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Abstract—This paper presents the development of SmartDrive 

package to achieve the application of energy-efficient driving 

strategy. The results are from collaboration between Ricardo 

Rail and the Birmingham Centre for Railway Research and 

Education (BCRRE). Advanced tram and train trajectory 

optimization techniques developed by BCRRE as part of the 

UKTRAM More Energy Efficiency Tram project have now been 

incorporated in Ricardo’s SmartDrive product offering. The 

train trajectory optimization method, associated driver training 

and awareness package (SmartDrive) has been developed for use 

on tram, metro and some heavy rail systems. A simulator was 

designed that can simulate the movement of railway vehicles and 

calculate the detailed power system energy consumption with 

different train trajectories when implemented on a typical AC or 

DC powered route. The energy evaluation results from the 

simulator will provide several potential energy-saving solutions 

for the existing route. An enhanced Brute Force algorithm was 

developed to achieve the optimization quickly and efficiently. 

Analysis of the results showed that by implementing an optimal 

speed trajectory, the energy usage in the network can be 

significantly reduced. A Driver Practical Training System (DPTS) 

and the optimized lineside driving control signage, based on the 

optimized trajectory were developed for testing. This system 

instructed drivers to maximize coasting in segregated sections of 

the network and to match optimal speed limits in busier street 

sections. Field trials and real daily operations in the Edinburgh 

Tram Line in the UK have shown that energy savings of 10–20% 

are achievable. 

Index Terms—Energy-efficiency, train driving optimization, 

driver practical training 

NOMENCLATURE 

𝑀𝑒  effective mass of the vehicle [kg] 

𝑠  vehicle position along the track [m] 

𝑡  time [s] 

𝐹  tractive effort [N] 

𝑀  vehicle mass [kg] 

𝑔  acceleration due to gravity [m/s2] 

𝛼  the angle of the route slope [rad] 

𝑅  vehicle resistance [N] 

𝑀𝑡  tare mass of the vehicle [kg] 
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𝑀𝑙  payload of the vehicle [kg] 

𝜆𝑤  rotary allowance 

𝐴  Davis equation constant [N] 

𝐵  Davis equation linear term constant [N/(m/s)] 

𝐶  Davis equation quadratic term constant [N/(m/s)2] 

𝐷  experimentally determined constant [Nm] 

𝑟  curve radius [m] 

𝐸𝑡𝑟  traction energy consumption [kWh] 

𝑇  journey time [s] 

𝑣𝑐   cruising speed [km/h] 

𝑣𝑏  braking speed [km/h] 

𝑇𝑑   difference between train running time and scheduled 

running time [s] 

𝑇𝑠ℎ   train scheduled running time [s] 

𝑇𝑡𝑜  tolerance between train running time and scheduled 

running time [s] 

𝑣𝑚𝑎𝑥   train maximum speed due to speed limit [km/h] 

𝑣𝑐_𝑚𝑎𝑥   train maximum cruising speed [km/h] 

𝑣𝑐_𝑚𝑖𝑛  train minimum cruising speed [km/h] 

𝑣𝑏_𝑚𝑎𝑥   train maximum braking speed [km/h] 

𝑣𝑏_𝑚𝑖𝑛  train minimum braking speed [km/h] 

I.  INTRODUCTION 

ailway contributes less than 2% of the EU transport 

sector’s total energy consumption even though it has over 

8.5% of total traffic in volume [1]. Although the railway 

system is arguably one of the most efficient forms of land-

based transport, how to operate trains more efficiently is still 

of global importance. To improve sustainability, members of 

the International Union of Railways and Community of 

European Railway and Infrastructure Companies agreed to 

reduce the energy consumption by train operation by 30% and 

CO2 emissions by 50% in 2030 [2]. 

Technologies of railway energy saving have been studied 

for decades. A comprehensive assessment of energy-saving 

technologies for rail systems was reviewed in [3, 4]. It is 

found that railway vehicle operation accounts for 70-90% of 

the total energy consumption in urban rail systems. Energy-

efficient driving, timetable optimization, use of energy storage 

devices and enhancement of vehicle comfort functions are 

identified as the most promising energy-saving solutions.  

Many heuristic algorithms are developed to design energy-

efficient driving styles. A Generic Algorithm (GA) is 

proposed to optimize the train speed profiles using appropriate 

coasting control with the consideration of energy 

consumption, delay punctuation and riding comfort [5]. A GA 

with fuzzy logic is used to identify the optimal trajectory in 
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[6]. The fitness function consists of energy consumption and 

running time criteria with various weightings. One heuristic 

method (GA) and three classical approaches (Golden section 

search, Fibonacci search and Gradient-based search) are 

adopted and compared in [7, 8] to identify the necessary 

coasting points for a metro system. It is found that a heuristic 

method offers a faster and better solution for multiple coasting 

points compared with classical searching methods, and multi-

coasting points control performs better energy saving in a long 

interstation section than a single coasting point. Multiple 

algorithms of searching for optimal single-train trajectory are 

proposed in [9]. By comparing the simulation results, it is 

found that Dynamic Programming (DP) performs better than 

Genetic Algorithms (GA) and Ant Colony Optimization 

(ACO). The GA performed quite poorly and failed to 

converge to a good solution in some certain circumstances. 

The speed profile optimization, which is a complex global 

optimization problem, is transformed into a simple local 

optimization problem in [10]. An adjusted algorithm is 

proposed to search for an optimal coast-brake switching 

region rather than just one point. 

To obtain a fast-response online optimum control system, a 

mathematical method is developed using a generalized 

equation of motion [11, 12]. The optimal driving strategies are 

proved by Pontryagin principle. The maximum principle is 

used to find a set of optimal controls with the consideration on 

of track gradients and speed restrictions in [13]. A numerical 

algorithm is proposed to calculate the optimal speed profiles 

by distributing the journey time into different sections, which 

achieves fast optimization [14, 15].  A complete mathematical 

model of partial train speed trajectory is proposed, and the 

optimization problem is solved by a mix-integer linear 

programming algorithm in [16]. 

With the development of communication, control and 

computer technologies, Automatic Train Operation (ATO) is 

playing an increasingly important role in providing safer and 

more cost-efficient services [17]. An ATO system which 

tracks the target speed by controlling the traction and braking 

force is presented in [18]. To avoid the unnecessary switching 

between traction and braking mode, a method to optimize 

target speeds based on the ATO control principle is developed 

in [18]. A multi-objective NSGA-Ⅱ with fuzzy parameters is 

applied for the design of ATO speed profiles of a real 

interstation in Metro de Madrid in [19]. The uncertainties in 

the traffic operation including the various train load and delays 

are considered in designing robust and efficient speed profiles 

in the ATO equipment [20]. 

Although the theory of energy-efficient driving has been 

studied for a long time, most previous studies of railway 

energy-efficient operation are based on simulation and few of 

the results have been tested and used in practice [21]. Most 

trains are currently driven by human drivers. The Driver 

Advisory System (DAS) is used to deliver optimal driving 

controls to drivers for reducing operating costs, improving 

energy efficiency and train regulation [22]. DAS is among the 

latest methods in railway smart operation, which links 

theoretical optimization techniques with practical operation 

[23].  

This paper proposes a cheap but effective and applicable 

approach (SmartDrive) to reduce energy consumption of rail 

systems. This SmartDrive can be considered as one type of 

DAS to support human drivers to achieve energy-efficient 

driving controls. The SmartDrive consists of a train speed 

trajectory optimization method, associated Driver Practical 

Training System (DPTS) and awareness package, which are 

suitable for most rail lines based on human sight driving. The 

paper is structured as follows: Section Ⅱ introduces a generic 

railway traction energy modeling and simulation approach. In 

Section Ⅲ, the SmartDrive package is illustrated, which 

includes the energy-efficient driving controls, analysis the 

energy flow, optimization algorithms, driver training and 

practical application. In Section Ⅳ, a DPTS and driving 

control signage are designed and tested on Edinburgh Tram 

Line. 

II.  RAILWAY TRACTION SYSTEMS MODELING 

A.  Energy Flow in Electric Rail Systems 

Electric rail vehicles collect electricity from the pantograph 

for traction and auxiliary systems. Traction energy is the 

electricity used by traction system for moving the train and 

overcoming friction and gravitational forces. Fig. 1 shows the 

typical energy flow through the traction system [24]. During 

the process of transforming traction energy to kinetic energy, 

some loss is dissipated. Traction loss is the energy dissipated 

in on-board electronic convertors and motors as heat. Traction 

energy subtracted by traction loss becomes mechanical energy 

exported from motors. The parts of mechanical energy used 

for overcoming friction and gravitational forces are defined as 

motion loss and potential loss, respectively. Finally, the train 

obtains a speed and kinetic energy. If the rail vehicle is 

implemented with regenerative braking systems, part of the 

kinetic energy can be regenerated as electricity during braking. 

The regenerative braking energy can be reused by other rail 

vehicles, but the usage of regenerative braking energy mainly 

depends on the receptivity of the traction power network and 

the timetable [24, 25]. The optimization of regenerative 

braking energy is not considered in the SmartDrive proposed 

in this paper. 

 
Fig. 1. Typical traction energy flow chart  

B.  Principles of Train Kinematics 

Fig. 2 indicates the forces on a traction vehicle located on 

an uphill section of track. The tractive effort (F) applied to a 



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3 

vehicle is used for moving the train against the friction forces 

(R) and gravitational forces (𝑀𝑔sin(𝛼)) in moving the mass 

of the train uphill [26]. When the vehicle is braking, a braking 

effort is applied to the vehicle, rather than the tractive effort. 

The direction of the braking effort is opposite to the train 

movement direction. 

R

F

Direction

Mg

α

 
Fig. 2. Forces on a tractive vehicle 

The train movement can be determined by standard 

Newtonian equations of motion. In the longitudinal direction, 

the motion of the vehicle is governed by the tractive effort, the 

gradient and the vehicle resistance [27], known as 

Lomonossoff’s equation in (1). 𝐹 is positive when the train is 

motoring and becomes negative when the train is braking. 

 𝑀𝑒

d2𝑠

d𝑡2
= 𝐹 −𝑀𝑔sin(𝛼) − 𝑅 (1) 

The vehicle mass is the sum of the tare mass and payload in 

(2). When a train is accelerated linearly, the rotating parts are 

also accelerated in a rotational sense. The rotational effect of 

wheels and motors should be added into the linear train 

motion by increasing the effective train mass. This rotational 

inertia effect is called ‘rotary allowance’ and it is expressed as 

a fraction of the tare weight of the train (𝜆𝑤). The effective 

mass can be calculated by (3). The value of the rotary 

allowance varies from 5% to 15%, which is less for a heavy 

body with a small number of motored axles and more for a 

light body with all axles motored [28]. 

 𝑀 = 𝑀𝑡 +𝑀𝑙  (2) 

 𝑀𝑒 = 𝑀𝑡 × (1 + 𝜆𝑤) + 𝑀𝑙  (3) 

The train moves in the opposite direction to friction and 

aerodynamic drag. Train resistance consists of rolling 

resistance and track curvature resistance, as shown in equation 

(4). The rolling resistance is related to the train mass, shape 

and aerodynamic characteristics, which is known as Davis 

Equation. The Davis constant coefficients A, B and C are 

usually determined by run-down experiments [29]. The curve 

resistance has a limited effect when the train is running at a 

speed less than 200 km/h. In most cases, the curve drag can be 

assumed to be negligible [30]. 

 𝑅 = 𝐴 + 𝐵
d𝑠

d𝑡
+ 𝐶 (

d𝑠

d𝑡
)
2

+
𝐷

𝑟
 (4) 

C.  Train Motion Simulator 

Train movement is modelled based on the vehicle 

characteristic and route data. The vehicle characteristic 

includes vehicle mass, tractive effort parameters and Davis 

constants. The route data includes gradient, speed limits and 

station positions along the route. Fig. 3 describes the structure 

of the motion simulator. The driving strategies are treated as 

dynamic inputs to the train motion simulator, which typically 

includes motoring, cruising, coasting and braking. The 

simulator outputs the train speed profile based on the driving 

styles and fixed inputs. According to the traction energy 

results, the driving strategies could be optimized for traction 

energy savings. 

Dynamic input:

· Driving strategies

Train motion 

simulation

Fixed input:

· Train traction parameter 

    (Mass, tractive effort, Davis constants)

· Route data

    (Gradient, speed limits, stations) 

Output:

· Train trajectory

· Journey time

· Traction energy 

optimise  
Fig. 3. Structure of train motion simulation  

III.  SMARTDRIVE FORMULATION 

A.  SmartDrive Process Map 

The process map in Fig. 4 represents the various stages 

concerned with SmartDrive from initial data gathering and 

vehicle simulation to post implementation monitoring. Driver 

Practical Training System (DPTS) is initially developed based 

on the modeling and optimization of the route. By 

performance monitoring during the field tests, the data sources 

are amended. DPTS is improved according to practical 

measurements. Finally, the benefits to energy saving, driver 

experience, passengers and rolling stock can be achieved. 

B.  Energy-efficient Driving Controls 

With fixed train and route parameters, the train speed 

trajectory is produced by driving controls. The coasting 

control has been proved to be an energy-efficient operation by 

the Pontryagin maximum principle [11, 12]. In the study of 

energy-efficient driving controls, it is proved that maximum 

tractive and braking power should be applied when the train is 

motoring and braking for the best energy savings [13, 31]. The 

partial tractive power operation is only used when the train is 

cruising. As for a long and complex inter-station distance 

route (with multiple speed limits and gradients), multiple 

cruising and coasting controls may achieve better energy-

efficiency compared with single cruising and coasting 

controls. However, with the typical characteristics of tram 

systems, the distance to the next station is generally short. 

While multi-coasting commands are possible, in practice 

single cruising and coasting controls have been shown to 

achieve good energy efficiency and more practical for 

implementation [7].   
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Fig. 4. The process map of SmartDrive 

Cruising speed 

Braking speed 

Cruising 

point 

Coasting 

point 

Braking 

point 

 
Fig. 5. A sample of speed trajectory with smart driving controls 

A sample of a speed trajectory with smart driving controls 

is shown in Fig. 5. The maximum acceleration is applied in 

motoring. Cruising mode is achieved at a speed (70 km/h), 

which is followed by coasting at a preselected point (Coasting 

point) at 1.8 km. When the speed reduces to the desired 

braking speed (50 km/h), maximum braking is applied until 

the next station. The tractive power curve in Fig. 5 shows that 

when the train is motoring, the tractive power increases to the 

maximum tractive power. Partial tractive power is applied 

when the train is cruising. No tractive power is used during 

coasting and braking. 

The speed trajectory can be formulated by the train motion 

simulator when the cruising speed and braking speed are 

confirmed, and then the location of cruising, coasting and 

braking points can be computed. Therefore, the tractive energy 

consumption can be expressed by a function of cruising speed 

and braking speed in (5), where f1 defines the relationship 

between the two speed factors and the traction energy 

consumption calculated using the simulator. 

 𝐸𝑡𝑟 = 𝑓1(𝑣𝑐 , 𝑣𝑏) (5) 

The train running time is expressed in (6), where f2 

represents the simulation process to calculate the train running 

time. 

 𝑇 = 𝑓2(𝑣𝑐 , 𝑣𝑏) (6) 

Train energy consumption can be traded off against running 

time. In theory, energy consumption is relatively reduced 

when running time increases. Fig. 6 illustrates this formulation 

graphically. Each point in Fig. 6 represents the energy 

consumption against running time resulted by a random 

driving control. The best driving operations with the lowest 

energy consumption for each second are shown in red, which 

constitute the bottom line of the driving results.  
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Fig. 6. Results of energy consumption on running time 

Traction energy optimization aims to reduce energy 

consumption within the running time constraints. An example 

of driving operations with three different driving patterns is 

shown in Fig. 7. All three operations take the same running 

time but have different energy consumption costs. From the 
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speed trajectory curves, the first driving cruises at the highest 

speed (80 km/h) and coasts until it reaches the lowest speed 

(48 km/h), while the third driving style cruises at the lowest 

speed (66 km/h) and coasts until it reaches the highest speed 

(56 km/h). However, the second driving style costs the lowest 

energy, followed by the first driving style. The tractive energy 

profile shows the energy consumption during running. As 

shown in TABLE I, the first driving style with a higher 

cruising speed leads to higher motion energy loss (5.95 kWh). 

This is because the high-speed running increases the motion 

resistance. With the same journey time, a high cruising speed 

leads to late braking. Thus, the kinetic energy may be reduced, 

which is 1.91 kWh for the first driving style. As for the third 

driving style, the motion loss is lower, but the kinetic energy is 

higher resulting in the highest total tractive energy 

consumption. Therefore, a balance between cruising speed and 

braking speed needs to be considered, and the best 

combination should be found. 
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Fig. 7. Speed and power diagram of different driving patterns 

TABLE I 

PARAMETERS RESULTS OF DIFFERENT DRIVING PATTERNS 

Driving pattern D1 D2 D3 

Distance (km) 3 3 3 

Journey time (s) 180 180 180 

Cruising speed (km/h) 80 70 66 

Braking speed (km/h) 48 50 56 

Traction energy (kWh) 9.25 8.98 9.46 

Traction loss (kWh) 1.39 1.35 1.42 

Motion loss (kWh) 5.95 5.55 5.45 

Kinetic energy (kWh) 1.91 2.08 2.59 

C.  Driving Control Optimization 

The aim of the train driving optimization is to search the 

most appropriate driving controls (cruising speed and braking 

speed) to minimize the train energy consumption, given in (5). 

The running time is a significant factor on evaluating the 

performance of energy-efficient driving. The timetable and 

journey time are regulated by operation companies, based on 

the passenger demands. The variation of the running time is 

limited to the regulations. The difference between the actual 

and scheduled running time is given in (7). For most tram 

systems, each inter-station running time is allowed within 10 

seconds. 

 𝑇𝑑 = |𝑇 − 𝑇𝑠ℎ| (7) 

The fitness function with the running time constraints of 

the optimization is shown in (8). 

 {
min 𝐸𝑡𝑟 = 𝑓1(𝑣𝑐 , 𝑣𝑏)

𝑠. 𝑡. 𝑇𝑑 ≤ 𝑇𝑡𝑜

 (8) 

A Brute Force (BF) search, also known as exhaustive 

search, is a straightforward approach to solving problems in 

the area of computer science by enumerating all the 

possibilities in the solution domain to find the optimum [32, 

33]. As an exact algorithm, BF guarantees to find the optimal 

solutions if they exist. However, the cost of BF is proportional 

to the number of candidate solutions, which increases rapidly 

with the size of the problem. Consequently, it is widely used 

when the problem size is limited, such as selection sort 

problems and simple optimization [34]. In order to minimize 

this weakness, an enhanced BF searching method was 

developed to address the complexity problem by constraining 

the solution domain [35, 36].  

In order to limit the possibilities in the solution domain, all 

the cruising and braking speeds are assumed as integers. The 

enhanced BF algorithm used to solve this optimization is 

shown in following steps:  

· Step 1: Find the range of the cruising speed within the 

running time constraints. The maximum cruising speed 

is obviously up to the train maximum speed, as shown in 

(9). The cruising speed range is obtained when coasting 

mode is not implemented. The running time with minimum 

cruising speed should fulfil the longest running time 

constraint. Therefore, 𝑣𝑐_𝑚𝑖𝑛 is given by (10). 

 𝑣𝑐_𝑚𝑎𝑥 = 𝑣𝑚𝑎𝑥  (9) 

 𝑇𝑠ℎ + 𝑇𝑡𝑜 = 𝑓2(𝑣𝑐_𝑚𝑖𝑛) (10) 

· Step 2: Find the range of the braking speed within the 

running time constraints. The maximum braking speed is 

obviously up to the train maximum speed, as shown in 

equation (11). With the same running time, if the cruising 

speed is higher, the braking speed will become lower, as 

shown in Fig. 7. Therefore, the minimum braking speed 

occurs when the cruising speed is the maximum and the 

running time is the longest. The minimum braking speed 

can be obtained by (12). 

 𝑣𝑏_𝑚𝑎𝑥 = 𝑣𝑚𝑎𝑥  (11) 

 𝑇𝑠ℎ + 𝑇𝑡𝑜 = 𝑓2(𝑣𝑐_𝑚𝑎𝑥 , 𝑣𝑏_𝑚𝑖𝑛) (12) 

· Step 3:  Enumerate all possible solutions in the reduced 

solution domain. The traction energy consumption and 

running time can be calculated by each combination of 

possible cruising and coasting speed, as in (13). 
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{
 
 

 
 
𝐸𝑖𝑗 = 𝑓1(𝑣𝑐_𝑖 , 𝑣𝑏_𝑗)

𝑇𝑖𝑗 = 𝑓2(𝑣𝑐_𝑖, 𝑣𝑏_𝑗)

𝑣𝑐_𝑚𝑖𝑛 ≤ 𝑣𝑐_𝑖 ≤ 𝑣𝑐_𝑚𝑎𝑥

𝑣𝑏_𝑚𝑖𝑛 ≤ 𝑣𝑏_𝑗 ≤ 𝑣𝑏_𝑚𝑎𝑥

 (13) 

· Step 4:  Rank the solutions with constraints and find 

the result. The solutions will be discarded if the running 

time constraints are not achieved. Within the constraints, 

the solution with the lowest energy consumption will be 

assumed as the result. 

D.  Driver Practical Training System 

The Driver Practical Training System (DPTS) consists of a 

class training and a field driving training. The class training is 

used to give drivers a greater understanding of how variations 

in the control of a rail vehicle affect the amount of energy 

consumed in a journey allowing, while the field driving 

training help drivers to put the theory into practice. The 

University of Birmingham Centre for Rail Research and 

Education (BCRRE) and Ricardo Rail have started a 

partnership to use the methodology and simulation software to 

inform both the development and application of a driver 

training and education package. This is designed to make 

drivers more aware of the energy consumption implications of 

their driving behavior and preferred style, encouraging them to 

drive in a more energy efficient way by adopting the 

recommended driving profile. This involves training drivers to 

drive in a more energy efficient way by raising awareness and 

changing driving behaviors toward a more efficient style of 

driving. On a practical basis, drivers will learn to recognize 

and identify route aspects such as coasting points and cruising 

speed, whilst maintaining the current timetable and reinforcing 

safety.  

A stand-alone DPTS for the field driving training is 

developed predominately based on static route data and the 

timetable using the train motion simulation. An example of 

DPTS screenshot used in the Edinburgh Tram field test is 

shown in Fig. 8. The DPTS indicates the current driving mode 

and the next driving mode. To help the driver to conduct next 

driving mode accurately, the DPTS also displays the 

countdown timer, target speed and target distance. The DPTS 

of most inter-station journeys contains four stages, including 

acceleration, cruising, coasting and braking. Fig. 8(a) shows 

that the current driving mode is acceleration and the next 

driving mode is cruising. The target speed and target distance 

are 70 km/h and 250 m, respectively. The timer informs 

drivers to switch to the next driving mode after 60 seconds. 

Similarly, the following slides can instruct drivers to achieve 

efficient driving controls. The DPTS is only used for training 

drivers to understand the energy-efficient controls. The 

driving practice is conducted on empty loading trams.  

(d)(c)

(b)(a)

 
Fig. 8. The DPTS screenshot in Edinburgh Tram field test 

E.  Coasting Signage 

As tram drivers need to pay attention to pedestrians, 

running vehicles and signals during driving, a DPTS may 

affect the safety of human driving and is not suitable for daily 

use. Therefore, a method of using the coasting signage to 

instruct the driver to achieve energy-efficient driving is 

proposed. The driver is expected to drive the tram as fast as 

possible before the coasting signage. Coasting is applied after 

exceeding the coasting signage. The driver is required to use 

braking mode as late as possible. There is no acceleration 

mode after the coasting mode, except for very long routes with 

various speed limit sections. The optimal coasting location is 

indicated on the poles along the route, as shown in Fig. 9. The 

coasting signage provides drivers with advice to achieve 

energy-efficient operation and sufficient freedom to drive 

safely according to real-time situation. The application of 

DPTS and the coasting signage were tested in Edinburgh Tram 

separately. The results are analyzed in the next section. 

 

 
Fig. 9. Optimized pole location for coasting signage 

IV.  SMARTDRIVE TEST ON EDINBURGH TRAM 

A.  Vehicle and Line Data 

The Edinburgh Tram Line is a suburban tram line 

connecting Edinburgh Airport to York Place Station (up 

direction). The line is 13.8 km long with 13 intermediate 
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stations. The line speed limits and height profiles are shown in 

Fig. 10. The scheduled single journey time is 2620 seconds 

with 2130 seconds running time and 35 seconds dwell time at 

each station, as shown in TABLE II. The route from York 

Place to Murrayfield Stadium is street-running section, where 

the speed limit is low. The tram runs at an average of around 

20 km/h. The route from Murrayfield Stadium to Edinburgh 

Airport is segregated. The maximum speed of the tram on 

segregated sections is 70 km/h. However, there are some low 

speed limit sections along this route due to the sharp curves. 

The depot is located between Gyle Centre and Gogarburn, the 

speed limit is lower in this inter-station. 

 

 
Fig. 10. Edinburgh Tram Line gradient, speed limits and station locations 

TABLE II 

SCHEDULED TIMETABLE OF EDINBURGH TRAM LINE 

No. Station name 
Location 

[m] 

Scheduled 

journey 

time, [s] 

Dwell 

time, 

[s] 

1 York Place 0 - - 

2 St Andrew Square 422 140 35 

3 Princes Street 1016 150 35 

4 West End – Princes Street 1966 180 35 

5 Haymarket 2564 120 35 

6 Murrayfield Stadium 3789 210 35 

7 Balgreen 4827 110 35 

8 Saughton 6474 180 35 

9 Bankhead 7677 130 35 

10 Edinburgh Park Station 8522 90 35 

11 Edinburgh Park Central 9315 100 35 

12 Gyle Centre 10113 110 35 

13 Gogarburn 11222 220 35 

14 Ingliston Park & Ride 12819 190 35 

15 Edinburgh Airport 13788 200 35 

Total - 2130 490 

 

TABLE III shows the vehicle traction characteristics. The 

tram is supplied by a DC 750 V overhead line power supply 

system. The total mass is 287 tones with a standard passenger 

load (AW2, adding weight with a standard passenger load). 

The tram is controlled by a human driving system. The 

maximum service speed and average operation speed are 

70 km/h and 35 km/h respectively. 

TABLE III 

PARAMETERS OF MOTOR EXPERIMENT PLATFORM 

Parameters Value/Equation 

Overall tram mass 56.85 ton 

Tram length 42.85 m 

Rotary allowance 0.07 

Resistance  
1.0848+0.007819v+0.0006205v2  

[N/ton] (v: km/h) 

Maximum traction power  904 kW 

Maximum operation speed  70 km/h 

Maximum tractive effort 105.34 kN 

Tram control system Human driving 

B.  Driving Test with the DPTS 

An energy simulation of Edinburgh Tram Line is developed 

based on the real parameters. The energy-efficient driving 

strategy is optimized and a DPTS is produced for drivers on 

the field test. The field test was carried out at midnight on 14th 

July 2017 on the Edinburgh tram line. Three members of staff 

from Edinburgh Tram Company and three researchers from 

the University of Birmingham participated in the field test. 

After all service trams had returned to the depot, the test tram 

departed from the depot and started the test at 23:55.  

The participants from the University of Birmingham stayed 

on the tram with two drivers from Edinburgh Tram Company 

throughout the test. The tram made three full driving trails. In 

the first driving, the driver controlled the tram with normal 

driving experience and timetable. In the second and third runs, 

the tram driver controlled the tram using a proposed optimal 

driving strategy from the DPTS. The tram driver is expected to 

control the tram in accordance with the information given 

from the DPTS. The photographs of driving without and with 

the DPTS are shown in Fig. 11. 

(a) Driving test with existing experience (b) Driving test with the DPTS  
Fig. 11. Photographs on the driving test 

The field test results are collected from the vehicle on-

board measurement system, including the time, distance, 

speed and tractive effort. The speed trajectory and traction 

energy can be calculated based on the instantaneous data. The 

speed trajectory of three runs in outbound direction is shown 

in Fig. 12. The speed trajectory of the street-running section is 

similar. In this part, human drivers have to pay attention to the 

street signals, pedestrians and vehicles at the same time. 

Following the instructions from the DPTS is difficult for them. 

Moreover, due to the low speed limits, the use of coasting is 

limited. As for the segregated sections, the difference between 

normal driving and optimal driving is obvious. It can be found 

that the normal running tram always accelerates at a higher 

speed, and then performs a gentle braking. However, the 

optimal running tram usually accelerates at a lower speed and 
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then coasts for a while before a sharp braking. Therefore, 

compared with the normal running tram, the optimal running 

tram can complete the journey using the same journey time 

but with a lower maximum speed. 

 
Fig. 12. Tram speed trajectory comparison on outbound direction 

Fig. 13 shows the inter-station energy usage comparison 

between normal running and optimal running. It can be 

observed that the optimal running tram consumes less energy 

in most of the inter-station journeys. The energy saving of the 

first five inter-stations is not significant where the tram is on 

the street-running section. Most of the inter-station journeys 

on the segregated section achieve a reduction of energy 

consumption. However, there are still some inter-station 

journeys with higher energy consumption. This is due to some 

unexpected scenarios. For example, the energy consumption 

of the 2nd optimal running on the 12th inter-station is higher 

than the normal running. There was a fox on the rail track at 

that time. The driver decelerated the tram before applying 

coasting control to save the fox. To arrive at the next station 

on time, the driver had to re-accelerate the tram to a higher 

speed than normal. Thus, the energy consumption on this 

section was increased. The driving disturbed by a fox won’t be 

normal during daytime operation. 

 
Fig. 13. Energy consumption of each inter-station on outbound direction 

The journey time and energy results for the whole cycle are 

shown in TABLE IV. The optimal driving journey time is 

shorter than the normal driving. The 1st optimal driving is the 

first time for the driver to use the DPTS. Compared with the 

energy consumption of normal driving (103.67 kWh), the 

energy consumption is reduced by 12.9% to 90.28 kWh. The 

2nd optimal driving achieves better performance, where the 

energy is reduced by 15.8%. The amount of energy saving is 

related to the coasting time. In the normal driving, the driver 

used the coasting control for 588 s, while in the optimal 

driving, the driver used the coasting control for 1334 and 

1395 s. 

TABLE IV 

JOURNEY TIME AND ENERGY CONSUMPTION 

Driving 

style 

Running 

time [s] 

Coasting 

time [s] 

Energy 

[kWh] 

Energy 

saving 

Normal  4381 588 103.67 - 

1st opt. 4045 1344 90.28 12.9% 

2nd opt. 4064 1395 87.25 15.8% 

 

C.  Driving Test with Coasting Signage 

 
Fig. 14. Tram speed trajectory comparison 

 
Fig. 15. Energy consumption of each inter-station 

TABLE V 

JOURNEY TIME AND ENERGY CONSUMPTION 

Driving 

style 

Running 

time [s] 

Coasting 

time [s] 

Energy 

[kWh] 

Energy 

saving 

Normal  856 99 47.8  - 

1st opt.  864 250 38.4 19.7% 

2nd opt. 860 265 38.2 20.1% 

3rd opt. 875 259 38.2 20.2% 

 

Another driving training with the DPTS was conducted in 

Edinburgh Tram. After that, the coasting signage was installed 

on four inter-stations in the segregated section, which is 

between Murrayfield Stadium and Edinburgh Park Station as 

highlighted in TABLE II. Some drivers started to practice 

energy-efficient driving with the coasting signage during the 

midnight field test. The latest field test was conducted in the 

daytime on 20th March 2018. The driving results during the 



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9 

daytime operation are collected and analyzed. 

The speed trajectory comparison in the outbound direction 

is shown in Fig. 14. The normal driving speed trajectory was 

collected before the coasting signage implemented. The driver 

normally accelerates to a relatively high speed and then 

cruised to remain the speed. The coasting signage location is 

shown in Fig. 14. Driving with the coasting signage, the driver 

accelerates a relatively low speed and then conducted braking 

for the first and forth inter-stations in Fig. 14. For the second 

and third inter-stations, there are two high-speed limit 

segments which is segregated by a low-speed limit segment in 

the middle. A coasting signage could be implemented for each 

high-speed segment. However, the coasting time for the 

second high-speed segment is very short. To reduce the 

difficulty of driving manipulation, no coasting signage is 

implemented after the decreased speed limit in the second and 

third inter-stations. The driver will follow the speed limits to 

complete the interstation journey. Because the rest of the 

journey is short, the driving with one coasting control still 

shows a good energy-saving performance. 

The energy consumption of each inter-station is compared 

in Fig. 15. Compared with the energy consumption by normal 

driving, the energy consumption is reduced in each inter-

station. However, the energy-saving performance is not the 

same. The total running time and energy consumption for a 

cycle by normal and optimal driving is compared in TABLE 

V. The running time by normal driving is slightly shorter than 

optimal driving. The coasting time is improved significantly, 

which is increased from 99 s to around 260 s. Thus, the energy 

consumption is reduced by around 20%. 

V.  CONCLUSION 

This paper presents an applicable driving solution for 

reducing traction energy consumption. The theoretical optimal 

driving strategies are produced by train simulation using an 

enhanced Brute Force searching algorithm. To achieve the 

application of energy-efficient strategies, a DPTS was 

developed to help drivers practice energy-efficient driving 

controls in midnight field tests. Compared with the normal 

driving, driving with the DPTS reduced the traction energy 

consumption by around 15%, and the total journey time is 

reduced. To instruct drivers use energy-efficient driving styles, 

coasting signage was implemented in the segregated sections 

of Edinburgh Tram. The energy consumption in daytime 

operation is compared and analyzed. The result indicates that 

the traction energy of driving with coasting signage is reduced 

by around 20%. From the field test, it can be concluded that 

with practice the driver can improve the energy saving 

performance. This technology is cheap and effective, which 

can be widely developed and applied in various urban rail 

lines of sight driving. The Birmingham Centre for Railway 

Research and Education will collaborate with Ricardo Rail to 

provide further supports to Edinburgh Tram, including 

training courses, field tests and daily energy consumption 

analysis. Based on the success of the traction energy-efficient 

train driving optimization and its application, the improvement 

of usage of regenerative braking energy can be further studied. 

In addition, the field tests of multi-train operation can be 

conducted in the future. 

VI.  REFERENCES 

[1] UIC and CER, "Rail Transport and Environment: Facts & Figures," UIC-
ETF (Railway Technical Publications) 2015. 

[2] UIC and CER, "Moving towards sustainable mobility: A strategy for 

2030 and beyond for the european railway sector," UIC Communications 
Department2012. 

[3] A. González-Gil, R. Palacin, P. Batty, and J. P. Powell, "A systems 

approach to reduce urban rail energy consumption," Energy Conversion 
and Management, vol. 80, no. 0, pp. 509-524, 2014. 

[4] X. Yang, X. Li, B. Ning, and T. Tang, "A Survey on Energy-Efficient 

Train Operation for Urban Rail Transit," IEEE Transactions on 
Intelligent Transportation Systems, vol. 17, no. 1, pp. 2-13, 2016. 

[5] C. S. Chang and S. S. Sim, "Optimising train movements through coast 

control using genetic algorithms," Electric Power Applications, IEE 
Proceedings -, vol. 144, no. 1, pp. 65-73, 1997. 

[6] Y. V. Bocharnikov, A. M. Tobias, C. Roberts, S. Hillmansen, and C. J. 

Goodman, "Optimal driving strategy for traction energy saving on DC 
suburban railways," Electric Power Applications, IET, vol. 1, no. 5, pp. 

675-682, 2007. 

[7] K. K. Wong and T. K. Ho, "Coast control for mass rapid transit railways 
with searching methods," Electric Power Applications, IEE Proceedings 

-, vol. 151, no. 3, pp. 365-376, 2004. 

[8] K. K. Wong and T. K. Ho, "Coast control of train movement with 
genetic algorithm," in Evolutionary Computation, 2003. CEC '03. The 

2003 Congress on, 2003, vol. 2, pp. 1280-1287 Vol.2. 

[9] S. Lu, S. Hillmansen, T. K. Ho, and C. Roberts, "Single-Train Trajectory 
Optimization," IEEE Transactions on Intelligent Transportation 

Systems, vol. 14, no. 2, pp. 743-750, 2013. 

[10] J. Yang, L. Jia, S. Lu, Y. Fu, and J. Ge, "Energy-efficient speed profile 
approximation: An optimal switching region-based approach with 

adaptive resolution," Energies, vol. 9, no. 10, p. 762, 2016. 

[11] P. G. Howlett, "The Optimal Control of a Train," (in English), Annals of 
Operations Research, vol. 98, no. 1-4, pp. 65-87, 2000. 

[12] P. G. Howlett, P. J. Pudney, and V. Xuan, "Brief paper: Local energy 

minimization in optimal train control," Automatica, vol. 45, no. 11, pp. 
2692-2698, 2009. 

[13] R. Liu and I. M. Golovitcher, "Energy-efficient operation of rail 
vehicles," Transportation Research Part A: Policy and Practice, vol. 37, 

no. 10, pp. 917-932, 2003. 

[14] S. Su, T. Tang, X. Li, and Z. Gao, "A Subway Train Timetable 
Optimization Approach Based on Energy-Efficient Operation Strategy," 

IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 2, 

pp. 883-893, 2013. 
[15] S. Su, T. Tang, and C. Roberts, "A Cooperative Train Control Model for 

Energy Saving," IEEE Transactions on Intelligent Transportation 

Systems, vol. PP, no. 99, pp. 1-10, 2014. 
[16] S. Lu, M. Q. Wang, P. Weston, S. Chen, and J. Yang, "Partial Train 

Speed Trajectory Optimization Using Mixed-Integer Linear 

Programming," IEEE Transactions on Intelligent Transportation 
Systems, vol. 17, no. 10, pp. 2911-2920, 2016. 

[17] J. Yin, T. Tang, L. Yang, J. Xun, Y. Huang, and Z. Gao, "Research and 

development of automatic train operation for railway transportation 
systems: A survey," Transportation Research Part C: Emerging 

Technologies, vol. 85, pp. 548-572, 2017. 

[18] S. Su, T. Tao, L. chen, and B. Liu, "Energy-efficient train control in 
urban rail transit systems," Proceedings of the Institution of Mechanical 

Engineers, Part F: Journal of Rail and Rapid Transit, 2014. 

[19] W. Carvajal-Carreño, A. P. Cucala, and A. Fernández-Cardador, 
"Optimal design of energy-efficient ATO CBTC driving for metro lines 

based on NSGA-II with fuzzy parameters," Engineering Applications of 

Artificial Intelligence, vol. 36, pp. 164-177, 2014. 
[20] A. Fernández-Rodríguez, A. Fernández-Cardador, A. P. Cucala, M. 

Domínguez, and T. Gonsalves, "Design of Robust and Energy-Efficient 

ATO Speed Profiles of Metropolitan Lines Considering Train Load 
Variations and Delays," IEEE Transactions on Intelligent Transportation 

Systems, vol. 16, no. 4, pp. 2061-2071, 2015. 

[21] N. Zhao, L. Chen, Z. B. Tian, C. Roberts, S. Hillmansen, and J. D. Lv, 
"Field test of train trajectory optimisation on a metro line," IET 

Intelligent Transport Systems, vol. 11, no. 5, pp. 273-281, Jun 2017. 



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10 

[22] RSSB, "GB Operational Concept Standalone Driver Advisory System 
(S-DAS)," The Rail Safety and Standard Board, 2012. 

[23] Z. Hainan, S. Xubin, C. Lei, G. Shigen, and D. Hairong, "Analysis and 

design of Driver Advisory System (DAS) for energy-efficient train 

operation with real-time information," in 2016 IEEE International 

Conference on Intelligent Rail Transportation (ICIRT), 2016, pp. 99-

104. 
[24] Z. Tian, P. Weston, N. Zhao, S. Hillmansen, C. Roberts, and L. Chen, 

"System energy optimisation strategies for metros with regeneration," 

Transportation Research Part C: Emerging Technologies, vol. 75, pp. 
120-135, 2017. 

[25] Z. Tian et al., "Energy evaluation of the power network of a DC railway 

system with regenerating trains," IET Electrical Systems in 
Transportation, vol. 6, no. 2, pp. 41-49, 2016. 

[26] R. J. Hill, "Electric railway traction. I. Electric traction and DC traction 

motor drives," Power Engineering Journal, vol. 8, no. 1, pp. 47-56, 
1994. 

[27] S. Hillmansen, "Electric railway traction systems and techniques for 

energy saving," in IET Professional Development Course on Electric 
Traction Systems, 2012, pp. 19-23. 

[28] C. J. Goodman, "Overview of electric railway systems and the 

calculation of train performance," in Electric Traction Systems, 2010 IET 
Professional Development Course on, 2010, pp. 1-24. 

[29] B. P. Rochard and F. Schmid, "A review of methods to measure and 

calculate train resistances," Proceedings of the Institution of Mechanical 
Engineers, Part F: Journal of Rail and Rapid Transit, vol. 214, no. 4, 

pp. 185-199, 2000. 
[30] M. Chymera and C. J. Goodman, "Overview of electric railway systems 

and the calculation of train performance," in Electric Traction Systems 

(2012), IET Professional Development Course on, 2012, pp. 1-18. 
[31] S. Su, T. Tang, X. Li, and Z. Gao, "A Subway Train Timetable 

Optimization Approach Based on Energy-Efficient Operation Strategy," 

Intelligent Transportation Systems, IEEE Transactions on, vol. 14, no. 2, 
pp. 883-893, 2013. 

[32] A. Levitin and S. Mukherjee, Introduction to the design & analysis of 

algorithms. Addison-Wesley Reading, 2003. 
[33] C. Paar and J. Pelzl, Understanding cryptography: a textbook for 

students and practitioners. Springer Science & Business Media, 2009. 

[34] D. E. Knuth, The art of computer programming: sorting and searching. 
Pearson Education, 1998. 

[35] H. M. Faheem, "Accelerating motif finding problem using grid 

computing with enhanced Brute Force," in 2010 The 12th International 
Conference on Advanced Communication Technology (ICACT), 2010, 

vol. 1, pp. 197-202. 

[36] N. Zhao, C. Roberts, and S. Hillmansen, "The application of an enhanced 
Brute Force Algorithm to minimise energy costs and train delays for 

differing railway train control systems," Proceedings of the Institution of 

Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 
228, no. 2, pp. 158-168, 2014. 

 

 
Zhongbei Tian received the B.Eng in Huazhong 

University of Science and Technology, Wuhan, 

China, in 2013. He received the B.Eng. and PhD 
degree in Electrical and Electronic Engineering from 

the University of Birmingham, Birmingham, U.K., 

in 2013 and 2017. He is currently a Research Fellow 
at University of Birmingham. His research interests 

include railway traction system and power network 

modeling, energy systems optimization, advanced 
power systems design, analysis of electric railways. 

 

 
Ning Zhao received M.Sc. and Ph.D. degrees in 
Electronic, Electrical and Computer Engineering 

from the University of Birmingham in 2009 and 

2013 respectively. He is a research fellow at the 
University of Birmingham’s Centre for Railway 

Research and Education. His main research area 

includes railway energy saving, railway system 
modeling, train trajectory optimization and 

optimization techniques.  

 
 

 

 
Stuart Hillmansen received his Ph.D. degree from 

Imperial College, London. He is currently a Senior 

Lecturer in electrical energy systems with the 

Department of Electronic, Electrical, and Systems 

Engineering at the University of Birmingham. He is 

a member of the Birmingham Centre for Railway 
Research and Education where he leads the Railway 

Traction Research Group, whose portfolio of 

activities is supported by the railway industry and 
government. His research interests include hybrid 

traction systems for use in railway vehicles and the 

modeling and measurement of energy consumption for railway systems.  
 

 

Clive Roberts received his Ph.D. degree from the 
University of Birmingham. His Ph.D. dissertation 

was on condition monitoring of railway 

infrastructure. He is currently a Professor of Railway 
Systems with the Department of Electronic, 

Electrical, and Systems Engineering and Director of 

Research with the Centre for Railway Research and 
Education at the University of Birmingham. He has 

developed a portfolio of research in railway systems 

engineering, system modeling and simulation, 
network capacity research, railway fault detection 

and diagnosis, and data collection and decision support applied to railway 
traction, signaling, mechanical interactions, and capacity. 

 

 
Trevor Dowens has over 37 year’s practical railway operations management 

experience including previous responsibility for the safe and reliable operation 

of a major metro system and train operating company. A proven record of 
ensuring safe rail operations across the full spectrum of rail systems from 

tramway, light rail and metro to heavy rail.  He leads the operational readiness 

and operations testing for a number of UK and overseas railways. He has 
practical understanding of issues surrounding light and heavy rail track 

sharing projects, also a proven leader of teams and projects. 

 
 

Colin Kerr leads our Engineering team and is responsible for managing all 

aspects of tram and infrastructure maintenance contracts. Colin has joined 
Edinburgh Trams from Thales where he worked on several projects on 

London Underground. His background in electromagnetic compatibility 

engineering and safety assurance has meant he has played an invaluable part 
in the Edinburgh Trams project since 2007.  Colin leads the assured delivery 

of the tram system through to operation service and continues to ensure that 

the tram network remains compatible with adjacent infrastructures. 


