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Take home message 

The ADAMTS-13 VWF axis is dysregulated in chronic thromboembolic disease with and 

without pulmonary hypertension and implicated in their pathogenesis. 

 

Word Count (Not including title page, abstract, references, tables and figure legends, 

acknowledgements) 

3055 (Max 3000) 

 

Abstract word count = 200 (Max 200) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Abstract 

Chronic thromboembolic pulmonary hypertension (CTEPH) is an important 

consequence of pulmonary embolism (PE) that is associated with abnormalities in 

haemostasis.  We investigated the ADAMTS13-VWF axis in CTEPH, including its 

relationship to disease severity, inflammation, ABO groups and ADAMTS13 genetic 

variants. 

 

ADAMTS13 and VWF plasma antigen levels were measured in patients with CTEPH 

(n=208), chronic thromboembolic disease without pulmonary hypertension (CTED; 

n=35), resolved PE (n=28), idiopathic pulmonary arterial hypertension (n=30) and 

healthy controls (n=68).  CTEPH genetic ABO associations and protein quantitative trait 

loci were investigated.  ADAMTS-VWF axis abnormalities were assessed in CTEPH 

and healthy control subsets by measuring ADAMTS13 activity, D-dimers and VWF-

multimeric size.  

 

CTEPH patients had decreased ADAMTS13 (adjusted β (95% CI) = -23.4 (-30.9 to  

-15.1)%, p<0.001) and increased VWF levels (β=+75.5 (44.8 to 113)%, p<0.001) 

compared to healthy controls.  ADAMTS13 levels remained low after reversal of 

pulmonary hypertension by pulmonary endarterectomy surgery and were equally 

reduced in CTED.  We identify a genetic variant near the ADAMTS13 gene associated 

with ADAMTS13 protein that accounted for ~8% of the variation in levels. 

 



 

The ADAMTS13-VWF axis is dysregulated in CTEPH. This is unrelated to pulmonary 

hypertension, disease severity or markers of systemic inflammation and implicates the 

ADAMTS13-VWF axis in CTEPH pathobiology.    



 

 

Introduction 

Chronic thromboembolic pulmonary hypertension (CTEPH) results from failure of 

thrombus resolution in the pulmonary arteries following acute pulmonary embolism (PE) 

in ~3% [1].  Organisation and fibrosis of thrombotic material leads to obstruction of 

proximal pulmonary arteries and the subsequent development of a secondary small 

vessel vasculopathy, both of which contribute to pulmonary hypertension and 

subsequent right heart failure [2, 3].  

 

Abnormalities in haemostasis are implicated in CTEPH pathobiology [4, 5].  This 

includes elevated von Willebrand factor (VWF), a multimeric plasma glycoprotein that is 

synthesized by vascular endothelial cells and megakaryocytes [6, 7].  VWF plays an 

important role in platelet recruitment by mediating adhesion of platelets to the 

endothelium and is also a carrier protein for the pro-coagulant blood clotting factor VIII 

[7].  VWF activity is normally regulated by ADAMTS13 (a disintegrin and 

metalloproteinase with a thrombospondin type 1 motif, member 13), a plasma protein 

that specifically cleaves the more active high molecular weight VWF multimers 

[8].  ADAMTS13 is predominately produced by hepatic stellate cells, in addition to 

vascular endothelial cells and megakaryocytes [9].  The critical role of ADAMTS13 

levels in haemostasis is exemplified by thrombotic thrombocytopenic purpura (TTP), 

characterised by micro-angiopathic thrombosis, in which plasma levels of ADAMTS13 

are severely reduced by autoantibodies or rare ADAMTS13 mutations [10].  

 



 

 

Plasma VWF is increased in a range of thrombotic conditions including coronary artery 

disease (CAD), ischaemic stroke and venous thromboembolism (VTE) [11, 

12].  Conversely, plasma ADAMTS13 is modestly reduced in CAD and ischaemic stroke 

[11, 13].  There are discordant findings in patients with acute PE, with increased, no 

difference and decreased ADAMTS13 reported [14-16].  VWF and Factor VIII are 

known to be elevated in CTEPH and do not change following pulmonary 

endarterectomy (PEA) suggesting a role in pathogenesis [6].  Whilst VWF cleaving 

protease has been indirectly assessed in CTEPH the direct role of ADAMTS13 has not 

been investigated to date [6].   

 

A large proportion of the variation in VWF levels is genetically determined, with 30% 

due to ABO groups [17].  The ADAMTS13 gene is situated ~200 kilobases (kb) 

downstream of ABO and is genetically regulated with 20% of its variance attributable to 

common variants at the ADAMTS13 locus [18].  ADAMTS13 is not known to vary with 

ABO groups in healthy cohorts [19].  Similar to other thrombotic diseases, the non-O 

blood groups are over-represented in CTEPH suggesting a mechanism by which VWF 

levels are increased [20].  We aimed to investigate the ADAMTS13-VWF axis in CTEPH 

patients including its relationship to ABO groups and ADAMTS13 genetic variants.   

 

 

 

 



 

 

Methods 

Study samples and participants 

The study was approved by the regional ethics committee (REC no. 08/H0304/56 and 

08/H0802/32) and all study participants provided written informed consent from their 

respective institutions.  

 

Consecutive CTEPH patients from the national pulmonary endarterectomy (PEA) centre 

(Royal Papworth Hospital, United Kingdom (UK)) with available plasma samples 

(August 2013-December 2016) (supplementary figure S1) and genotype data were 

included in the study (n=208).  Healthy volunteers (n=68) were used as a control group 

(Papworth and Hammersmith Hospital, UK).  Additional patient groups were recruited as 

disease comparators including: chronic thromboembolic disease (CTED, n=35), 

idiopathic pulmonary arterial hypertension (IPAH, n=30) and pulmonary embolism (PE, 

n=28).  CTED was characterised by persistent pulmonary arterial thromboembolic 

occlusions without pulmonary hypertension (mean pulmonary arterial pressure 

<25mmHg) in symptomatic patients, and other diagnoses were made using international 

criteria [21, 22].   

 

ADAMTS13 and VWF plasma concentrations 

Plasma samples were used to measure ADAMTS13 and VWF antigen (Ag) levels by 

enzyme-linked immunosorbent assays (ELISA).  Samples for the CTEPH, CTED and 

IPAH groups were obtained closest to the time of diagnosis, and pre-operatively for the 



 

CTEPH and CTED patients undergoing PEA.  Additionally, ADAMTS13 and VWF levels 

were measured in 22 paired post-PEA samples taken at a follow-up time within 1 year 

of surgery to assess the effect of PEA.  The PE group were sampled from a specialist 

PE follow-up service (Hammersmith, UK) at a median of 220 (interquartile range (IQR) 

218) days following an acute PE.    

 

ADAMTS13 and VWF plasma antigen levels were quantified using polyclonal rabbit 

anti-ADAMTS13 and anti-VWF antibodies as previously described (supplementary 

material) [19, 23].  

 

ADAMTS13 activity, D-dimer, anti-ADAMTS13 autoantibodies and VWF multimeric 

size 

Additional experiments were performed on a subset of the CTEPH (n=21-23) and 

healthy control (n=14) groups to identify potential mechanisms for any dysregulation of 

the ADAMTS13-VWF axis.  Plasma samples were used to measure ADAMTS13 activity 

(fluorescence resonance energy transfer (FRETS) assay), D-dimer concentrations 

(ELISA) and anti-ADAMTS13 autoantibodies (CTEPH: n=23) with further details in the 

supplementary material.  An estimate of VWF multimeric size was made by measuring 

VWF collagen binding (VWF:CBA) and comparing this with VWF antigen levels 

(CTEPH: n=21).  

 

Clinical phenotype data 



 

Phenotype data for the CTEPH, CTED and IPAH groups were recorded closest to the 

time of diagnosis and pre-operatively for the CTEPH and CTED patients undergoing 

PEA.  This included demographics, haemodynamics, WHO functional class, 6-minute 

walk distance (6mwd), clinical blood tests, smoking history and anticoagulation therapy 

usage.      

 

Genotype data 

Imputed genotype dosages were available from an ongoing international GWAS in 

CTEPH that will be published separately on recruitment of a validation cohort.  All 

individuals were genotyped on commercially available Illumina assays and imputed to 

the Haplotype Reference Consortium build 1.1.  Additional details and quality controls 

steps are described in the supplementary material.   

  

Genotypes were available for 207 (185 CTEPH; 22 CTED) after GWAS quality control 

exclusions.  These patients were included in the genetic ABO group and protein 

quantitative trait loci (pQTL) analyses.  Matched genotypes and ADAMTS / VWF 

antigen levels were not available for the healthy control, IPAH or PE groups.  

 

Genetic ABO groups  

The ABO groups A1, A2, B and O were reconstructed using haplotypes from phased 

data and a described list of tagging ABO SNPs (supplementary materials).  This 

resulted in 10 groups (A1A1, A1A2, A1B, A1O, A2A2, A2B, A2O, BB, BO, OO), from 

which blood groups A, B, AB and O were inferred.    



 

 

Protein quantitative trait loci 

Associations between genetic variants in the ADAMTS13 gene ± 40kb (n=396 variants), 

and ADAMTS13 protein levels were evaluated using multivariable linear regression.  

The model was adjusted for age, sex and ADAMTS13 plasma antigen experimental 

batch.  Additional models were adjusted for VWF antigen levels and the first 5 ancestry 

informative principal components used in the GWAS analysis.  The ADAMTS13 ± 40kb 

region included the ADAMTS13 cis-pQTLs that have previously been described [18, 24, 

25].  

 

Statistical analysis 

Group differences in ADAMTS13 and VWF antigen levels were assessed using 

multivariable linear regression adjusted for age, sex, experimental batch (batch1 vs. 

batch2) and self-reported ethnicity (Caucasian vs. non-Caucasian).  The β coefficients 

and confidence intervals (CI) are presented as percentage change.    

  

Data is presented as median ± interquartile range.  Spearman's rank correlation 

coefficients were used to describe associations between ADAMTS13 or VWF protein 

levels and clinical phenotypes associated with disease severity and blood markers of 

inflammation. 

 

 

  



 

Results 

Baseline group characteristics are summarised in table 1 and supplementary table 

S1.  Age and sex differed across the groups (p<0.001 and p=0.014) with CTEPH 

patients being older (median ± IQR: 64 ± 19years) than healthy controls (49 ± 

24years).  Ethnicity also differed (p<0.001) with more non-Caucasians in the PE 

group.  In the whole CTEPH group, 176 (87%) had a proximal distribution of pulmonary 

arterial obstruction deemed to be surgically accessible and 150 (72%) underwent 

pulmonary endarterectomy.  

 

ADAMTS13 plasma concentrations 

ADAMTS13 antigen levels were decreased in CTEPH patients (0.889 ± 0.397μg/mL; 

p<0.001) compared to healthy controls (1.15 ± 0.300μg/mL) (figure 1a).  ADAMTS13 

was also reduced in CTED (0.831 ± 0.224μg/ml, p<0.001) but levels were similar to 

CTEPH (p=0.205) (supplementary table S2).  There was no difference in ADAMTS13 

levels between IPAH (1.12 ± 0.413μg/mL; p=0.373) and healthy controls, though the PE 

group did exhibit slightly lower levels (0.969 ± 0.704μg/ml; p=0.049).  

 

Multivariable linear regression confirmed that ADAMTS13 was lowest in the CTEPH (β 

(95% CI) (% change) = -23.4 (-30.9 to -15.1)%, p<0.001) and CTED groups (β = -25.9 (-

35.1 to -15.4)%, p<0.001) (supplementary table S3).  These observations should be 

interpreted with the additional models utilising interaction terms presented in the 

supplementary materials.  Increasing age was also associated with lower ADAMTS13 (β 

= -5.06 (-2.99 to -7.08)% per 10 years, p<0.001).  ADAMTS13 antigen levels were not 



 

significantly associated with the PE group (β = -12.0 (-24.0 to 1.97)%, p=0.089), nor 

were they associated with IPAH, sex or ethnicity.      

 

VWF plasma concentrations 

We confirmed that VWF antigen levels are increased in CTEPH (16.7 ± 15.2μg/mL; 

p<0.001) compared to healthy controls (8.45 ± 8.77μg/mL) (figure 1b).  Furthermore, 

VWF was increased in CTED (17.0 ± 10.1μg/mL, p<0.001) compared to healthy 

controls, but was no different to CTEPH (p=0.834) (supplementary table S2).  There 

was no difference in VWF antigen levels between IPAH (11.6 ± 12.3μg/mL; p=0.071) or 

PE (9.23 ± 9.82μg/mL; p=0.433) and healthy controls. 

 

Multivariable linear regression was also used for VWF plasma concentrations as 

described for ADAMTS13.  This confirmed that VWF was significantly increased in the 

CTEPH (β=+75.5 (44.8 to 113)%, p<0.001) and CTED groups (β=+89.5 (48.0 to 143)%, 

p<0.001) (supplementary table S4).  VWF plasma concentrations were not significantly 

associated with the IPAH or PE groups, sex or ethnicity.    

 

The combination of low ADAMTS13 and high VWF antigen levels had a synergistic 

effect on the odds of CTEPH (Odds ratio (OR) = 14.5 (5.33 to 47.4), p<0.001) compared 

with healthy controls (supplementary figure S2 and supplementary table S5). 

 

ADAMTS13 and VWF: Pre- and post-pulmonary endarterectomy 



 

In 22 CTEPH patients matched samples were taken post-PEA, after a median of 343 

(IQR 216) days.  There were no differences in ADAMTS13 (median of differences ± 

IQR: -0.0328 ± 0.250μg/mL, p=0.777) or VWF protein levels (-3.05 ± 10.7μg/mL, 

p=0.777) following removal of proximal organised thrombus material by pulmonary 

endarterectomy (figure 2). 

 

ADAMTS13 activity, D-dimer, anti-ADAMTS13 autoantibodies and VWF multimers 

Specific ADAMTS13 activity (Activity:antigen (Act:Ag) ratio) was increased in CTEPH 

(Act:Ag 1.57 ± 0.32) compared with healthy controls (1.05 ± 0.190; p<0.001) (figure 3a). 

 

Plasmin and thrombin are able to inactivate ADAMTS13 proteolytically in vitro and 

plasmin mediated ADAMTS13 cleavage has been observed in TTP [26, 

27].  Furthermore, abnormalities in the fibrinolysis pathway have been implicated in 

CTEPH [4].  Therefore, we used fibrinogen degradation products measured by D-dimer 

as a potential surrogate marker of plasmin and thrombin activity.  D-dimer was 

increased in CTEPH (1.24 ± 1.25μg/mL) compared to healthy controls (0.538 ± 

0.344μg/mL; p=0.030) (figure 3b).  Specific ADAMTS13 activity was not correlated with 

D-dimer in the CTEPH (rho=0.0938, p=0.761) or healthy control groups (rho=-0.220, 

p=0.313) (figure 3c). 

 

As the ADAMT13 reduction in TTP has an autoimmune mechanism, we investigated 

whether anti-ADAMTS13 autoantibodies are increased in CTEPH.  There was no 



 

significant difference in anti-ADAMTS13 autoantibodies between CTEPH (92.3 ± 

38.9%) and healthy controls (76.0 ± 16.5%; p=0.180) (supplementary figure S3). 

 

We hypothesised that a decrease in ADAMTS13 antigen levels would result in reduced 

VWF cleavage and an increase in high multimeric VWF as occurs in TTP [28].  There 

was no difference in VWF multimeric size between CTEPH (VWF CBA:Ag ratio, 0.659 ± 

0.537) and healthy controls (0.866 ± 0.494; p=0.160) (figure 3d).  

 

Clinical phenotype associations with ADAMTS13 and VWF 

In CTEPH, ADAMTS13 and VWF did not significantly correlate with markers of disease 

severity (6mwd, pulmonary vascular resistance or N-terminal pro b-type natriuretic 

peptide) (supplementary figure S4).  Since inflammation has been associated with both 

CTEPH and abnormalities in the ADAMTS13-VWF axis we investigated if they were 

correlated [29, 30].  There were no correlations with blood markers of inflammation (C-

reactive protein, white cell count, neutrophil and lymphocyte percentages) 

(supplementary figure S5).         

 

ABO groups and ADAMTS13-VWF 

There was no difference in ADAMTS13 antigen levels when stratified by simple genetic 

ABO groups (O, A, B, AB) (figure 4a) (p=0.443) or more comprehensive genetic ABO 

groups (supplementary figure S6a) (p=0.616). 

 



 

VWF levels did not vary by ABO groups (figure 4b and supplementary figure S6b) 

however, when accounting for covariates (supplementary table S6), ABO group B had a 

higher VWF level (β=+51.3 (5.30 to 117)%, p<0.001) compared to group O.  ABO group 

A also had a higher VWF level, although this was not statistically significant (β=+19.8 (-

1.75 to 46.1)%, p<0.073).  Patients with ABO group O had the lowest VWF levels within 

the CTEPH group (14.5 ± 13.0μg/mL), which was still significantly higher than healthy 

controls (8.45 ± 8.77μg/mL, p<0.001). 

 

There was no difference in ADAMTS13 antigen levels between ABO groups, when 

accounting for covariates with multivariable linear regression.   

    

Protein quantitative trait loci for ADAMTS13 

There were 5 SNPs in the ADAMTS13 ± 40kb region that were significantly associated 

with ADAMTS13 protein in a multivariable linear regression model (supplementary table 

S7).  The most significant SNP (rs3739893, risk allele C, β=-37.1 (-48.1 to -23.8)%, 

p=3.78x10-06) is a 5' untranslated region (UTR) variant in the C9orf96 gene, which is 

~8kb 5' of the ADAMTS13 gene.  In a model adjusted for age, sex and batch, the lead 

SNP (rs3739893) explained 7.7% of the variance in ADAMTS13 levels within the 

CTEPH group (supplementary table S8).  In the whole CTEPH GWAS, the effect allele 

frequency for rs3739893 in CTEPH cases (0.0128) and healthy controls (0.0158) was 

not significantly different, which suggests that it is not associated with CTEPH disease 

risk.   

 



 

 

Discussion 

This is the first study demonstrating a marked reduction in plasma levels of ADAMTS13 

in CTEPH. This is independent of pulmonary hypertension, disease severity or systemic 

inflammation.  We confirm that VWF is increased in CTEPH and implicate dysregulation 

of the ADAMTS13-VWF axis in CTEPH pathobiology.  

 

The magnitude of ADAMTS13 reduction and VWF increase in CTEPH is greater than 

observed in studies of ischaemic stroke using the same methodology 

[23].  Furthermore, levels are lower in CTEPH than CAD when considering the 

proportion of patients in the lowest ADAMTS13 quartile (65% versus 28% respectively) 

[13].  Additionally, the combination of decreased ADAMTS13 and increased VWF has a 

synergistic effect on the odds of CTEPH that is greater than observed in CAD or 

ischaemic stroke [23].  The more pronounced ADAMTS13-VWF dysregulation in 

CTEPH may reflect the larger surface area of the vascular endothelium involved or 

alternatively that ADAMTS13-VWF dysregulation is more important in CTEPH 

pathobiology.  Although ADAMTS13 is predominately produced by the liver, the 

contribution to plasma levels from vascular endothelial cells could be substantial given 

the large surface area of the lung vasculature [9].  A reciprocal relationship has 

previously been described between ADAMTS13 and VWF [31, 32].  The reduction in 

ADAMTS13 remained in our study when VWF levels were adjusted for, which is 

consistent with low ADAMTS13 being an independent risk factor in other thrombotic 

diseases [11]. 



 

 

Following pulmonary endarterectomy and removal of proximal thromboembolic material, 

the ADAMTS13-VWF axis remains dysregulated despite normalisation of 

haemodynamic parameters.  Additionally, there is an equal perturbation of the axis in 

CTED, and no correlation with CTEPH disease severity, confirming the changes are not 

due to the presence of pulmonary hypertension or organised thrombus per 

se.  Interestingly, there was no abnormality in ADAMTS13 levels in IPAH despite this 

group having a higher pulmonary vascular resistance, implying that distal pulmonary 

artery endothelial dysfunction and small vessel vasculopathy are not responsible 

[33].  Taken together, these observations demonstrate the dysregulation of the 

ADAMTS13-VWF axis in CTEPH pathogenesis.  

 

Low ADAMTS13 could be driven by activation of fibrinolytic pathways and an increase 

in thrombin and/or plasmin, which have the potential to proteolytically inactivate 

ADAMTS13 [26]. D-dimer was raised in CTEPH though there was no correlation with 

ADAMTS13.  High multimeric forms of VWF appear not to be increased in CTEPH.  

This is surprising, as increased high multimeric VWF occurs when ADAMTS13 is 

reduced in TTP and has been suggested to occur in ischaemic stroke and CAD [23, 

28].  VWF multimeric size measured systemically may not reflect the local disease 

microenvironment in the pulmonary vascular endothelium.  Additionally, the localised 

flow conditions that may be altered in CTEPH are important in VWF structure, cleavage 

by ADAMTS13 and thrombus resolution [34].  The increase in specific ADAMTS13 



 

activity in CTEPH may reflect an increased conformational activation of ADAMTS13 by 

its substrate VWF, due to the altered ADAMTS13:VWF ratio [35].  

 

The ABO gene is located in close proximity and modest linkage disequilibrium with the 

ADAMTS13 gene, raising the possibility that ABO may influence the ADAMTS13-VWF 

axis.  ABO blood groups are associated with CTEPH with an over-representation of the 

non-O groups [20]. Genetic variation in ABO has also been associated with ischaemic 

stroke, coronary artery disease and venous thromboembolism [36, 37].  The proposed 

mechanism of this association has been via VWF plasma levels, which are 25% higher 

in non-O individuals [38].  We demonstrate that VWF is increased in some non-O 

groups within CTEPH however, VWF is still significantly higher in the CTEPH O group 

compared with healthy controls.  This implies that there are additional contributing 

causes for the increased VWF in CTEPH.  Conversely, ABO is a pleiotropic locus and 

may have alternative functional effects in CTEPH including mediating pathways 

involved in inflammation and angiogenesis [25].   

 

We identified a protein qualitative trait loci (rs3739893) in the C9orf96 gene (~8kb 5’ of 

the ADAMTS13 gene) that is associated with ADAMTS13 protein levels and has been 

described in two previous studies [18, 24].  In a GWAS of ADAMTS13 antigen levels in 

a healthy cohort, this SNP is significantly associated with a similar effect size (β = -

22.3%).  Whilst this confirms that ADAMTS13 protein is genetically regulated, this SNP 

only accounts for a modest variance of ~8% in ADAMTS13 protein levels and is not 

primarily associated with CTEPH disease risk.   



 

 

A strength of this study is that we investigated the ADAMTS13-VWF axis in a spectrum 

of thromboembolic disease from acute PE to chronic thromboembolic disease with and 

without pulmonary hypertension.  Our study contains a large sample of well 

characterised CTEPH patients that have been extensively phenotyped in an 

experienced national CTEPH centre. ADAMTS13-VWF imbalance does not occur in PE 

when assessed by multivariable regression, although we were underpowered to detect 

smaller effect sizes.  This raises an intriguing possibility, that there are differences in the 

ADAMTS13-VWF axis in the spectrum of thromboembolic disease.  Future studies 

using robustly phenotyped PE cohorts to ascertain the presence and extent of residual 

perfusion defects, should investigate if the ADAMTS13-VWF axis varies in post-PE 

syndrome.  Clinical prediction scores for CTEPH following acute PE do not currently 

incorporate biomarkers [39].  Determining if dysregulation of the ADAMTS13-VWF axis 

precedes the development of chronic thromboembolic pathology could inform CTEPH 

risk stratification.   

 

In summary, we report that the ADAMTS13-VWF axis is dysregulated in CTEPH and 

this is unrelated to pulmonary hypertension, disease severity or systemic inflammation.  

This implicates the ADAMTS13-VWF axis in CTEPH pathogenesis.  
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Tables 
 
TABLE 1  

Baseline group characteristics  

 Healthy 

control 

CTEPH CTED IPAH PE 

Subjects  68 208 35 30 28 

Age, Years 49 ± 24 64 ±19 58 ± 27 64 ± 27 52 ± 26 

Sex, Female 32 (47) 90 (43) 9 (26) 21 (70) 15 (54) 

Ethnicity, Caucasian 53 (78) 180 (95) 28 (88) 26 (90) 13 (54) 

WHO functional class 

   1 

   2 

   3 

   4 

  

4 (2) 

42 (21) 

151 (74) 

7 (3) 

 

6 (18) 

17 (50) 

11 (32) 

0 (0) 

 

5 (17) 

4 (13) 

21 (70) 

0 (0) 

 

6mwd, Metres  318 ± 176 366 ± 180 342 ± 244  

Pulmonary 

haemodynamics 

   mPAP, mmHg 

   CI, L/min/m2 

   PVR, dynes.s.cm-5 

  

 

42 ± 18 

2 ± 0.6 

639 ± 476 

 

 

21 ± 4 

2.4 ± 0.6 

151 ± 71 

 

 

42 ± 17 

1.7 ± 0.8 

808 ± 642 

 

Clinical blood tests 

   Haemoglobin, g/L 

   Platelet count, x109 

   WCC, x109 

   Lymphocyte, % 

   Neutrophil, % 

  

140 ± 27 

246 ± 82 

7 ± 3 

25 ± 10 

64 ± 14 

 

138 ± 16 

200 ± 56 

6.6 ± 2.1 

28 ± 13 

59 ± 14 

 

142 ± 22 

222 ± 77 

6.9 ± 2.4 

18 ± 13 

72 ± 14 

 



 

   CRP, mg/L 

   NT-proBNP, pg/mL 

5 ± 10 

592 ± 1576 

3 ± 3 

113 ± 194 

3 ± 4 

334 ± 695 

Smoking status 

   Never 

   Ex-smoker 

   Current smoker 

  

91 (47) 

87 (45) 

15 (8) 

 

16 (50) 

13 (41) 

3 (9) 

 

15 (52) 

11 (38) 

3 (10) 

 

Anticoagulation 

medication 

 137 (94) 15 (94) 30 (100)  

 

Data is presented as median ± interquartile range or number of patients (%).  

Percentages were calculated using the number of patients that data was available for as 

the denominator.  6mwd (6-minute walk distance), CI (cardiac index), mPAP (mean 

pulmonary arterial pressure), NT-proBNP (N-terminal pro b-type natriuretic 

peptide), PVR (pulmonary vascular resistance), WCC (white cell count). 

 


