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ABSTRACT
We reconstruct posterior distributions for the position (sky area and distance) of a simulated
set of binary neutron star gravitational-waves signals observed with Advanced LIGO and
Advanced Virgo. We use a Dirichlet process Gaussian-mixture model, a fully Bayesian non-
parametric method that can be used to estimate probability density functions with a flexible
set of assumptions. The ability to reliably reconstruct the source position is important for
multimessenger astronomy, as recently demonstrated with GW170817. We show that for
detector networks comparable to the early operation of Advanced LIGO and Advanced Virgo,
typical localization volumes are ∼104–105˜Mpc3 corresponding to ∼102–103 potential host
galaxies. The localization volume is a strong function of the network signal-to-noise ratio,
scaling roughly ∝ �−6

net . Fractional localizations improve with the addition of further detectors
to the network. Our Dirichlet process Gaussian-mixture model can be adopted for localizing
events detected during future gravitational-wave observing runs and used to facilitate prompt
multimessenger follow-up.

Key words: gravitational waves – methods: data analysis – methods: statistical – gamma-ray
burst: general – stars: neutron.

1 IN T RO D U C T I O N

Bayesian inference is frequently used in astronomy as a means of
combining new data with prior knowledge to construct a better
model for our understanding of astronomical systems. Our state of
knowledge about the values of a system’s parameters is encoded
in a probability distribution. An efficient and effective means of
mapping a probability distribution is using a stochastic sampling
algorithm, such as nested sampling (Skilling 2006) or Markov-chain
Monte Carlo (Gregory 2005, chapter 12). These explore parameter
space and, in doing so, return a set of samples randomly drawn from
the desired probability distribution. These samples can be used to
calculate summary statistics such as expectation values; however,
for some applications it is desirable to have a smooth probability

� E-mail: walter.delpozzo@unipi.it (WdelP); cplb@star.sr.bham.ac.uk
(CPLB); archis@nikhef.nl (AG)

density function. This leaves the question of converting a discrete
set of samples into a continuous probability density function.

The crudest means of reconstructing a probability density func-
tion is by creating a set of bins and counting the number of samples
that fall in each. This is extremely difficult to do robustly: bins
must be sufficiently small to resolve the features of the distribu-
tion (and avoid introducing artefacts from the quantization) but still
large enough that they contain sufficient samples to provide a fair
estimate of the underlying probability density at that location. It is
almost impossible to do this using a single bin size; in practice, we
must adapt to the shape of the distribution, which is not usually
known beforehand.

In this paper, we explain an algorithm using Dirichlet processes
(DPs) to build a Gaussian-mixture model (DPGMM) that can be
used to build probability distributions from a set of samples. We
specialize to the question of inferring the (three-dimensional) loca-
tion of an astronomical system; however, the algorithm may be gen-
eralized for working with different parameter spaces. Our DPGMM
can be used to efficiently combine the three-dimensional probabil-

C© 2018 The Author(s)
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ity distribution with a galaxy catalogue to produce a list of most
probable host galaxies.

This work originates from the field of gravitational-wave astron-
omy. The new generation of detectors began operation in 2015
September (Abbott et al. 2017a), with the first observing run (O1)
of Advanced Laser Interferometer Gravitational-wave Observatory
(aLIGO; Aasi et al. 2015a). This run yielded the first observations of
binary black hole coalescences, GW150914 (Abbott et al. 2016c),
GW151226 (Abbott et al. 2016e), and potentially LVT151012 (Ab-
bott et al. 2016a,b). The second observing run (O2) began in 2016
November, with Advanced Virgo (AdV; Acernese et al. 2015) join-
ing for the final month of 2017 August. The extension of the
gravitational-wave detector network to include additional obser-
vatories improves the prospects for localizing the source on the sky
(e.g. Singer et al. 2014; Abbott et al. 2017a; Gaebel & Veitch 2017).
O2 saw further binary black hole detections, GW170104 (Abbott
et al. 2017d), GW170608 (Abbott et al. 2017k), and GW170814
(Abbott et al. 2017e) as well as the first binary neutron star (BNS)
detection, GW170817 (Abbott et al. 2017f). The complete results
of O2 are yet to be announced.

Gravitational-wave observations do not pinpoint the source of
transient signals, instead the source location is inferred probabilis-
tically. The source location is of paramount importance for iden-
tifying a multimessenger counterpart: both for targeting follow-up
observations and for establishing that a candidate counterpart is
associated with the gravitational-wave source.1 Extensive electro-
magnetic and neutrino follow-up has been performed for the binary
black hole detections (e.g. Abbott et al. 2016f; Adrián-Martı́nez
et al. 2016; Albert et al. 2017a) with no conclusive counterpart
yet found. This is not surprising. BNSs are the more promising
source for counterparts (e.g. Metzger & Berger 2012; Piran, Nakar
& Rosswog 2013), and GW170817 was accompanied by detec-
tions across the electromagnetic spectrum (Abbott et al. 2017h).
A short gamma-ray burst, GRB 170817A, was observed indepen-
dently of the gravitational-wave localization (Goldstein et al. 2017;
Savchenko et al. 2017), but the (three-dimensional) localization
from gravitational-wave observations was crucial for identification
of a kilonova counterpart (Arcavi et al. 2017a; Coulter et al. 2017;
Lipunov et al. 2017; Soares-Santos et al. 2017; Tanvir et al. 2017;
Valenti et al. 2017). Multimessenger observations give a range of
insights, such as testing the speed of gravity (Abbott et al. 2017i);
exploring the host environment and formation history of merging
compact binaries (Abbott et al. 2017j; Blanchard et al. 2017; Im
et al. 2017; Levan et al. 2017; Pan et al. 2017), and estimation of the
Hubble constant (Abbott et al. 2017g; Guidorzi et al. 2017). The
question of sky-localization potential for a realistic astrophysical
population of BNS systems has been investigated in Singer et al.
(2014) and Berry et al. (2015). For the early observing runs, local-
izations were typically of the order of hundreds of square degrees,
making follow-up observations challenging. The probability of ob-
serving a counterpart can be enhanced using galaxy catalogues to
pick out the most likely locations (Fan, Messenger & Heng 2014;
Hanna, Mandel & Vousden 2014) including information on the
distance of the source can significantly aid this process (Nissanke,
Kasliwal & Georgieva 2013; Gehrels et al. 2016; Singer et al. 2016).

1It may be sufficient to associate a gravitational-wave signal with a gamma-
ray burst by time coincidence alone since both are short lived (cf. Aasi
et al. 2014a,b; Abbott et al. 2016h), but additional spatial coincidence gives
greater confidence (cf. Abbott et al. 2017i).

Even without observing a counterpart, inferring the (three-
dimensional) location of gravitational-wave sources is useful. Com-
paring posterior distributions on location with galaxy catalogues
makes it possible to assign a probability that a signal originated
from a particular galaxy. Comparing the luminosity distance from
the gravitational-wave observation with the redshift measurements
for the galaxies gives a measure of the Hubble constant (Schutz
1986). Combining results from a few tens of observations from the
advanced-detector network could measure the Hubble constant to an
accuracy of ∼5 per cent at 95 per cent credibility (Del Pozzo 2012;
Chen, Fishbach & Holz 2017). This is comparable to the existing
constraints from the Hubble Space Telescope Key Project (Freed-
man et al. 2001) and inferior to current results from the Planck
cosmic microwave background observations (Ade et al. 2016), the
SH0ES Type Ia supernovae survey (Riess et al. 2016, 2018), or from
the weak lensing measurements (combined with baryonic acoustic
oscillation and Big Bang nucleosynthesis data) from the Dark En-
ergy Survey (Abbott et al. 2017b). However, the gravitational-wave
measurement is independent of the usual systematics, making it a
valuable check.

While the primary purpose of this work is to document our imple-
mentation of a DPGMM for gravitational-wave source localization,
and to demonstrate its effectiveness, the techniques described are
of general applicability and could be of interest for a wide range of
problems. We begin in Section2 with background material on DPs
and the DPGMMs; those only interested in our results may skip this
section. We apply the DPGMM to reconstruct the position posterior
probabilities densities of a set of simulated BNS signals. We use
the (well-studied) catalogue of results generated to model the ex-
pected early operation of the advanced-detector network presented
in Singer et al. (2014) and Berry et al. (2015); this is described in
Section 3. In Section 4, we present our results for the source lo-
calization. Our reconstructed three-dimensional posteriors indicate
that BNSs could be localized to ∼104–105Mpc during the early runs
of the advanced-detector era, assuming perfect detector calibration
(cf. Singer et al. 2016). The introduction of more detectors will
improve both two-dimensional and three-dimensional localization,
and so the probability of successfully identifying multimessenger
counterparts to the gravitational-wave signal.

2 U SE OF DI RI CHLET PROCESSES

2.1 Posterior distributions

In many fields of astronomy and astrophysics, one of the main chal-
lenges is to be able to accurately measure the physical parameters of
interest and consequently make reliable statements about the sys-
tems that have been observed. Given a set of observations and a
model, one must infer the values of the parameters. The dimension-
ality of parameter space is frequently large, necessitating the use of
stochastic samplers for exploration (MacKay 2003, chapter 29). For
making reliable inferences about compact binary coalescences (the
inspiral and merger of neutron star–neutron star, neutron star–black
hole, and black hole–black hole binaries), the LIGO Scientific and
Virgo Collaborations (LVC) have devoted significant time and effort
to develop LALINFERENCE (Veitch et al. 2015), a suite of programs that
are part of the LVC Algorithm Library.2 Other fields have equiv-

2In addition to the stochastic sampling algorithms of LALINFERENCE, localiza-
tion of BNSs can also be performed using BAYESTAR (Singer & Price 2016),
a more expedient algorithm, which we do not consider here.
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alent specialized codes, such as COSMOMC for cosmic microwave
background (and other cosmological observations) analysis (Lewis
& Bridle 2002) or TEMPONEST for pulsar timing (Lentati et al. 2013),
or may use general samplers such as EMCEE (Foreman-Mackey et al.
2013). The output of any of these is a list of independent samples
drawn from the posterior probability distribution of all relevant pa-
rameters. These samples can then be used to reconstruct information
about the parameters of interest.

For some applications, it is desirable to have a smooth estimate
of the posterior probability density functions. For example, in our
case, we will use the probability density functions to (i) calculate
credible volumes to check and summarize our reconstructed local-
izations and (ii) correlate with galaxy catalogues to find the most
probable host galaxies. The discrete nature of the samples can make
computing the probability density function difficult. To address this
problem, various techniques have been developed; the most com-
mon ones are histogramming and kernel density estimation (KDE).
Both techniques can be effective when the shape of the posterior dis-
tribution function is simple or when the number of samples is large;
however, when the number of samples is small, different choices of
the bin size for histograms or of the kernel width for KDE can yield
distorted results that depend on the actual choice of these parame-
ters. Aware of these limitations, an alternative technique based on
constructing a k-dimensional tree has been suggested for the esti-
mation of credible regions in the two-dimensional sky plane (Sidery
et al. 2014b).3 This method successfully estimates the sky position,
but since it must tile the region of interest with rectangular leaves,
its applicability is still limited to simple distributions or large sam-
ple numbers. In this paper, we present a Bayesian non-parametric
technique based on the DP that can be used on any set of posterior
samples.

Our method is routinely used in different fields, e.g. in the con-
text of unsupervised pattern recognition and non-parametric density
estimation, but, to the best of the authors’ knowledge, it is largely
unknown to the astrophysical and gravitational-wave communities.
A thorough introduction can be found in the compendium (Hjort
et al. 2010); we give a short overview in this section. We begin by
introducing the finite-dimensional version of the DP, which is the
Dirichlet distribution (Section 2.2). We then describe the DP itself
(Section 2.3), and how it can be used to reconstruct a probabil-
ity density function using a Gaussian-mixture model (Section 2.4).
Some specifics of our implementation of the DPGMM are described
in Section 2.5.

2.2 The Dirichlet distribution

Consider a random experiment that can give a finite number of
outcomes and imagine that we are only interested in registering
the class of the outcome. For example, we may be interested in a
coin toss where the outcome is either heads or tails, classifying a
gravitational-wave source as a BNS, a neutron star–black hole or
a binary black hole system, or registering the number of samples
that fall inside a bin in order to construct a histogram. If we have
k categories, after N samples, the likelihood of the observations is
given by the multinomial distribution

p(n1, . . . , nk|q1, . . . , qk) = N !

n1! . . . nk!

k∏
i=1

q
ni

i , , (1)

3This uses a two-step algorithm to ensure unbiased results (Berry & Gair
2013; Sidery et al. 2014a).

where ni is the number of samples in the i-th category, so N ≡∑k

i=1 ni , and qi is the corresponding probability for a sample to be
in that category. In a frequentist context, these probabilities can be
estimated from the observed frequencies of each outcome, which
becomes exact as N tends to infinity. However, there is nothing
stopping us from applying Bayes theorem and asking: ’given the
observed samples, how plausible are the inferred probabilities?’
(Jaynes 2003, chapter 18). In other words, given the observed data,
one can assign a probability distribution to the probabilities for each
category.

To infer the probabilities q ≡ {qi} given the observed counts
n ≡ {ni}, we can use Bayes’ theorem

p(q|n) = p(n|q)p(q)∫
dq p(n|q)p(q)

, , (2)

where p(n|q) is the likelihood defined in (1), and p(q) is the prior
distribution on the probabilities q. To complete the inference, we
only need to select an appropriate prior.

When we are interested in estimating the probability mass func-
tion from the observation of a discrete set of samples, a prior is
required for the problem to be well posed. Without assigning a
prior, estimating a probability density from a histogram can be, in
some cases, troublesome. For instance, if one of the bins has been
assigned no samples, the probability assigned to that particular bin
will always be zero. Inclusion of a suitable prior circumvents this
issue since it allows for a non-zero probability in each bin even
without any observations (the role of the prior is to say that we
expect that it is possible for a sample to be in each category). There-
fore, we obtain sensible results from our inference, even when we
have few samples.

A common choice for a prior in this situation is the Dirichlet dis-
tribution. As we will see, the Dirichlet distribution has several con-
venient properties that allow it to be tailored to match our prior ex-
pectations. One advantage of using the Dirichlet distribution is that
it is conjugate to the multinomial distribution (Raiffa & Schlaifer
1961, chapter 3). This means that if we use a Dirichlet distribution
as a prior with our multinomial likelihood, our posterior will also
be a Dirichlet distribution (which can then be used as the prior for
our next set of observations). This invariance under the inclusion
of new data means that our inferences form a never-ending chain
of Dirichlet distributions, which greatly simplifies computation and
interpretation of results (Gelman et al. 2014, section 2.4).

The Dirichlet distribution is defined as

Dir(q|a) = �(A)∏k

i=1 �(ai)

k∏
i=1

q
ai−1
i {ai > 0} , , (3)

where � is the gamma function, a ≡ {a1, . . . , ak} are the con-
centration parameters that control the shape of the distribution;
A ≡ ∑k

i=1 ai , and the probabilities q are normalized such that

k∑
i=i

qi = 1. (4)

With a Dirichlet prior, the posterior distribution for the probabilities
q given some data counts n is then

p(q|n) = Dir(q|a + n). (5)

Hence, we can consider a as the set of prior counts for each cat-
egory observed before our current observation set; since these are
non-zero, we ensure that even when we have no samples in a bin,
its probability is not zero. In general, for q ∼ Dir(a + n), the ex-
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pectation (mean) value of probability qi is

q̄i = ai + ni

A + N
; (6)

thus, in the limit of ni � ai, such that the likelihood dominates over
the prior, we recover the intuitive frequentist result ni/N.

The Dirichlet distribution is a practical density estimator for dis-
crete probability distributions. When we are beginning our infer-
ences, we are typically starting from a state of ignorance: we do
not prefer any one category over another and therefore must assign
each equal probability. The corresponding uninformative choice of
the Dirichlet distribution has (Gelman et al. 2014, section 3.4)4

ai = 1. (7)

Following collection of the samples, application of Bayes’ theorem
with this prior gives an expectation value

q̄i = ni + 1

N + k
. (8)

For the case of two possible outcomes, this yields Laplace’s rule of
succession (Jaynes 2003, chapter 18; MacKay 2003, section 3.2).
The modal value (maximum a posteriori estimate) for probability
qi is

q̂i = ni

N
, , (9)

agreeing with the frequentist result.
Having established the properties of the Dirichlet distribution,

we now consider its infinite-dimensional generalization, the DP.

2.3 The Dirichlet process

The DP was introduced in Ferguson (1973). It is a stochastic process
that generalizes the Dirichlet distribution to infinite dimensions and
can be used to set a prior on unknown distributions. While a draw
from the Dirichlet distribution is a discrete distribution of finite
length, a draw from the DP is a discrete distribution of infinite length.
It is a probability distribution for other probability distributions; this
additional freedom allows us to dispense with the need to specify
bins. For a historical introduction to the DP and its properties, see
Gupta & Richards (2001).

To define a DP, let us consider a probability distribution G over
the parameter space �.5 We use ϑ to denote an element or col-
lection of elements of �, with G(ϑ) the corresponding probability
(density). For G to be DP distributed, we require that for any set
of partitions ϑ1, . . . , ϑk of � (these could represent histogram
bins), the vector G = (G(ϑ1), . . . ,G(ϑk)) is distributed according
to a Dirichlet distribution. Introducing a base distribution H over �

with H = (H (ϑ1), . . . , H (ϑk)), and a (positive, real) concentration
parameter a, we have that

G ∼ Dir(aH) , , (10)

and we say that G is DP distributed with base distribution (or base
measure) H and concentration parameter a,

G ∼ DP(a,H ). (11)

4Setting the ai to any constant will result in a uniform distribution. The
choice of ai = 1 has the attractive property corresponding to a prior weight
of each bin having a single count. Using a larger value gives a stronger prior
on the distribution being uniform, and more samples need to be collected
before the inferred distribution will significantly deviate from this.
5For our application, � can be interpreted as the space of means and covari-
ances that define our smoothing kernels (see Section 2.4).

Intuitively, H can be thought as the mean of the DP: distributions
are drawn from around H such that the expectation value is Ḡ(ϑ) =
H (ϑ). The concentration parameter a plays the role of the inverse
variance of the DP, controlling how the samples are distributed
across �: in the limit of a → 0, the draws are all clustered at a single,
random ϑ , while in the limit of a → ∞ the draws follow exactly
the base distribution (Gelman et al. 2014, section 23.2).6 When a
DP is used for inference, the concentration parameter controls the
strength of the prior, with a larger value keeping us closer to our
initial expectation of a distribution like H, in a similar way to how
a sets the prior strength in a Dirichlet distribution (cf. Raiffa &
Schlaifer 1961, section 3.3.4).

The DP has a similar conjugacy property to the Dirichlet distri-
bution. Let us imagine that we have collected N observations ζ i ∼
G, where i runs from 1 to N. If our prior is G ∼ DP(a,H ), then our
posterior would be (Gelman et al. 2014, section 23.2)

G ∼ DP

(
a + N,

a

a + N
H (ϑ) + 1

a + N

N∑
i=1

δ(ϑ − ζi)

)
. (12)

From this, we can obtain the posterior expectation of G, which
is now our best prediction for future observations (Blei & Jordan
2006; Teh 2010)

Ḡ(ϑ) = a

a + N
H (ϑ) + 1

a + N

N∑
i=1

δ(ϑ − ζi). (13)

The form is analogous to that in (6). We now need to know how to
use the posterior DP.

Samples from a DP are a weighted sum of point probability
masses, and they can be constructed in several ways (such as the
Blackwell–MacQueen urn scheme, Chinese restaurant process, or
stick-breaking construction), each emphasizing a different prop-
erty of the DP (Teh 2010). We use the stick-breaking construction,
where a sample from a DP G ∼ DP(a, H ) can be represented as
(Sethuraman 1994)

G(ϑ) =
∞∑
i=1

wiδ(ϑ − ζi) , , (14)

where

wj = βj

j−1∏
i=1

(1 − βi) , , (15)

βj ∼ Beta(1, a) , , (16)

ζi ∼ H. (17)

Here, the beta distribution is

Beta(β|a, b) = �(a + b)

�(a)�(b)
βa−1(1 − β)b−1 ; (18)

it is the binomial specialization of the Dirichlet distribution. For
brevity, we can combine (15) and (16) and denote w ≡ {wj } as be-
ing constructed following the Griffiths–Engen–McCloskey (GEM)
distribution (Pitman 2006, chapter 3):

w ∼ GEM(a). (19)

6In (10), the Dirichlet distribution only depends on the product aH , but
the potential degeneracy between the magnitude of a and H is broken by
requiring that H is normalized to unity.
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Since a sample G(ϑ) from a DP can be interpreted as a collection
of point probability masses, it is a discrete distribution; G(ϑ) has
no density but is instead atomic. Consequently, samples from a
DP cannot be used directly to describe continuous distributions.
Nevertheless, DPs are commonly used for non-parametric density
estimation using draws from a DP to define a set of kernel functions
(Lo 1984; Escobar & West 1995). We use a Gaussian-mixture model
to reconstruct our inferred probability distribution as described in
the next section.

2.4 The Gaussian-mixture model

To build a continuous probability density function from our DP
draws, we use a mixture of smoothing kernel functions. Let us in-
troduce K(ξ |ϑ) as the family of kernel functions indexed by ϑ .
Using our DP-distributed G, we can build a non-parametric proba-
bility density for ξ according to (Gelman et al. 2014, section 23.3)

p(ξ ) =
∫

dϑ K(ξ |ϑ)G(ϑ). (20)

This can be turned into a sum, an infinite mixture of kernels, using
(14).

The common choice for the kernel function is a multivariate
Gaussian

K(ξ |ϑ) ≡ N (ξ |μ, S−1) , , (21)

where μ is the (multidimensional) mean and S is the precision
matrix (the inverse of the covariance matrix). This choice defines
the DPGMM; we describe the distribution for ξ as being made up of
an infinite mixture of Gaussian clusters, each with their own mean
and covariance. The mean and precision matrix are learned from
the data when fitting the DP model.

To define the DP for μ and S, we must specify a base distribution.
It is common practice to use conjugate priors for these applications,
to exploit their useful properties. Different choices are possible
(Görür & Rasmussen 2010) but at the price of losing the conju-
gacy property and therefore complicating the analysis substantially.
The conjugate prior of a multivariate Gaussian distribution with
unknown mean and precision matrix is the normal–Wishart distri-
bution (cf. Escobar & West 1995)

NW(μ, S|μ0, ρ,�, ν) = N
(
μ
∣∣μ0, (ρS)−1

)
W(S|�, ν). (22)

Here, the Wishart distribution with ν degrees of freedom is

W(S|�, ν) = |�|−ν/2

2νm/2πm(m−1)/4

[
m∏

i=1

�

(
ν + 1 − i

2

)]−1

× |S|−(ν+m+1)/2 exp

[
−1

2
tr(�−1S)

]
, , (23)

where S and � are positive-definite m × m matrices, and the expecta-
tion value is S̄ = ν�. The normal–Wishart distribution introduces
hyperparameters μ0 (the expected value of the mean), ρ (a scale
factor), � (a prior for the precision matrix), and ν (the number of
degrees of freedom); these are common to all mixture components,
expressing the belief that component parameters should be members
of a single family. We choose the parameters of the normal–Wishart
distribution to be the mean and precision of the observed samples,
the scale factor to be equal to the requested resolution (see Sec-
tion 2.5 for further details), and the number of degrees of freedom
to be equal to the dimensionality of the problem plus two (this
ensures that the distribution is well conditioned).

Due to its conjugacy to the multivariate Gaussian, choosing
NW(μ, S|μ0, ρ, �, ν) as the base distribution for the DP, it is
possible to marginalize out analytically the multivariate Gaussian
parameters and obtain the non-parametric density estimate as a
mixture of multivariate Student-t distributions.7

In addition to the base distribution, we also need a concentration
parameter for our DP. This too can be updated from the data, but we
must specify a prior distribution for it. We use a gamma distribution
(Escobar & West 1995), specifically a ∼ Gamma(1,1). The gamma
distribution is given by

Gamma(a|b, c) = cb

�(b)
xb−1 exp(−cx) ; (24)

it is the univariate specialization of the Wishart distribution. It is
especially convenient as it is conjugate to the beta distribution used
in (16) (Blei & Jordan 2006). The prior expectation is ā = 1 (cf.
Gelman et al. 2014, section 23.3).

Combining everything together, the prior DPGMM is assembled
as

a ∼ Gamma(1, 1) , , (25)

w ∼ GEM(a) , , (26)

μi, Si ∼ NW (μ, S|μ0, ρ, �, ν) , , (27)

ξ ∼
∞∑
i=1

wiN (μi, S
−1
i ). (28)

We first calculate hyperparameters (concentration and base distir-
bution) to specify our DP; this determines parameters that describe
a mixture of Gaussian kernels, and the sum of this mixture gives
the distribution of the observed parameters ξ (in Section 2.5, we
describe how ξ is a set of three-dimensional position coordinates).
Given a set of data (particular realizations of ξ ), we now have to
solve the inverse problem to find its posterior probability density.

DPGMMs can be explored using Gibbs sampling (Neal 2000;
Rasmussen 2000); however, we use the variational algorithm intro-
duced in Blei & Jordan (2006) with the capping method described
in Kurihara, Welling & Vlassis (2007). We use the publicly avail-
able implementation developed by one of the authors (previous ap-
plications include background subtraction; Haines & Xiang 2012,
2014).8 Our choice of implementation allows the number of com-
ponents in the DPGMM to grow without limit until the best-fitting
model is found; this finite number of components is then used as
our estimate for the posertior probability density. The multivariate
normal mean vector and covariance matrix are set by maximizing
the likelihood of the observed data vector ξ , given the number of
components to which data have been assigned, see equation (17) in
Görür & Rasmussen (2010).

2.5 Implementation for gravitational-wave data

We are interested in reconstructing posterior probability densities
from a set of samples as calculated by a stochastic sampling algo-
rithm (Veitch et al. 2015). To do so, we have adopted the algorithm
presented in the previous subsection, specialized to the problem of

7The normal distribution is a limiting case of the Student-t distribution.
8The DPGMM module is available from github.com/thaines/helit/.
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606 W. Del Pozzo et al.

Figure 1. Fraction of true locations found within a (a) distance credible interval, (b) sky-area credible region, or (c) credible volume as a function of
encompassed posterior probability. Results with simulated Gaussian noise are indicated by the dashed lines, results using recoloured S6 noise are indicated by
the solid line, and the expected distribution is indicated by the dot–dashed diagonal line. The 68 per cent confidence interval for the cumulative distribution is
enclosed by the shaded regions, this accounts for sampling errors and is estimated from a beta distribution (Cameron 2011).

Table 1. Comparison of sky-localization areas produced using the DPGMM to those produced using KDE. The mean and standard deviation of the log ratio
for the 50 per cent credible region CR0.5, the 90 per cent credible region CR0.9, and the searched area A∗ are listed for each method.

Log HL recoloured HL Gaussian HLV Gaussian
ratio Mean Standard deviation Mean Standard deviation Mean Standard deviation

RCR0.5 0.007 0.129 0.017 0.120 0.058 0.197
RCR0.9 0.047 0.135 0.045 0.134 0.072 0.192
RA∗ 0.066 0.361 0.095 0.376 0.020 0.495

estimating the posterior probability density for the distance D, right
ascension α, and declination δ.9

Since the DPGMM is not designed to deal with periodic co-
ordinates, we perform our analysis in Cartesian coordinates; we
transform {D, α, δ} into {x, y, z} following the transformation:

x = D cos(α) cos(δ) , , (29)

y = D sin(α) cos(δ) , , (30)

z = D sin(δ). (31)

It is these Cartesian-space samples that define our observations
ξ , and we use their mean and inverse covariance to specify the
hyperparameters of the normal–Wishart distribution (22). We apply
the variational method of Blei & Jordan (2006), as described in
Section 2.4, to obtain the probability density p(x, y, z|w, μ, S−1).
We transform back into {D, α, δ}-space using the Jacobian of the
coordinate transformation:

p(D,α, δ|w, μ, S−1) = p(x, y, z|w, μ, S−1)

∥∥∥∥ ∂(x, y, z)

∂(D,α, δ)

∥∥∥∥ , , (32)

where∥∥∥∥ ∂(x, y, z)

∂(D, α, δ)

∥∥∥∥ = D2 cos(δ). (33)

9We neglect the effects of cosmology and so do not distinguish between
different distances; the farthest source we consider is at a (luminosity)
distance of 269 Mpc, which corresponds to a redshift of less than 0.07
assuming standard cosmology (Ade et al. 2016).

We then obtain the non-parametric posterior density estimate by
marginalizing away μ and S analytically, because of the choice of
conjugate priors.

Once we have obtained p(D, α, δ), we can use it for making state-
ments about the probable location. For example, we can compute
credible volumes by evaluating the model over a three-dimensional
grid spanning the whole volume under consideration. By default,
we use a uniform {D, α, δ} grid that is 50 × 1440 × 720. This
is by far the most computationally expensive step in our analysis,
taking on the order of ∼1 hr.10 Possibilities for optimizing this,
such as using an adaptive grid, will be investigated in the future.
Once the density function has been evaluated over the grid, we
sort each of the grid points according to their probability, com-
pute the cumulative distribution and then find the set of points
having a probability equal to the requested credible level. Two-
dimensional posterior distributions for sky position, as well as one-
dimensional posterior distributions for distance, are then obtained
by numerical marginalization of the original three-dimensional
distribution. Credible regions and intervals in the lower dimen-
sional spaces are obtained in same way as their three-dimensional
counterparts. As we explain in Section 4.4, we can also use
p(D, α, δ) directly, without computing credible volumes, together
with galaxy catalogues to produce a list of most probable source
galaxies.

10Across all data sets, the median run time is 2900 s and the central
90 per cent range is 20–4340 s using eight CPU cores.
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Volume localization with gravitational waves 607

Figure 2. Sky-localization areas as a function of SNR �net. The left column shows two-detector results, and the right column shows all HLV scenario results;
the top row shows the 50 per cent credible region CR0.5, and the bottom row shows the 90 per cent credible region CR0.9. Individual results are indicated by
points, and we include fiducial best-fitting lines assuming that the area A ∝ �−2

net . The left column shows both HL sets of results and the HLV results where
only two detectors are operational, each has its own best-fitting line. The HLV two-detector results are also shown in the right column, indicated by the open
points, the three-detector results are colour-coded by the fraction of the SNR (squared) from AdV; the lines are fits to the two-detector network runs and those
three-detector network runs loud enough to trigger in all detectors.

3 SIMULATION

To demonstrate the effectiveness of the DPGMM at estimating
probability density functions, we consider the problem of recon-
structing the posterior distribution for the position of a (simu-
lated) BNS coalescence, as would be observed in the early ad-
vanced gravitational-wave detector era (similar to during O1 and
O2). The (three-dimensional) position is an illustrative test case
since it gives an indication of how the technique functions in mul-
tiple dimensions, while still being easy to visualize. However, our
main motivation for considering the position is the desire to be
able to reliably reconstruct the location of a gravitational-wave
source following a detection for the purposes of electromagnetic
or neutrino follow-up (e.g. Adrián-Martı́nez et al. 2016; Abbott
et al. 2017a, 2016f; Abbott et al. 2017h; Albert et al. 2017a; Albert
et al. 2017b).

We use the data presented in Singer et al. (2014) and Berry et al.
(2015). These consider two observing scenarios in anticipation of
the early operation of the advanced detector network. The first sce-
nario considers the two-detector network of LIGO Hanford and
LIGO Livingston, with sensitivities similar to what was expected
for O1; the second considers the three-detector network includ-
ing AdV, with sensitivities similar to what was expected in O2;

we refer to these scenarios as HL and HLV, respectively.11 Singer
et al. (2014) simulated 2 months of observations from each sce-
nario, while Berry et al. (2015) only considered the HL scenario
but used more realistic noise, including non-Gaussianity as seen
in the sixth science (S6) run of initial LIGO (Aasi et al. 2015b).
The detectors’ duty cycles are assumed to be 80 per cent (cf. Abbott
et al. 2017a), such that in the HLV scenario there are three-detector
observations for 51.2 per cent of the time and two-detector obser-
vations for 38.4 per cent of the time. The assumed HL sensitivity
was slightly less than actually achieved in O1, the assumed BNS
detection range was ∼55 Mpc compared with the achieved range
of ∼70 Mpc (Abbott et al. 2016g); conversely, the assumed HLV
sensitivity was better than achieved for the majority of O2 (Abbott
et al. 2017d,e). However, these data sets provide a qualitative illus-
tration of what can be achieved during the early observing runs of
the aLIGO–AdV network.

We refer to the Singer et al. (2014) results as HL Gaussian and
HLV Gaussian, since the detector noise is Gaussian, and the Berry
et al. (2015) results as HL recoloured because the noise is recoloured

11The HL and HLV scenarios are the 2015 and 2016 scenarios of Singer
et al. (2014), respectively.
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608 W. Del Pozzo et al.

Figure 3. Cumulative fractions of events with localization volumes smaller
than the abscissa value. The top panel shows the 50 per cent credible volume
CV0.5, the middle shows the 90 per cent credible volume CV0.9, and the
bottom shows the searched volume V∗. The 68 per cent confidence interval
for the cumulative distribution is enclosed by the shaded regions; this does
not include the inherent uncertainty in the volume estimates.

S6 noise.12 Both share same catalogue of sources, an astrophysi-

12The recolouring process consists of first whitening the noise (removing the
colour), removing initial LIGO’s frequency dependence, and then passing
the noise through a filter (reintroducing colour) so that, on average, it has
the aLIGO spectral density. This ensures the noise contains realistic non-

cally motivated population of BNSs. The neutron star masses were
chosen to be uniformly distributed between 1.2M
 and 1.6M
;
the sources were distributed uniformly in co-moving volume and
on the polarization–inclination two-sphere, and each neutron star
was given a randomly oriented spin with a uniformly distributed
magnitude up to a maximum χmax = 0.05;13 these ranges cover the
observed population of BNSs (e.g. Mandel & O’Shaughnessy 2009;
Özel et al. 2012; Kiziltan et al. 2013; Abbott et al. 2017f). Further
details about the simulation can be found in Singer et al. (2014).

The simulated data were treated as real signals would be, first
being passed through the GSTLAL detection pipeline (Cannon et al.
2012). On account of the difference in noise, slightly different de-
tection criteria were used in Singer et al. (2014) and Berry et al.
(2015), the former using a cut in the network signal-to-noise ratio
(SNR) of �net = 12 and the latter using a false-alarm rate (FAR)
threshold of 10−2yr−1. Although, broadly consistent, this difference
results in the inclusion of additional low-SNR (�net ≈ 10–12) events
for the FAR-only cut.

Parameter-estimation codes are run on detections (Abbott et al.
2016a,d, 2017f), and we use the posterior samples generated by
LALINFERENCE (Veitch et al. 2015). This analysis, for expediency, did
not include the effects of the spins of the neutron stars; this does
not influence our results, as spins do not impact the inferred local-
ization when they are small as for our BNSs (Farr et al. 2016). The
results also do not include the effects of uncertainty in the detector
calibration. Initial results from aLIGO had 10 per cent uncertainty
in amplitude and 10 deg uncertainty in phase (Abbott et al. 2017c),
and this increased uncertainty in sky localization by a factor of
∼3–4 for GW150914 (Abbott et al. 2016d); however, the accuracy
of calibration had been improved by the end of the run, such that
its effects only increased the uncertainty in GW150914’s sky local-
ization by a factor of ∼1.3–1.5, and made negligible difference for
the localization of LVT151012, GW151226, or GW170104 (Abbott
et al. 2016a, 2017d).

Sky-localization accuracy and the distance estimation have been
considered previously, and the three-dimensional localization re-
mains an active area of research. Prospects for improving electro-
magnetic follow-up using a low-latency three-dimensional localiza-
tion are discussed in Singer et al. (2016). The approach outlined in
Singer et al. (2016) was used during O2 to provide prompt localiza-
tions using the BAYESTAR algorithm (Singer & Price 2016). It approx-
imates the posterior distribution along a line of sight using an ansatz
distribution, which assumes that the likelihood is Gaussian (cf. Cut-
ler & Flanagan 1994). The resulting probability distributions can be
efficiently communicated as a list of moments for pixels describing
different lines of sight. At higher latencies, three-dimensional lo-
calizations were provided in O2 using the posterior samples from
LALINFERENCE. These were post-processed using a clustering KDE
algorithm, which is an updated version of the code used to con-
struct the two-dimensional localizations in Singer et al. (2014) and
Berry et al. (2015).14 This code performs the KDE in Cartesian
coordinates. The resulting distribution is then simplified, so that
the results can be communicated using same summary statistics as

stationary and non-Gaussian features, although these are not identical to
those in the advanced detectors.
13The dimensionless spin magnitude is χmax = c|S|/Gm2, where |S| is the
modulus of the star’s spin angular momentum vector and m is its mass. The
limit χmax = 0.05 matches that assumed for the low-spin prior used in the
analysis of GW170817 (Abbott et al. 2017f).
14The KDE clustering algorithm, and accompanying documentation is avail-
able from github.com/farr/skyarea.
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Volume localization with gravitational waves 609

Table 2. Fractions of events with localization volumes smaller than a given size, and the fraction of searched volumes that contain fewer than the given number
of galaxies in the GLADE catalogue (Dálya et al. 2018). A dash (–) is used for fractions less than 0.01.

Volume or HL HL Two-detector Three-detector All HLV
no. of galaxies recoloured Gaussian HLV Gaussian HLV Gaussian Gaussian

CV0.5

Mpc3
≤ 10 0.01 – – 0.02 0.02

102 0.02 0.04 0.01 0.06 0.05
103 0.13 0.17 0.06 0.22 0.18
104 0.45 0.54 0.31 0.49 0.44
105 0.97 0.99 0.66 0.82 0.78
106 1.00 1.00 1.00 1.00 1.00

CV0.9

Mpc3
≤ 10 – – – – –

102 0.01 0.01 – 0.04 0.03
103 0.04 0.06 0.01 0.09 0.07
104 0.19 0.23 0.14 0.27 0.24
105 0.65 0.77 0.31 0.50 0.45
106 1.00 1.00 0.78 0.87 0.84

V∗
Mpc3

≤ 10 0.02 0.01 – 0.05 0.04

102 0.07 0.06 0.05 0.10 0.09
103 0.23 0.32 0.13 0.27 0.24
104 0.52 0.59 0.36 0.52 0.47
105 0.87 0.95 0.70 0.77 0.75
106 1.00 1.00 0.98 0.97 0.97

nG
∗ ≤ 1 0.03 0.03 0.02 0.08 0.07

10 0.20 0.24 0.15 0.26 0.23
102 0.51 0.57 0.30 0.52 0.46
103 0.88 0.95 0.73 0.80 0.78
104 1.00 1.00 1.00 0.98 0.98

Table 3. Median localization volumes constructed using the DPGMM, and the median number of galaxies in the GLADE catalogue (Dálya et al. 2018) within
these volumes.

HL HL Two-detector Three-detector All HLV
Median recoloured Gaussian HLV Gaussian HLV Gaussian Gaussian

CV0.5/Mpc3 1.2 × 104 8.9 × 103 5.2 × 104 1.3 × 104 2.0 × 104

CV0.9/Mpc3 5.4 × 104 4.0 × 104 2.9 × 105 1.0 × 105 1.3 × 105

V∗/Mpc3 8.7 × 103 4.4 × 103 2.9 × 104 9.1 × 103 1.3 × 104

nG
0.5 1.3 × 102 8.1 × 101 3.5 × 102 9.2 × 101 1.5 × 102

nG
0.9 5.9 × 102 4.4 × 102 2.2 × 103 7.6 × 102 1.1 × 103

nG∗ 9.5 × 101 5.6 × 101 2.7 × 102 8.6 × 101 1.2 × 102

for the Singer et al. (2016) ansatz, giving a probability distribution
for each line of sight. Our DPGMM is an alternative method for
post-processing to produce three-dimensional localizations; next,
we show that it is effective, and a comparison of techniques for
gravitational-wave source localization is left for future work.

4 R ESULTS

In this section, we describe our findings for the localization of
BNSs. We begin by verifying that our reconstructed posteriors are
well calibrated (Section 4.1). Then, we describe results for the
(two-dimensional) sky-area analysis, before concluding with the full
three-dimensional position results. A discussion of the implication
of our results for multimessenger astronomy is given in Section 5.

We report values for the credible regions and volumes as well as
the area or volume that would be searched (with a greedy algorithm)
before discovering the true location (cf. Sidery et al. 2014b). The
credible region CRP is the smallest sky area that encompasses a

total posterior probability P:

CRP = min

{
A :

∫
A

d� p(�) = P

}
, (34)

where p(�) is the posterior probability density over sky position
� = {α, δ}, and A is the sky area integrated over. The credible vol-
ume CVP is the three-dimensional equivalent including distance
too. We also use the distance credible interval CIP, which we define
to be the central (equal-tailed) interval that contains probability P
(Aasi et al. 2013). The searched area A∗ is the size of the smallest
credible region that includes the true location; the searched volume
V∗ is the smallest credible volume that does same. The sizes of
credible regions and volumes indicate the precision of our param-
eter estimates, whereas the searched areas and volumes fold in the
accuracy too.15

15For electromagnetic follow-up, the searched area would be the minimal
area of the sky that a telescope would need to cover, starting from the
most probable point, before imaging the true location. However, it may
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610 W. Del Pozzo et al.

Figure 4. Localization volumes as a function of SNR �net. The left column shows two-detector results, and the right column shows all HLV scenario results;
the top row shows the 50 per cent credible volume CV0.5, and the bottom row shows the 90 per cent credible volume CV0.9. Individual results are indicated by
points, and we include fiducial best-fitting lines assuming that the volume V ∝ �−6

net . The left column shows both HL sets of results and the HLV results where
only two detectors are operation, each has its own best-fitting line. The HLV two-detector results are also shown in the right column, indicated by the open
points, the three-detector results are colour-coded by the fraction of the SNR (squared) from AdV; the lines are fits to the two-detector network runs and those
three-detector network runs loud enough to trigger in all detectors.

4.1 Calibration

To verify the self-consistency of results, we calculate the fraction
of events that are located within the credible region or volume at
a given probability. We expect that a proportion P is found within
CIP, CRP, or CVP (Cook, Gelman & Rubin 2006). A difference
could arise if our prior does not match the injected distribution,
but that should not be an issue here.16 Fig. 1 shows the fraction of
events found within a given CIP, CRP, and CVP as a function of
P; shown are results for three data sets, the HL Gaussian and HLV
Gaussian results from Singer et al. (2014), and the HL recoloured
results from Berry et al. (2015).

Since the one-dimensional distance and two-dimensional sky po-
sition probability distributions are constructed by marginalizing the
three-dimensional position probability distribution, the CIP, CRP,
and CVP results are not independent. Using a Kolmogorov–Smirnov
(KS) test (DeGroot 1975, section 9.5) to compare the expected and

not be possible to immediately identify a transient as the counterpart to a
gravitational-wave signal; therefore, a larger area may be covered in practice
to avoid false identifications. Additionally, the need to tile with a finite field-
of-view telescope can further increase the actual area searched.
16Our priors do agree with the injected distributions, and the posterior dis-
tributions have been previously verified for sky area and distance (but not
volume) in Berry et al. (2015).

recovered distributions yields p-values of 0.09, 0.72, and 0.21 for
the HL recoloured, HL Gaussian, and HLV Gaussian distances;
0.15, 0.15, and 0.62 for the HL recoloured, HL Gaussian, and
HLV Gaussian sky areas, and 0.83, 0.94, and 0.58 for the HL re-
coloured, HL Gaussian, and HLV Gaussian volumes, respectively.
None of the distributions show any significant deviations away from
the expected results. The posteriors appear to be well calibrated
.

4.2 Comparison with kernel density estimation

As a further consistency check, we can compare sky area results
generated using the DPGMM to those from KDE as used in Singer
et al. (2014) and Berry et al. (2015). This allows us to verify that
both methods agree on an event-by-event basis. To summarize the
variation in sky areas computed in different analyses, we use the
log ratio (Grover et al. 2014; Farr et al. 2016)

RA = log10

(
ADP

AKDE

)
, (35)

where ADP is a credible region or the searched area as determined
by the DPGMM and AKDE is same quantity from the KDE. The log
ratio is zero when both agree.

We find there is a scatter in the log ratio around zero, as summa-
rized in Table 1. The DPGMM results are more conservative on av-
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Volume localization with gravitational waves 611

Figure 5. Example posterior distribution for possible galaxy hosts from the GLADE catalogue (Dálya et al. 2018). We show the full three-dimensional scatter
plot (top) and its projection on to the plane of the sky (bottom). In both panels, galaxies are colour-coded according to the (log) posterior probability of being
the host of source, and we show galaxies with the 90 per cent credible volume. In the three-dimensional plot, we show the projections along the axes directions
to aid in recognizing the three- dimensional shape of the posteriors. The black crosses indicate the true source location. The gap in the larger branch of the
distribution is due to the incompleteness of the catalogue in the direction of the plane of the Milky Way.

erage, being ∼100.05  1.1 times larger than the KDE results. There
is the largest difference in the HLV Gaussian results. This may be
a consequence of these runs having a low number of (independent)
posterior samples: the median number of posterior samples is 1000,
whereas the median number is 8600 for both of the HL sets. Using
a smaller set of posterior samples leads to less-accurate estimates

for the sky localization. The sky localization areas from the two
approaches agree within the typical uncertainty of ∼10 per cent.

We do not expect perfect agreement between the approaches since
the DPGMM builds a three-dimensional probability distribution and
projects this down to calculate sky areas, whereas the KDE directly
computes sky areas. We expect the KDE to perform better since it is
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612 W. Del Pozzo et al.

especially designed to compute two-dimensional credible regions,
and this is the case.

4.3 Measurement uncertainty

4.3.1 Sky area

Having established that the DPGMM produces sensible results,
we now present results for measurement accuracies. We begin
by looking at sky-localization, as a final consistency check. The
sky-localization precision depends upon the SNR, scaling as �−2

net
(Fairhurst 2009; Berry et al. 2015). We check this relationship in
Fig. 2, where we plot credible regions versus SNR for the two-
detector and three-detector networks. Unlike previous analyses in
Berry et al. (2015) and Farr et al. (2016), we do not use the SNR
reported by the detection pipeline, but the SNR as determined by the
maximum of the likelihood, L ∼ exp(−�2/2), found by LALINFER-
ENCE. This is necessary as we consider events for HLV where there is
no trigger (which requires a single-detector SNR of 4), and hence,
no contribution to the GSTLAL’s network SNR, from AdV, which
is less sensitive than the aLIGO instruments. With a two-detector
network, the scaling with SNR changes little between the HL and
HLV scenarios (or when considering different combinations of two
detectors for HLV); there is slightly worse performance for HLV
as a result of a decrease in frequency bandwidth at a given SNR
(Singer et al. 2014). In the HLV scenario, the big change comes
from the introduction of a third detector. The improvement from the
third detector is continuous (Abbott et al. 2017a), ranging from pro-
viding negligible additional information to a reduction in sky area
(at a given network SNR) by a factor of ∼16; this is heuristically
illustrated by the fraction of the SNR from AdV �V/�net, indicated
by the colour-coding in Fig. 2 (b) and Fig. 2 (d).

4.3.2 Volume

Finally, we consider the full three-dimensional localization. The cu-
mulative distributions of localization volumes, as constructed from
our DPGMM, are shown in Fig. 3. Statistics summarizing these dis-
tributions are given in Table 2 and Table 3. The three sets of results
are similar; the volumes for the HL recoloured results are slightly
larger than the HL Gaussian results on account of the additional
low-SNR events, and the HLV Gaussian results are larger still as
the increased detector sensitivity allows us to detect sources at a
greater distance.17

The three-dimensional localization also depends upon the SNR.
The uncertainty in the three-dimensional location can be estimated
as

�V ∼ D2�D�A, (36)

where �D and �A are the uncertainty on the distance and sky
location, respectively. The distance is inversely proportional to the
signal amplitude (keeping all other parameters fixed) and hence D ∝
�−1

net ; from a Fisher-matrix analysis, we expect that the fractional
error in the distance is inversely proportional to the SNR �D/D ∝
�−1

net (Cutler & Flanagan 1994), and we have seen that �A ∝ �−2
net

17The median true distances of detections are 50.1 Mpc, 47.8 Mpc, and
97.0 Mpc for the HL recoloured, HL Gaussian, and HLV Gaussian sets,
respectively.

(Fig. 2). Combining these, we expect that

�V ∝ 1

�6
net

. (37)

The credible volumes versus SNR are plotted in Fig. 4 for the two-
detector and three-detector networks. The trends are roughly as
expected; there is significant scatter because the SNR also depends
upon other source properties such as the binary inclination and
the sky position relative to the detectors. We see that, although
on average the HLV scenario localization is worse than in the HL
scenario, when we only consider events with significant SNR in all
three detectors, the localization is better than in HL (cf. Veitch et al.
2012). Adding a third detector in the HLV scenario can improve
localization by (on average) a factor of ∼15.

4.4 Applications for electromagnetic follow-up

Gravitational-wave sky localizations can be large (e.g. Abbott et al.
2016f), making the prompt search for an electromagnetic counter-
part difficult. The extra information inherent in a three-dimensional
localization can help optimize this search. For example, astronomers
could choose to prioritize areas of the sky where the source is more
probable to be close by and hence appear brighter, or adjust expo-
sure times such that times are longer where the distance is probably
larger and shorter where the distance is probably smaller. A signifi-
cant improvement is potentially possible by looking for counterparts
that are coincident with galaxies, as opposed to searching blindly
(e.g. Nissanke et al. 2013; Hanna et al. 2014; Blackburn et al. 2015;
Gehrels et al. 2016; Singer et al. 2016), and this strategy was fol-
lowed by several teams searching for counterparts to GW170817
using the three-dimensional localization provided by the LVC (Ab-
bott et al. 2017h).

Using our DPGMM, it is simple to correlate our three-
dimensional posterior probability distributions with galaxy cata-
logues to produce a list of most probable galaxies. This only takes
a few minutes to calculate; since we do not have to evaluate the
DPGMM on a grid, it is quicker than producing credible volumes.
We use the Galaxy List for the Advanced Detector Era (GLADE)
catalogue (Dálya et al. 2016, 2018).18 This is constructed from
the Gravitational Wave Galaxy Catalogue (White, Daw & Dhillon
2011), the Two Micron All-Sky Survey Extended Source Catalogue
(Skrutskie et al. 2006), the Two Micron All-Sky Survey Photomet-
ric Redshift catalogue (Bilicki et al. 2014), and HyperLeda cata-
logue (Makarov et al. 2014); it contains ∼2000 000 galaxies and
is estimated to be complete at 73 Mpc and 53 per cent complete at
300 Mpc.

As an example of the end data product of our analysis, Fig. 5
shows a DPGMM localization correlated with galaxies from the
GLADE catalogue (Dálya et al. 2018). The full three-dimensional
posterior distribution is shown in the top panel, and its projection
on to the plane of the sky is shown in the bottom panel. These pos-
terior distributions show the characteristic shapes of localizations;
they are not simple blobs but can form disjoint regions (described
as jacaranda seeds in Singer et al. 2016). From the two panels, we
can see the benefit of the additional information gained by con-
sidering the three-dimensional localization, instead of only a two-
dimensional localization; the probable distance range is not same
for all lines of sight.

18Available from aquarius.elte.hu/glade/.
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The most probable galaxies provide a starting point for a counter-
part search. Further refinements could be made, such as factoring in
the stellar mass of the galaxies (cf. Nuttall & Sutton 2010), poten-
tially using luminosity as a mass proxy (e.g. Fan et al. 2014; Hanna
et al. 2014; Arcavi et al. 2017b).

In Table 3, we include the number of galaxies included in the
GLADE catalogue within the credible volumes CV0.5 and CV0.9,
and the searched volume V∗: nG

0.5, nG
0.9, and nG

∗ , respectively.19 These
are lower limits on the true number of galaxies, but provide esti-
mates for the number of galaxies that would be searched using the
catalogue and following a greedy algorithm weighting the galaxies
by probability from the three-dimensional localization. In Table 2,
we give numbers quantifying the distribution of nG

∗ . The number
of catalogue galaxies in the localization volumes is approximately
consistent with a density of one galaxy per 100 Mpc3.

5 C O N C L U S I O N S

We have explained how DPGMMs can be used for post-processing
of parameter-estimation studies. This technique will be useful for a
variety of inference problems within astrophysics. We have applied
our approach to an example from gravitational-wave astronomy,
reconstructing the three-dimensional location of a BNS using results
from LALINFERENCE.

The era of gravitational-wave astronomy is here, and we need
to understand how to extract the maximum amount of information
from signals. Localization of BNS sources is important for multi-
messenger astronomy as it allows for cross-referencing with galaxy
catalogues. This is beneficial when searching for an electromagnetic
counterpart (Nissanke et al. 2013; Hanna et al. 2014; Gehrels et al.
2016; Singer et al. 2016), as for GW170817 (Abbott et al. 2017h)
but is still useful when none is found, for example for measure-
ments of the Hubble constant (Schutz 1986; Del Pozzo 2012; Chen
et al. 2017). The DPGMM three-dimensional localizations can be
be used to find the most probable source galaxies within a matter
of minutes of the LALINFERENCE analysis finishing, making it useful
for prompt multimessenger follow-up activities.

We constructed localization volumes for a catalogue of BNS
signals appropriate for the early operation of the advanced-detector
era (Singer et al. 2014; Berry et al. 2015; Farr et al. 2016). We have
verified that the three-dimensional localizations are well calibrated
(cf. Cook et al. 2006; Sidery et al. 2014b) and have confirmed
that when distance is marginalized out, these volumes reduce to
sky areas that are consistent with two-dimensional KDE results.
Our credible volumes have the expected proportionality with SNR,
scaling roughly ∝ �−6

net .
Our results show that localizations for detections during early

observing runs would be ∼104–105Mpc3, corresponding to ∼102–
103 potential host galaxies within the GLADE catalogue (Dálya
et al. 2018). Approximately half of events have searched volumes
that contain 102 galaxies or fewer, and a few per cent of events have
searched volumes that contain a single galaxy. Since our results
do not include the effects of calibration uncertainty, they would
be lower bounds for any actual detections: for the (O1-like) HL
recoloured data set, we find that the median 90 per cent credible
volume is 5 × 104Mpc3 and for the HL Gaussian data set it is
4 × 104Mpc3; moving ahead to the (O2-like) HLV scenario, the

19Since the original set of simulated signals were drawn uniformly in vol-
ume, rather than from a galaxy catalogue, we cannot identify a true host
galaxy that must be imaged to find the source.

median 90 per cent credible volume is 1 × 105Mpc3 for the Gaussian
data set. Greater sensitivity of the detectors means that we can
detect signals from a greater distance and hence are sensitive to
sources in a larger volume. However, localization does improve as
further detectors are added to the network: the median 90 per cent
credible volume in the HLV scenario for a two-detector network is
3 × 105Mpc3 but for a three-detector network it is 1 × 105Mpc3. The
localization improves rapidly as the SNR of the signal increases,
and the best localization occurs when there is significant SNR from
each of the three detectors. Addition of further detectors, such as
KAGRA (Aso et al. 2013) or the proposed LIGO-India detector
(Unnikrishnan 2013; Abbott et al. 2017a), could further improve
localization and the prospects of identifying a counterpart.
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Dálya G., Frei Z., Galgóczi G., Raffai P., de Souza R. S., 2016, Technical

report, An Extended List of Galaxies for Gravitational-Wave Searches in
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