two derivations. The proof proceeds by induction on g. Notice that the g can

neither be of the form ax nor IR, since the context of its endsequent is non-empty.

Therefore, we only have to check the four remaining cases.

• Case g=df pass g
′, for some g′ : A′ | Δ′ 
 C. In particular, S = − and Δ0, A,Δ1 =

A′,Δ′. We proceed by checking if the context Δ0 is empty or not.

· If Δ0 is empty, then A′ = A and Δ′ = Δ1. We define:

.... f

− | Γ � A

.... g′

A | Δ1 � C

− | A,Δ1 � C
pass

− | Γ,Δ1 � C
ccut

=df

.... f

− | Γ � A

.... g′

A | Δ1 � C

− | Γ,Δ1 � C
scut

· If Δ0 =df A
′′,Δ′

0, then A′′ = A′ and Δ′ = Δ′
0, A,Δ1. We define:
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.

.

.

.
f

− | Γ � A

.

.

.

.
g′

A′ | Δ′
0, A,Δ1 � C

− | A′,Δ′
0, A,Δ1 � C

pass

− | A′,Δ′
0,Γ,Δ1 � C

ccut

=df

.

.

.

.
f

− | Γ � A

.

.

.

.
g′

A′ | Δ′
0, A,Δ1 � C

A′ | Δ′
0,Γ,Δ1 � C

ccut

− | A′,Δ′
0,Γ,Δ1 � C

pass

• Case g =df IL g
′ for some g′ : − | Δ0, A,Δ1 
 C. In particular, S = I. We define:

.

.

.

.
f

− | Γ � A

.

.

.

.
g′

− | Δ0, A,Δ1 � C

I | Δ0, A,Δ1 � C
IL

I | Δ0,Γ,Δ1 � C
ccut

=df

.

.

.

.
f

− | Γ � A

.

.

.

.
g′

− | Δ0, A,Δ1 � C

− | Δ0,Γ,Δ1 � C
ccut

I | Δ0,Γ,Δ1 � C
IL

• Case g =df ⊗L g′ for some g′ : B ⊗D | Δ0, A,Δ1 
 C. In particular, S = B ⊗D.

We define:

.... f

− | Γ � A

.... g′

B | D,Δ0, A,Δ1 � C

B ⊗D | Δ0, A,Δ1 � C
⊗L

B ⊗D | Δ0,Γ,Δ1 � C
ccut

=df

.... f

− | Γ � A

.... g′

B | D,Δ0, A,Δ1 � C

B | D,Δ0,Γ,Δ1 � C
ccut

B ⊗D | Δ0,Γ,Δ1 � C
⊗L

• Case g =df ⊗R g1 g2 for some g1 : S | Λ1 
 C1 and g2 : − | Λ2 
 C2. In particular,

C = C1 ⊗ C2 and Δ0, A,Δ1 = Λ1,Λ2. We proceed by checking if the formula A

occurs in Λ1 or in Λ2.

· If A occurs in Λ1, we have Λ1 = Δ0, A,Δ
′
1 and Δ1 = Δ′

1,Λ2. We define:

.... f

− | Γ � A

.... g1

S | Δ0, A,Δ′
1 � C1

.... g2

− | Λ2 � C2

S | Δ0, A,Δ′
1,Λ2 � C1 ⊗ C2

⊗R

S | Δ0,Γ,Δ′
1,Λ2 � C1 ⊗ C2

ccut

=df

.... f

− | Γ � A

.... g1

S | Δ0, A,Δ′
1 � C1

S | Δ0,Γ,Δ′
1 � C1

ccut

.... g2

− | Λ2 � C2

S | Δ0,Γ,Δ′
1,Λ2 � C1 ⊗ C2

⊗R

· If A occurs in Λ2, we have Λ2 = Δ′
0, A,Δ1 and Δ0 = Λ1,Δ

′
0. We define:

.... f

− | Γ � A

.... g1

S | Λ1 � C1

.... g2

− | Δ′
0, A,Δ1 � C2

S | Λ1,Δ′
0, A,Δ1 � C1 ⊗ C2

⊗R

S | Λ1,Δ′
0,Γ,Δ1 � C1 ⊗ C2

ccut

=df

.... g1

S | Λ1 � C1

.... f

− | Γ � A

.... g2

− | Δ′
0, A,Δ1 � C2

− | Δ′
0,Γ,Δ1 � C2

ccut

S | Λ1,Δ′
0,Γ,Δ1 � C1 ⊗ C2

⊗R

�

The cut rules obey a number of equations reminiscent of the unit and associa-

tivity laws of multicategories. More precisely, our sequent calculus can be seen as a

particular generalized multicategory in the sense of [12, Ch. 4]. We give the details

of this connection in Section A.

Proposition 3.4 The equations in Figure 2 hold.

This proposition is used in the proofs of Theorems 4.14 and 4.19.
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.... ax

A | � A

.... f

A | Δ � C

A | Δ � C
scut

=

.... f

A | Δ � C

A | � A
ax

− | A � A
pass

.

..

.
f

S | Δ0, A,Δ1 � C

S | Δ0, A,Δ1 � C
ccut

=

..

.. f

S | Δ0, A,Δ1 � C

.... f

S | Γ � A A | � A
ax

S | Γ � A
scut

=

..

.. f

S | Γ � A

.... f

S | Γ � A

.... g

A | Δ � B

.... h

B | λ � C

A | Δ, λ � C
scut

S | Γ,Δ, λ � C
scut

=

.... f

S | Γ � A

.... g

A | Δ � B

S | Γ,Δ � B
scut

..

.. h

B | λ � C

S | Γ,Δ, λ � C
scut

.... f

− | Γ � A

.... g

S | Δ0, A,Δ1 � B

.... h

B | λ � C

S | Δ0, A,Δ1, λ � C
scut

S | Δ0,Γ,Δ1, λ � C
ccut

=

.... f

− | Γ � A

.... g

S | Δ0, A,Δ1 � B

S | Δ0,Γ,Δ1 � B
ccut

.... h

B | λ � C

S | Δ0,Γ,Δ1, λ � C
scut

.... f

− | Γ � A

.... g

− | Δ0, A,Δ1 � B

.... h

S | λ0, B, λ1 � C

S | λ0,Δ0, A,Δ1, λ1 � C
ccut

S | λ0,Δ0,Γ,Δ1, λ1 � C
ccut

=

.... f

− | Γ � A

.... g

− | Δ0, A,Δ1 � B

− | Δ0,Γ,Δ1 � B
ccut

.... h

S | λ0, B, λ1 � C

S | λ0,Δ0,Γ,Δ1, λ1 � C
ccut

.... f1

S | Γ1 � A1

.... f2

− | Γ2 � A2

.... g

A1 | Δ1, A2,Δ2 � C

A1 | Δ1,Γ2,Δ2 � C
ccut

S | Γ1,Δ1,Γ2,Δ2 � C
scut

=

.... f2

− | Γ2 � A2

.... f1

S | Γ1 � A1

.... g

A1 | Δ1, A2,Δ2 � C

S | Γ1,Δ1, A2,Δ2 � C
scut

S | Γ1,Δ1,Γ2,Δ2 � C
ccut

.... f1

− | Γ1 � A1

.... f2

− | Γ2 � A2

.... g

S | Δ0, A1,Δ1, A2,Δ2 � C

S | Δ0, A1,Δ1,Γ2,Δ2 � C
ccut

S | Δ0,Γ1,Δ1,Γ2,Δ2 � C
ccut

=

.... f2

− | Γ2 � A2

.... f1

− | Γ1 � A1

.... g

S | Δ0, A1,Δ1, A2,Δ2 � C

S | Δ0,Γ1,Δ1, A2,Δ2 � C
ccut

S | Δ0,Γ1,Δ1,Γ2,Δ2 � C
ccut

Fig. 2. Generalized multicategory equations
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4 Adequacy

In this section, we show the connection between the categorical calculus and the

sequent calculus. We start by showing how to interpret antecedents as formulae.

This is performed in several steps, by first specifying how to interpret stoups and

contexts.

Stoups are interpreted as formulae in Fma:

�−〈〈=df I �A〈〈=dfA.

A context is interpreted as an endomap on Fma. Given a context Γ, we write

C 〈〈Γ� for the application of the interpretation of Γ to a formula C. The interpre-

tation of contexts is the right action of contexts on formulae induced by ⊗:

C 〈〈 � =df C, C 〈〈A,Γ� =df (C ⊗A) 〈〈Γ�

Using the interpretation of stoups and contexts, we define the interpretation of

antecedents as formulae in Fma:

�S | Γ� =df �S〈〈 〈〈Γ�

Explicitly, the interpretation of antecedents works as follows. Let Γ =

A1, . . . , An. Given a formula A, we have �A | Γ� = (. . . ((A ⊗ A1) ⊗ A2) . . . ) ⊗ An.

We also have �− | Γ� = (. . . ((I⊗A1)⊗A2) . . . )⊗An, i.e., �− | Γ� = �I | Γ�.

In other words, depending on whether a sequent has an empty or non-empty

stoup, the antecedent has to be interpreted with an I as the leftmost factor in the big

tensor product or not. This is an important observation and the reason why stoups

are needed in the first place: to give a correct interpretation of sequents. Indeed,

suppose we formulated the rules of the sequent calculus conflating the stoup and

the context together into a flat antecedent. We would still interpret antecedents as

big tensor products, but we could in principle choose to add an I in the leftmost

position or not. Either way, the interpretation of sequents would be unsound. In

fact, if the interpretation of an antecedent A1, . . . , An were (. . . (A1⊗A2)⊗. . . )⊗An,

then the derivable sequent X 
 I ⊗X where X is an atom would be interpreted as

X ⇒ I⊗X, which cannot be derived in the categorical calculus. On the other hand,

if the interpretation of an antecedent A1, . . . , An were (. . . ((I⊗A1)⊗A2) . . . )⊗An,

then the derivable sequent X ⊗ Y 
 (I⊗X)⊗ Y where X and Y are atoms would

be interpreted as I ⊗ (X ⊗ Y ) ⇒ (I ⊗X) ⊗ Y , which is again not derivable in the

categorical calculus.

We now show that the sequent calculus is sound. This relies on three lemmata

about the interpretation of antecedents.

Lemma 4.1 For any derivation f : A ⇒ B and context Γ, there is a derivation

�f | Γ� : �A | Γ� ⇒ �B | Γ�.

Proof. We proceed by induction on Γ. If Γ is empty, then we take �f | � =df f . If

Γ = C,Γ′, then we take �f | C,Γ′� =df �f ⊗ idC | Γ′�. �
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Lemma 4.2 For any formulae A, B and context Γ, there is a derivation ψA,B,Γ :

�A⊗B | Γ� ⇒ A⊗ �B | Γ�.

Proof. We proceed by induction on Γ. If Γ is empty, then we take ψA,B,( )=df idA⊗B.

If Γ = C,Γ′, then we take ψA,B,(C,Γ′) =df ψA,B⊗C,Γ′ ◦ �α | Γ′�. �

Lemma 4.3 For any stoup S and contexts Γ, Δ, there is a derivation ϕS,Γ,Δ : �S |
Γ,Δ� ⇒ �S | Γ� ⊗ �− | Δ�.

Proof. It is sufficient to construct ϕ′
A,Γ,Δ : A 〈〈Γ,Δ� ⇒ A 〈〈Γ�⊗�− | Δ� for A : Fma,

and define ϕS,Γ,Δ=dfϕ
′
�S〈〈 ,Γ,Δ. We proceed by induction on Γ. If Γ is empty, then we

have to construct ϕ′
A,( ),Δ : �A | Δ� ⇒ A⊗ �− | Δ�. We take ϕ′

A,( ),Δ=df ψA,I,Δ ◦ �ρ |
Δ�. If Γ = C,Γ′, then we take ϕ′

A,(C,Γ′),Δ =df ϕ
′
A⊗C,Γ′,Δ. �

Theorem 4.4 (Soundness) For any derivation f : S | Γ 
 C, there is a derivation

sound f : �S | Γ� ⇒ C. As a special case, for f : A | 
 C, we have a derivation

sound f : A ⇒ C.

Proof. The proof proceeds by induction on f .

• Case f =df ax. In particular, we have S = C and Γ is empty. We define:

sound

(
C | � C

ax
)

=df

C ⇒ C
id

�C | � ⇒ C

• Case f =df pass f
′, for some f ′ : A | Γ′ 
 C. In particular, S = − and Γ = A,Γ′.

We define:

sound

⎛
⎜⎜⎝

.... f ′

A | Γ′ � C

− | A,Γ′ � C
pass

⎞
⎟⎟⎠ =df

�I⊗A | Γ′� ⇒ �A | Γ′�
�λ | Γ′�

.... sound f ′

�A | Γ′� ⇒ C

�I⊗A | Γ′� ⇒ C
comp

�− | A,Γ′� ⇒ C

• Case f =df IL f
′, for some f ′ : − | Γ 
 C. In particular, S = I. We define:

sound

⎛
⎜⎜⎝

.... f ′

− | Γ � C

I | Γ � C
IL

⎞
⎟⎟⎠ =df

.... sound f ′

�− | Γ� ⇒ C

�I | Γ� ⇒ C

• Case f=df⊗L f ′, for some f ′ : A | B,Γ 
 C. In particular, S = A⊗B. We define:

sound

⎛
⎜⎜⎝

.... f ′

A | B,Γ � C

A⊗B | Γ � C
⊗L

⎞
⎟⎟⎠ =df

.... sound f ′

�A | B,Γ� ⇒ C

�A⊗B | Γ� ⇒ C

• Case f =df IR. In particular, S = −, A = I and Γ is empty.

sound

(
− | � I

IR

)
=df

I ⇒ I
id

�− | � ⇒ I
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• Case f =df ⊗R f1 f2, for some f1 : S | Γ1 
 C1 and f2 : − | Γ2 
 C2. In particular

Γ = Γ1,Γ2 and C = C1 ⊗ C2. We define:

sound

⎛
⎜⎜⎝

.

.

.

.
f1

S | Γ1 � C1

.

.

.

.
f2

− | Γ2 � C2

S | Γ1,Γ2 � C1 ⊗ C2
⊗R

⎞
⎟⎟⎠

=df
�S | Γ1,Γ2� ⇒ �S | Γ1� ⊗ �− | Γ2�

ϕS,Γ1,Γ2

.

.

.

.
sound f1

�S | Γ1� ⇒ C1

.

.

.

.
sound f2

�− | Γ2� ⇒ C2

�S | Γ1� ⊗ �− | Γ2� ⇒ C1 ⊗ C2
⊗

�S | Γ1,Γ2� ⇒ C1 ⊗ C2

comp

�

Next, we show that the sequent calculus is complete. Crucially, this relies on

admissibility of scut, which we had to prove admissible together with ccut. (We chose

to not have primitive cut rules in our sequent calculus, but completeness depends

on their availability. Alternatively, one could take scut and ccut as primitive rules,

and give a separate proof of cut elimination. This would slightly reduce the level

of conceptual dependency, although it amounts to essentially the same amount of

work in the end.)

Theorem 4.5 (Completeness) For any derivation f : A ⇒ C, there is a deriva-

tion cmplt f : A | 
 C.

Proof. Just like the proof of soundness, the proof is by induction on the given

derivation f .

• Case f = idA. In particular, A = C. We define:

cmplt

(
A ⇒ A

id

)
=df A | � A

ax

• Case f = h ◦ g where g : A ⇒ B and h : B ⇒ C. This is the case where we need

scut. We define:

cmplt

⎛
⎜⎜⎝

.... g

A ⇒ B

.... h

B ⇒ C
A ⇒ C

comp

⎞
⎟⎟⎠ =df

.... cmplt g

A | � B

.... cmplth

B | � C

A | � C
scut

• Case f = f1⊗f2 where f1 : A1 ⇒ C1 and f2 : A2 ⇒ C2. In particular, A = A1⊗A2

and C = C1 ⊗ C2. We define:

cmplt

⎛
⎜⎜⎝

.... f1

A1 ⇒ C1

.... f2

A2 ⇒ C2

A1 ⊗A2 ⇒ C1 ⊗ C2
⊗

⎞
⎟⎟⎠ =df

.... cmplt f1

A1 | � C1

.... cmplt f2

A2 | � C2

− | A2 � C2

pass

A1 | A2 � C1 ⊗ C2
⊗R

A1 ⊗A2 | � C1 ⊗ C2
⊗L

• Case f = λC . In particular, A = I⊗ C. We define:
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cmplt

(
I⊗ C ⇒ C

λ

)
=df

C | � C
ax

− | C � C
pass

I | C � C
IL

I⊗ C | � C
⊗L

• Case f = ρA. In particular, C = A⊗ I. We define:

cmplt

(
A ⇒ A⊗ I

ρ
)

=df

A | � A
ax − | � I

IR

A | � A⊗ I
⊗R

• Case f = αA′,B,C′ . In particular, A = (A′ ⊗B)⊗C ′ and C = A′ ⊗ (B ⊗C ′). We

define:

cmplt

(
(A′ ⊗B)⊗ C′ ⇒ A′ ⊗ (B ⊗ C′)

α
)

=df A′ | � A′ ax

B | � B
ax

C′ | � C′ ax

− | C′ � C′ pass

B | C′ � B ⊗ C′ ⊗R

− | B,C′ � B ⊗ C′ pass

A′ | B,C′ � A′ ⊗ (B ⊗ C′)
⊗R

A′ ⊗B | C′ � A′ ⊗ (B ⊗ C′)
⊗L

(A′ ⊗B)⊗ C′ | � A′ ⊗ (B ⊗ C′)
⊗L

�

The function sound is a left inverse of cmplt up to
.
=. In order to prove this, we

show admissibility of two categorical rules, ssubst and csubst. These rules correspond
to the rules scut and ccut of the sequent calculus. This is made precise by showing

that the function sound sends a derivation ending with an scut (or ccut) inference

into a derivation ending with an ssubst (or csubst) inference.

The proof of admissibility of ssubst and csubst relies on the following additional

lemma about the interpretation of antecedents.

Lemma 4.6 For any stoup S and contexts Γ, Δ, there is a derivation θS,Γ,Δ : �S |
Γ,Δ� ⇒ ��S | Γ� | Δ�.

Proof. It is sufficient to construct θ′A,Γ,Δ : A 〈〈Γ,Δ� ⇒ (A 〈〈Γ�) 〈〈Δ� for A : Fma,
and define θS,Γ,Δ =df θ

′
�S〈〈 ,Γ,Δ. We proceed by induction on Γ. If Γ is empty, we

take θ′A,( ),Δ =df id. If Γ = C,Γ′, then we take θ′A,(C,Γ′),Δ =df θ
′
A⊗C,Γ,Δ. �

Lemma 4.7 The following rules are admissible:

�S | Γ� ⇒ A �A | Δ� ⇒ C

�S | Γ,Δ� ⇒ C
ssubst

�− | Γ� ⇒ A �S | Δ0, A,Δ1� ⇒ C

�S | Δ0,Γ,Δ1� ⇒ C
csubst
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Lemma 4.8 The following equations hold:

sound

⎛
⎜⎜⎝

.

.

.

.
f

S | Γ � A

.

.

.

.
g

A | Δ � C

S | Γ,Δ � C
scut

⎞
⎟⎟⎠ .

=

.

.

.

.
sound f

�S | Γ� ⇒ A

.

.

.

.
sound g

�A | Δ� ⇒ C

�S | Γ,Δ� ⇒ C
ssubst

sound

⎛
⎜⎜⎝

.

.

.

.
f

− | Γ � A

.

.

.

.
g

S | Δ0, A,Δ1 � C

S | Δ0,Γ,Δ1 � C
ccut

⎞
⎟⎟⎠ .

=

.

.

.

.
sound f

�− | Γ� ⇒ A

.

.

.

.
sound g

�S | Δ0, A,Δ1� ⇒ C

�S | Δ0,Γ,Δ1� ⇒ C
csubst

Theorem 4.9 For all f : A ⇒ C, we have sound (cmplt f)
.
= f .

Proof. By induction on f . �

On the other hand, sound is not a right inverse of cmplt up to literal equality

of sequent derivations. For example, consider the derivation IL IR : I | 
 I, since

cmplt (sound (IL IR)) = ax 	= IL IR. This calls for a coarser notion of equality for

sequent calculus derivations. We identify derivations in the sequent calculus up to

the least congruence � induced the following equations:

I | � I
ax �

− | I
IR

I | � I
IL

A⊗B | � A⊗B
ax �

A | � A
ax

B | � B
ax

− | B � B
pass

A | B � A⊗B
⊗R

A⊗B | � A⊗B
⊗L

A′ | Γ � A

− | A′,Γ � A
pass

− | Δ � B

− | A′,Γ,Δ � A⊗B
⊗R

�

A′ | Γ � A − | Δ � B

A′ | Γ,Δ � A⊗B
⊗R

− | A′,Γ,Δ � A⊗B
pass

− | Γ � A

I | Γ � A
IL − | Δ � B

I | Γ,Δ � A⊗B
⊗R

�

− | Γ � A − | Δ � B

− | Γ,Δ � A⊗B
⊗R

I | Γ,Δ � A⊗B
IL

A′ | B′,Γ � A

A′ ⊗B′ | Γ � A
⊗L − | Δ � B

A′ ⊗B′ | Γ,Δ � A⊗B
⊗R

�

A′ | B′,Γ � A − | Δ � B

A′ | B′,Γ,Δ � A⊗B
⊗R

A′ ⊗B′ | Γ,Δ � A⊗B
⊗L

The inverted left rules IL−1 and ⊗L−1 are compatible with the relation �.

Lemma 4.10 (i) For all f, g : I | Γ 
 C, if f � g, then IL−1 f � IL−1 g.

(ii) For all f, g : A⊗B | Γ 
 C, if f � g, then ⊗L−1 f � ⊗L−1 g.

We already showed in Lemma 3.2 that the rules IL−1 and ⊗L−1 are left inverses

of IL and ⊗L, respectively. They are also right inverses up to �.

Lemma 4.11 The following equations hold:

.... f

I | Γ � C

− | Γ � C
IL−1

I | Γ � C
IL

�
.... f

I | Γ � C

.... f

A⊗B | Γ � C

A | B,Γ � C
⊗L−1

A⊗B | Γ � C
⊗L

�
.... f

A⊗B | Γ � C
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The function sound sends �-related derivations into
.
=-related derivations.

Theorem 4.12 For all f, g : S | Γ 
 C, f � g implies sound f
.
= sound g.

The function cmplt sends
.
=-related derivations into �-related derivations. The

proof of this fact relies on the rules scut and ccut being compatible with the relation

�. Moreover, it relies on the unit and associativity laws of Figure 2.

Lemma 4.13 (i) For all f1, f2 : S | Γ 
 A and g1, g2 : A | Δ 
 C, if f1 � f2 and

g1 � g2, then scut f1 g1 � scut f2 g2.

(ii) For all f1, f2 : − | Γ 
 A and g1, g2 : S | Δ0, A,Δ1 
 C, if f1 � f2 and g1 � g2,

then ccut f1 g1 � ccut f2 g2.

Theorem 4.14 For all f, g : A ⇒ C, f
.
= g implies cmplt f � cmplt g.

We showed in Theorem 4.9 that the function sound is a left inverse of cmplt
up to

.
=. We are now in the position to see that sound is a right inverse of (a

suitable generalization of) cmplt up to �. To prove this, we first construct a rule

that unpacks a stoup of the form �S | Γ� by iterating ⊗L−1 and then also applying

IL−1 if appropriate.

Lemma 4.15 The following rule is admissible:

�S | Γ� | Δ 
 C

S | Γ,Δ 
 C
L−1

Proof. We proceed by induction on Γ.

• Case Γ is empty. We define:

.... f

�A | � | Δ � C

A | Δ � C
L−1

=df

.... f

�A | � | Δ � C

A | Δ � C

.... f

�− | � | Δ � C

− | Δ � C
L−1

=df

.... f

�− | � | Δ � C

I | Δ � C

− | Δ � C
IL−1

• Case Γ = B,Γ′. We define:

.... f

�A | B,Γ′� | Δ � C

A | B,Γ′,Δ � C
L−1

=df

.... f

�A | B,Γ′� | Δ � C

�A⊗B | Γ′� | Δ � C

A⊗B | Γ′,Δ � C
L−1

A | B,Γ′,Δ � C
⊗L−1

.... f

�− | B,Γ′� | Δ 
 C

− | B,Γ′,Δ 
 C
L−1 =df

.... f

�− | B,Γ′� | Δ 
 C

�I⊗B | Γ′� | Δ 
 C

I⊗B | Γ′,Δ 
 C
L−1

I | B,Γ′,Δ 
 C
⊗L−1

− | B,Γ′,Δ 
 C
IL−1
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�

The rule L−1 is compatible with the relation �. This is a consequence of Lemma

4.10.

Lemma 4.16 For all f, g : �S | Γ� | Δ 
 C, if f � g, then L−1 f � L−1 g.

The postcomposition of cmplt with sound sends a derivation of the sequent S |
Γ 
 C into a derivation of the sequent �S | Γ� | 
 C. Therefore, for general S, Γ,

the derivation f : S | Γ 
 C is not directly comparable with cmplt (sound f). We can

easily repair this discrepancy by realizing that Lemma 4.15 gives a generalization

of our completeness result Theorem 4.5.

Corollary 4.17 (Strong completeness) For any derivation f : �S | Γ� ⇒ C,

there is a derivation strcmplt f : S | Γ 
 C.

Proof. We define:

strcmplt

⎛
⎝

.... f

�S | Γ� ⇒ C

⎞
⎠ =df

.... cmplt f

�S | Γ� | � C

S | Γ � C
L−1

�

Lemma 4.16 makes it an immediate consequence of Theorem 4.14 that the func-

tion strcmplt sends
.
=-related derivations into �-related derivations.

Corollary 4.18 For all f, g : �S | Γ� ⇒ C, f
.
= g implies strcmplt f � strcmplt g.

Now we have that, given f : S | Γ 
 C, the derivation strcmplt (sound f) has the
same endsequent S | Γ 
 C. We can prove that the two derivations are equal up to

�. I.e., sound is a right inverse of strcmplt up to �.

Theorem 4.19 For all f : S | Γ 
 C, we have strcmplt (sound f) � f .

Proof. By induction on f . �

As a special case, the restriction of sound to sequents A | 
 C is a right inverse

of cmplt up to �.

Corollary 4.20 For all f : A | 
 C, we have cmplt (sound f) � f .

Theorem 4.9 used only the restriction of sound to sequents A | 
 C. We can

now generalize it and prove that sound (for general sequents) is a left inverse of

strcmplt up to
.
=. This is immediate from the following lemma.

Lemma 4.21 The following equation holds:

sound

⎛
⎜⎜⎝

.... f

�S | Γ� | � C

S | Γ � C
L−1

⎞
⎟⎟⎠ .

= sound

⎛
⎝

.... f

�S | Γ� | � C

⎞
⎠

Corollary 4.22 For all f : �S | Γ� ⇒ C, we have sound (strcmplt f)
.
= f .
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Theorem 4.19 and Corollary 4.22 show that sound and strcmplt make a bijection

between the derivations of S | Γ 
 C (considered up to �) and the derivations

of �S | Γ� ⇒ C (considered up to
.
=). (And Corollary 4.20 and Theorem 4.9

demonstrate that restricted sound and cmplt form a bijection between the derivations

of A | 
 C and the derivations of A ⇒ C.)

5 Focusing

If we consider the congruence relation � on sequent calculus derivations as a term

rewrite system (just by directing every equation to go from the left to the right),

we can notice that it is weakly confluent and strongly normalizing, hence strongly

confluent with unique normal forms. It turns out that these normal forms admit

a simple direct description, corresponding to a natural “focused” [2] subsystem of

the sequent calculus.

We present the focused subsystem as a sequent calculus with an additional mode

annotation on sequents, which alternates between L (the “left mode”) and R (the

“right mode”). In an L-sequent there is no restriction on the stoup, but in an R-
sequent the stoup has to be irreducible, i.e., be empty or contain an atom (we write

T to range over such irreducible stoups).

A | Γ 
L C

− | A,Γ 
L C
pass

T | Γ 
R C

T | Γ 
L C
msw

X | 
R X
ax

− | Γ 
L C

I | Γ 
L C
IL − | 
R I

IR

A | B,Γ 
L C

A⊗B | Γ 
L C
⊗L

T | Γ 
R A − | Δ 
L B

T | Γ,Δ 
R A⊗B
⊗R

(Note that, in the rules msw and ⊗R, the stoup T has to be irreducible.)

As in Andreoli’s original formulation for linear logic [2], we can think of focusing

as defining a root-first proof search strategy which attempts to build a derivation

of a sequent bottom-up. Beginning in L-mode, the invertible rules IL and ⊗L are

applied to break down the formula in the stoup and transform it into a list of

additional subformulae in the context. Once the stoup is empty, there is a choice

to either apply the pass rule to shift the next formula into the stoup and repeat

the inversion process, or else apply the msw rule (for “mode switch”) and move

into R-mode. During R-mode, the non-invertible rule ⊗R is applied as necessary to

attempt to continue the derivation (moving back into L-mode for the right premise),

while the rules IR and ax are applied to attempt to finish off the derivation.

The focused calculus is clearly sound, in the sense that, if one ignores the mode

annotations, all of the above rules are either rules of the original sequent calculus

or else (in the case of msw) have the conclusion equal to premise. In fact, the fo-
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cused calculus is complete, and indeed optimal in the sense that focused derivations

give unique representatives of each �-equivalence class. This is established by the

following results.

Proposition 5.1 For any derivation f : S | Γ 
L C, there is a derivation emb f :

S | Γ 
 C.

Theorem 5.2 For any derivation f : S | Γ 
 C, there is a derivation focus f : S |
Γ 
L C.

Proof. By induction on f . �

Theorem 5.3 For any f : S | Γ 
L C, focus (emb f) = f .

Proof. By induction on f . �

Theorem 5.4 For any f, g : S | Γ 
 C, if f � g, then focus f = focus g.

Proof. By induction on the proof of f � g. �

Theorem 5.5 For any f : S | Γ 
 C, we have emb (focus f) � f .

Proof. By induction on f . �

Corollary 5.6 For any f, g : S | Γ 
 C, if focus f = focus g, then f � g.

Putting these results together with Theorems 4.4, 4.5 on soundness and complete-

ness and Theorems 4.9, 4.12, 4.14, we obtain a simple decision procedure for equality

of maps in the free skew monoidal category.

Corollary 5.7 For any f, g : A ⇒ C, we have f
.
= g if and only if focus (cmplt f) =

focus (cmplt g).

It was already observed that the cut-free sequent calculus of Section 3 can be

used to decide existence of maps in the free skew monoidal category. The focused cal-

culus yields a more efficient decision procedure, since there is less non-determinism.

Furthermore, it provides a simple algorithm for listing the elements of any homset

in the free skew monoidal category without producing duplicates.

Theorem 5.8 For any S,Γ, C, one can compute a duplicate-free list

focderivs (S,Γ, C) of derivations of S | Γ 
L C containing every such deriva-

tion. In particular, we can decide whether S | Γ 
L C is derivable.

Proof. As explained above, we can consider the focused calculus as a root-first

search strategy. This search is guaranteed to terminate because, for any goal sequent

S | Γ 
m C (m ∈ {L,R}), there are only finitely many possible instances of rules

to apply, and the subgoals that they generate are always smaller relative to a well-

founded order on sequents. (We can rank sequents by lexicographically ordered

triples consisting of the number of occurrences of I and ⊗, the information whether

the stoup is empty or not, with singleton < empty, and the mode, with R < L.) �
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Corollary 5.9 For any A, C, one can compute a list of derivations A ⇒ C that

contains, for any derivation f : A ⇒ C, exactly one derivation g such that f
.
= g,

as (sound ◦ emb)∗ (focderivs (A, (), C)).

It is worth mentioning that there are some surprisingly elegant formulae for

counting different families of maps in the free skew semigroup category [7], and

so it may be interesting to apply the focused sequent calculus to pursue a similar

quantitative analysis of maps in the free skew monoidal category (cf. [18]).

6 Conclusion and Future Work

In this paper, we studied the free skew monoidal category from a proof-theorist’s

point-of-view. We considered three calculi, a categorical calculus, which embodies

the definition of the free skew monoidal category, a sequent calculus and a focused

version thereof, and proved their sets of derivations to be in bijections. Nicely,

in the focused calculus, there is no need to quotient derivations by a congruence

relation, equality of derivations is just (literal) equality. The focused calculus thus

provides a very concrete description of the free skew monoidal category. We learned

that, although simply defined, skew monoidal categories are remarkably subtle.

We also learned that methods of proof theory, such as proof techniques of cut

admissibility, focusing or use of non-standard sequent forms, are surprisingly well

suited for exploring them.

We envisage a number of directions for future work.

One obvious direction for continuing this line of work would be to prove analo-

gous coherence theorems for (non-monoidal) skew closed categories and/or for skew

monoidal closed categories, by analyzing sequent calculi that correspond to restric-

tions of Lambek’s original calculus with only one implication (with or without the

tensor product).

As mentioned in the Introduction, the analysis we have presented here is closely

related to Bourke and Lack’s recent characterization of skew monoidal categories

as left representable skew multicategories [5]. Indeed, it appears that the focused

sequent calculus gives an explicit construction of the free left representable skew

multicategory over a set of atoms. We plan to describe this connection in full detail

in another paper.

In the free skew monoidal category, there can be multiple maps between the

same two objects, i.e., multiple focused derivations of the same sequent. We believe

that we can partially order the derivations in a canonical way both in the cate-

gorical calculus and in the sequent calculus. In particular, we can have a greatest

element, i.e., a preferred derivation for any derivable sequent, and have soundness

and completeness preserve these partial orders. Moreover, one may ask whether this

ordering coincides with the canonical ordering induced by Lack and Street’s faithful

functor Fsk → Δ⊥, viewing Δ⊥ as a 2-category (with the pointwise ordering on

monotone maps).

Finally, another more speculative direction is to develop sequent calculi for

higher-dimensional skew monoidal and/or skew semigroup categories – given the
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connections between the Tamari order and the well-studied higher-dimensional poly-

topes known as associahedra [15], it is natural to wonder whether the sequent cal-

culus presentation can reveal something new.
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A Sequent Calculus as a Generalized Multicategory

The sequent calculus can be seen as a particular generalized multicategory for a Cartesian monad that we
denote (·)?�. Its underlying functor is given by X?� =df X

? × X� where X? is the free pointed set on X
(obtained by adding an element to X) and X� is the free monoid on X (the set of lists over X). For elements
of X?�, we use the notation we have been using for antecedents, i.e., we write S | Γ for an element of T X,
where S can either be nothing or an element of X and Γ is a list of elements of X. The unit η?�X : X → X?�

of (·)?� is given by η?� A=df A | . The multiplication μ?�
X : (X?�)?� → X?� is given by:

μ?� (− | Δ) =df − | μ� ([·]� Δ) μ?� ((S | Γ) | Δ) =df S | Γ, μ� ([·]� Δ)

where μ� is the multiplication of the list monad (·)�, i.e., concatenation of lists, and [·] is a monad morphism
typed [·]X : X?� → X� and given by [− | Γ] =df Γ and [A | Γ] =df A,Γ.

The sequent calculus is an instance of a generalized multicategory for (·)?�. We call this generalized

multicategory SC. An object of SC is a formula, i.e., an element of Fma. A map between S | Γ : Fma?�

and C : Fma is a derivation of the sequent S | Γ � C.
The identity map on an object A is the derivation ax of the sequent A | � A.
The composition of the generalized multicategory is given by the following two “multicut” rules, defined

from pass, scut and ccut.

S | Γ � B S1 | Γ1 � B1 . . . Sn | Γn � Bn B | B1, . . . Bn � C

S | Γ, S1,Γ1, . . . , Sn,Γn � C
mcutj

S1 | Γ1 � B1 . . . Sn | Γn � Bn − | B1, . . . Bn � C

− | S1,Γ1, . . . , Sn,Γn � C
mcutn

In the conclusions of these rules, we are informal in our notation, instead of Si,Γi, we should officially write
[Si | Γi].

The construction is as follows. First, we define a generalized version of pass:

S | Γ � C

− | S,Γ � C
pass?

The definition is immediate:

.... f

A | Γ � C

− | A,Γ � C
pass?

=df

.... f

A | Γ � C

− | A,Γ � C
pass

.... f

− | Γ � C

− | Γ � C
pass?

=df

.... f

− | Γ � C
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Using pass?, the rules mcutj and mcutn are defined as follows:

.

.

.

.
f

S | Γ � B

.

.

.

.
f1

S1 | Γ1 � B1 . . .

.

.

.

.
fn

Sn | Γn � Bn

.

.

.

.
g

B | B1, . . . Bn � C

S | Γ, S1,Γ1, . . . , Sn,Γn � C
mcutj

=df

.

.

.

.
f

S | Γ � B

.

..

.
f1

S1 | Γ1 � B1

− | S1,Γ1,� B1
pass?

.

.

.

.
fn

Sn | Γn � Bn

− | Sn,Γn,� Bn
pass?

.

.

.

.
g

B | B1, . . . , Bn � C

B | B1, . . . , Bn−1, Sn,Γn � C
ccut

.

.

.

.
B | B1, S2,Γ2, . . . , Sn,Γn � C

B | S1,Γ1, . . . , Sn,Γn � C
ccut

S | Γ, S1,Γ1, . . . , Sn,Γn � C
scut

.

.

.

.
f1

S1 | Γ1 � B1 . . .

.

.

.

.
fn

Sn | Γn � Bn

.

.

.

.
g

− | B1, . . . Bn � C

− | S1,Γ1, . . . , Sn,Γn � C
mcutn

=df

.... f1

S1 | Γ1 � B1

− | S1,Γ1,� B1
pass?

.... fn

Sn | Γn � Bn

− | Sn,Γn,� Bn
pass?

.... g

− | B1, . . . , Bn � C

− | B1, . . . , Bn−1, Sn,Γn � C
ccut

....
− | B1, S2,Γ2, . . . , Sn,Γn � C

− | S1,Γ1, . . . , Sn,Γn � C
ccut

On the other hand, we could start with mcutj and mcutn and define scut and ccut as follows:

There is also another multicategory in the picture, this one standard, i.e., based on the list Cartesian
monad (·)�. We call it SCn. An object of SCn is again a formula, i.e., an element of Fma. A map
between Γ : Fma� and C : Fma is a derivation of the sequent − | Γ � C. The identity on A is the derivation
pass ax : − | A � A. Composition is given by the restriction of mcutn to the case where the stoups S1, . . . , Sn
are all −.

pass? defines an identity-on-objects functor from SC to SCn wrt. the monad morphism [·] between the
corresponding Cartesian monads.

− | B1, . . . , Bi,Γ, Bi+1, . . . Bn � C
mcutn

Bn | � Bn
ax

.

.

.

.
g

− | B1, . . . , Bi, B,Bi+1, . . . Bn � CB1 | � B1

ax
. . .

.

.

.

.
f

− | Γ � B . . .

− | B1, . . . , Bi,Γ, Bi+1, . . . Bn � C
ccut

=df

A | B1, . . . , Bi,Γ, Bi+1, . . . Bn � C
mcutj

.

.

.

.
f

− | Γ � B

.

.

.

.
g

− | B1, . . . , Bi, B,Bi+1, . . . Bn � C

Bn | � Bn
ax

.

.

.

.
g

A | B1, . . . , Bi, B,Bi+1, . . . Bn � CB1 | � B1

ax
. . .

.

.

.

.
f

− | Γ � B . . .A | � A
ax

A | B1, . . . , Bi,Γ, Bi+1, . . . Bn � C
ccut

=df

S | Γ, B1, . . . , Bn � C
mcutj

.

.

.

.
f

− | Γ � B

.

.

.

.
g

A | B1, . . . , Bi, B,Bi+1, . . . Bn � C

Bn | � Bn
ax

.

.

.

.
g

B | B1, . . . , Bn � CB1 | � B1

ax
. . .

S | Γ, B1, . . . , Bn � C
scut

=df

.

.

.

.
f

S | Γ � B

.

.

.

.
f

S | Γ � B

.

.

.

.
g

B | B1, . . . , Bn � C
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