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1. Introduction  

The lack of quantification of the impact of fire events on sub-surface systems, 

especially in karst environments, limits our understanding of the hydrological impacts 

of wildfire and the application of prescribed burning on karst geochemistry. The few 

recent studies examining long-term fire impacts on karst systems focused on changes 

in soil respiration, nutrient uptake and evaporation associated with the transformation 

of plant biomass to ash during fire and the subsequent recovery of plant communities 

(Coleborn et al., 2016b; Nagra et al., 2016; Treble et al., 2016). Coleborn et al. (2016) 

compared soil CO2 concentrations, temperatures and moisture between burnt and 

unburnt soils at an alpine karst site in Australia. For the first five years, soil respiration 

was depressed in the burnt forested site and less biomass was reported relative to the 

unburnt forested site. No significant difference could be seen in the ten-year post-fire 

soil groups relative to the unburnt control regions. Treble et al. (2016) reported nine-

year data on drip water geochemistry, suggesting that the greatest impact of fire is 

associated with long-term decreases in sulfur concentration, due to post-fire 

accumulation of this ash-derived nutrient in biomass. Aside from ash signals, higher 


18O and chloride levels were associated with increased evaporation in the soil and 

shallow vadose zone after a wildfire (Nagra et al., 2016). Compared with the bi-decadal 

time period needed for post-fire habitat and fuel recovery in forest ecosystems 

(Haslem et al., 2011), soil CO2 recovery (Coleborn et al., 2016b), and cave drip water 

isotope, chlorine and sulfur residuals (Treble et al., 2016) are notable in having a multi-

year temporal response. In contrast, little is known about the impact of fire on flow 

regimes, which has the potential to induce short-term fluctuations in response to 

individual weather events. 
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Changes in deeper flow regimes may potentially arise as a consequence of widely 

known impacts of wildfire on soil structures (Fernandez et al., 1999; Pausas et al., 2009; 

Scott and Van Wyk, 1990). Scott and Van Wyk (1990) reported reduced soil wettability 

following wildfire. Any influence on soil structures would subsequently affect 

preferential flow by the modified macropores properties (Beven and Germann, 1982; 

Ghodrati and Jury, 1992). Cave drip discharge is potentially affected by physical 

characters such as soil capillarity (Fredlund and Rahardjo, 1993) and preferential flows 

(Šimůnek et al., 2003). The fire-induced more hydrophobic soil structure can increase 

post-fire runoff and erosion in burnt areas (Huffman et al., 2001), leading to significant 

increases in soil loss, and increase in total and quick flow volumes in streams. In cave 

systems, it potentially modifies the flow regimes with changed drip rate records.  

Any surface fire signal transmitted to a cave will pass through the vadose zone—the 

unsaturated area between the surface and the water tables. In karst environments, the 

vadose zone hosts the flow pathways and water storages that feed cave drip water, 

and is where the major processes of bedrock dissolution, mixing and dilution of stored 

water with event water occur (Fairchild and Baker, 2012). Other hydrochemical and 

biogeochemical processes along these pathways have also been identified, such as 

prior calcite precipitation (Fairchild and Treble, 2009), evaporation (Cuthbert et al., 

2014) and nutrient and water uptake by vegetation (Treble et al., 2016). The 

combination of karst hydrology, water isotope tracers and trace solute mobility are 

vital for understanding the full complexity of flow pathways (Kogovšek, 2010).  

Precipitation percolates through the vadose zone into caves as either diffuse or conduit 

flows (Atkinson, 1977). Diffuse flows occur through the matrix porosity, whilst conduit 
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flows occur via larger scale fractures or conduits (White, 2002). Relatively lower flow 

rates and more stable geochemical properties are associated with diffuse flows, whilst 

higher and more variable flow rates and more variable chemistry characterise conduit 

flows. Basic hydrological models of unsaturated zone recharge that include flow rate 

fluctuations were first developed by Smart and Friederich, 1987. Baker et al. (1997) 

identified that antecedent precipitation conditions were an important control on the 

individual hydrological patterns linked to the state of the vadose zone’s water storage 

capacity at the time. Automated acoustic drip counting was recently introduced as an 

alternative mean of drip recording, which is able to count falling drips, even during 

transient events, and record small fluctuations in drip rate over several years (Collister 

and Mattey, 2008). Water isotopes are related to the properties of precipitation 

(Jouzel et al., 2000) and have been used to distinguish between groundwater and 

surface water (Sophocleous, 2002), as tracers of moisture sources, and to fingerprint 

catchment residence times and flow pathways (Tian et al., 2007). In specific regions, 

the stable isotopes of water (2H and O) can reveal links between climatic factors 

and flow pathways (Soulsby et al., 2000). The current paper aims to do this for a karst 

vadose zone.  

Solute concentrations in cave drips reflect changes in external forcing (Tremaine and 

Froelich, 2013) and changes occurring along flow pathways. Multiple lines of evidence 

are typically crucial in qualitative models of karst vadose zone hydrological behaviour. 

Theoretically, the Mg/Ca and Sr/Ca ratios are recognized to be important diagnostics in 

karst hydrology for the amount of prior calcite precipitation and water-rock interaction 

(Ternan, 1972; Fairchild et al., 2000; Tremaine and Froelich, 2013; Razowska-Jaworek, 

2014). Solute abundances vary in response to differences in climate and cave controls 
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(Wassenburg et al., 2012), the type of bedrocks (Immenhauser et al., 2007) as well as 

the duration of each recharge event (Huang and Fairchild, 2001). Hartland et al. (2012) 

reported a correlation between natural organic matter-transported metals and 

climatic signals. Inversely the quantity of soil organic matter can also be indicated by 

shifts in the metal ratios of cave drip discharges. Nagra et al. (2016) compared a burnt 

cave with a nearby control cave. Biomass-sourced, ash-derived solutes (SO4 and K), 

together with dissolved bedrock solutes, were both reported as a fire signature. 

However, it is important to note that drip water solute concentrations can vary 

significantly even within the same cave chamber (Fairchild and Treble, 2009). 

In this research, we aimed to identify the hydrological and geochemical impact of an 

experimental fire on a shallow karst vadose zone. The fire was deliberately lit above a 

cave in order to monitor its impact under controlled conditions. We analysed the 

composition of cave drip water over 2.5 years (Dec 2014 – May 2017) in Wombeyan 

Cave, a shallow cave system in NSW, Australia. Our monitoring started 1.5 years prior 

to the fire and continued for one year afterwards. Thus, unlike the previous studies by 

Nagra et al. (2016) and Treble et al. (2016), which contain only post-fire data, this 

study also includes pre-fire data to serve as a baseline with which post-fire data may 

be compared. This greatly assists in our attempts to understand and quantify the 

impacts of fire on karst systems. This is the first published research to directly compare 

pre- and post-fire hydrogeochemical components and drip discharges in a shallow 

karst vadose zone after a severe fire. Reports of pre- and post-fire discharge patterns 

and water stable isotopes were made to demonstrate changes to the local vadose 

zone’s hydrology, while inorganic geochemical changes were also analysed as 
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supplementary evidence. It is therefore valuable to directly compare pre- and post-fire 

hydrogeochemical components and drip discharge for commonalities and differences. 
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2. Site Description  

The Wombeyan Caves Karst Conservation Reserve (34° 18” S, 149° 58” E) is located in 

the south-eastern part of New South Wales, Australia, on the western edge of the 

Sydney Basin, on a plateau of the Great Dividing Range, surrounded by agricultural 

areas (Figure 1). Wombeyan Limestone, part of the Bungonia Group, is now a marble 

due to the formation of igneous rocks in the surrounded Lower-Middle Devonian 

Bindook Porphyry Complex (Brunker and Offenberg, 1970; Osborne, 1984). These 

Silurian carbonates are highly fractured marbles with no matrix porosity remaining 

(Osborne, 1993). Therefore, flow is entirely dominated by fracture and conduit flows. 

Typically, the land surfaces (< 4 cm depth) above the caves contain gravel, marble 

fragments, red silty clay and dark humic matter (McDonald and Drysdale, 2007).  

The mean monthly land-surface temperature at Wombeyan Caves ranges between a 

maximum of 26.0 °C in January to a minimum of 0.6 °C in July. Annual median long-

term precipitation is 684.7 mm (1942-2017, from Bureau of Meteorology, Australia 

gauge 063093), with summer precipitation exceeding winter precipitation by 47%. 

However, during December 2014 to May 2017, winter monthly precipitation (104 mm) 

exceeded that of summer by 32% (79 mm).  

Wildman’s Cave (W456) is a small and shallow cave near the top of a ridge above 

Mares Forest Creek Gorge. The cave has a narrow pothole-type entrance and 42 m of 

reasonably decorated passage (Wylie and Wylie, 2004). The single large chamber is 

approximately 15 m long and 6 m wide, with less than 1 m of soil and bedrock 

overlying the cave. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

3. Method 

3.1 Experimental Fire 

An experimental fire covering an area of 10 m x 10 m was conducted above Wildman’s 

Cave on 25th May 2016. Given the experimental nature of the fire, additional fuel 

(branches and leaf litter collected adjacent to the site) was placed within the burn area 

to ensure that a moderate to severe intensity burn was achieved. Within the 10 m x 10 

m burn area, shrubs and groundcovers dominated the site. There were no mature 

trees within the burn site.  

3.2 Location of Monitoring Sites within the Cave 

Eleven dripping stalactites in Wildman’s Cave were included in this study to monitor 

the geochemical and hydrological variations associated with the burn (see Figure 1 b). 

In the corner of the pothole-type entrance, a straw stalactite (Site 01) was utilised (see 

Figure 1 b). A large cluster of soda-straws separated the entrance from the inner 

chamber, and provided drips for Sites 02 to 05. Sites 06 to 11 were located within the 

large chamber, while Sites 02 to 05 were a lower elevation than the others and had a 

thicker roof. 

3.3 In-cave Water Sampling 

In-cave monitoring started in Dec 2014 and ended in May 2017. Water samples were 

collected at approximately bi-month intervals throughout the research program, with 

sample volumes limited by the infrequent occurrence of recharge events. Two drip 

water sampling methods were employed. Firstly, drip water samples were collected by 

leaving bottles in the cave for approximately two months. Wide-mouth 120 ml HDPE 

sampling bottles were placed under each dripping site, with a plastic funnel containing 
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an acoustic data logger placed inside. Each of these bottles used for cumulative drip 

water sampling contained 2 mm paraffin oil layer to prevent evaporation or exchange 

with the atmosphere once drips entered the sampling bottle. Secondly, opportunistic 

sampling was conducted during each of the bi-monthly sampling campaigns, provided 

recharge was occurring. These drip waters were sampled directly into 250 ml wide-

mouth HDPE sampling bottles placed directly under the drip sites overnight. The 

collection of these campaign samples was conducted without funnels or drip loggers to 

minimise contamination from the surrounding environment. Reference groundwater 

samples were collected from a local borehole in the Wombeyan Caves campground 

using 250 ml wide-mouth HDPE containers. Sixty-two opportunistic samples were 

collected when the cave was dripping during the bi-monthly sampling campaigns. 

There were fewer samples collected in the dry cold months, especially after fire. At the 

day after the fire we succeeded in acquiring ten drip samples the day, then six more in 

the first month. After that, water samples were collected in Dec 2016, and Jan and Mar 

2017. Bore hole samples were collected using 250 ml wide-mouth HDPE containers in 

Wombeyan Caves. 

3.4 Precipitation  

Wombeyan monthly rainfall records were provided via Bureau of Meteorology climate 

station (Number. 063093). Precipitation samples for stable water isotopes analysis 

were collected from Mount Werong (34° 04” S, 149° 55” E), which was the nearest 

precipitation isotope collection station to Wildman’s Cave (~30 km to the northeast). 

Precipitation samples were collected on an event basis using a sealed HDPE bottle with 

a plastic funnel. The design was based on the method of Gröning et al. (2012) in order 

to prevent evaporation of the sample or isotopic exchange with the atmosphere. The 
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rainfall-related collection here was from August 2014 to May 2017, and is an extension 

of a time series previously published by Hughes and Crawford (2013) and further 

described by Crawford et al. (2013).  

3.5 Drip Hydrology Monitoring 

Hydrology records were comprised of drip rates from stalactites within the cave, which 

were integrated at 15-minute intervals using acoustic drip loggers (Stalagmate® Plus 

Mk 2b, http://www.driptych.com/). For each drip site, a Stalagmate was placed 

underneath the stalactite in a plastic funnel sitting in an HDPE bottle surrounded by a 

plastic tube to fix it in position. The minimum distance between the stalactite and 

Stalagmate was 25 cm. The volume of drips was assumed to be consistent throughout 

this study (Collister and Mattey, 2008). 

3.6 Geochemical Analysis 

Both the long-term and short-term drip water samples collected were first filtered 

through 0.45 µm mixed-cellulose filters into 10 ml plastic sampling vials. Water 

samples for stable isotope analysis were stored in 10ml vials with zero-headspace. 

Separate 10ml vials were used for solute analyses. Two drops of ACS reagent HNO3 

acid (70%) were added into the cationic samples to prevent precipitation. All the 

prepared analytes were refrigerated at < 5 °C until analysis.  

Dripwater samples were analysed to determine the 2H and18O, with the results 

given in per mille (‰) using the conventional delta notation relative to VSMOW 

(Vienna Standard Mean Ocean Water). A Los Gatos Research (LGR) Water-Vapour 

Isotope Analyzer in the UNSW IceLab was used for the analysis of the 2H and . 

The ICELAB was graded excellent in an international inter-laboratory comparison prior 
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to the period of sample analysis (Wassenaar et al., 2018). All the isotope analytes were 

filtered through 0.45 µm mixed-cellulose filters again before injection into the isotope 

analyser (reported accuracy of ±1.0‰ for δ2H and ± 0.2‰ for δ18O). The samples were 

calibrated against five standards), with VSMOW-2 run as a primary standard. Some 109 

precipitation samples were analysed at the ANSTO Environmental Isotope Laboratory 

using a Picarro L2120-I Water Analyser (same accuracy as the LGR Water-Vapour 

Isotope Analyzer). The ANSTO lab runs a minimum of two in-house standards 

calibrated against VSMOW/VSMOW2 and SLAP/SLAP2 with samples in each batch.  

Deuterium excess (D-excess) is calculated with the equation d=  2H - 8*  18O. 

Only opportunistic over-night collections of water samples were analysed for cations 

and anions. Cation (Ca2+, Fe2+, K+, Mg2+, Na+, Si4+, Ba2+ and Sr2+) concentrations were 

determined using inductively-coupled plasma optical emission spectroscopy (ICP-OES; 

Optima™ 7300DV, PerkinElmer, Shelton, USA) and inductively-coupled plasma mass 

spectrometry (ICP-MS;  NexION 300D, PerkinElmer, Shelton, USA) at the UNSW Mark 

Wainwright Analytical Centre, except for water samples from the final collection (9th 

May 2017), which were analysed using inductively-coupled plasma-atomic emission 

spectroscopy (ICP-AES; ICAP7600, Thermo Fisher) at the Australian Nuclear Science 

and Technology Organisation (ANSTO). Anion (Cl-, I- and SO4
2-) concentrations were 

determined using an ion chromatograph (Dionex DX-600) with a self-regenerating 

suppressor at the ANSTO facility. Mann–Whitney U tests (Mann and Whitney, 1947) 

were conducted on cation and anion as a non-parametric test for the geochemistry 

data which were not normally distributed over 2 years. U and Z-scores are calculated 

with the equations: 
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,    

   

 
 

where n is the sample size, R is the sum of the ranks, m and σ are the mean and 

standard deviation of U. The U-score allows the comparison of different groups. The Z-

score permits the comparison of the standard normal quantiles to obtain the 

calculated probability   
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4 Results 

4.1 Experimental Fire 

The highest recorded temperature was 929 °C in the middle of the burn area at 12 

cm depth (Supplementary Figure 1) recorded using a thermocouple temperature 

recorder TCTemp1000 (ThermoworksTM). The fire intensity was severe (Keeley, 2009), 

with canopy cover left intact but the surface litter largely consumed and thick white 

ash layers generated at hotspots to a depth of several centimetres. The fire was 

started mid-morning, and visible flame lasted approximately 45 min.  

4.2 Hydrology Results 

The overall drip water recharge responses to precipitation are illustrated in Figure 2. 

Site 03 slowly stopped dripping, while Sites 08–10 were misaligned post fire. 14 major 

drip water recharge events occurred pre-fire, and 21 major drip water recharge events 

occurred post fire. For periods outside of the recharge events dripping ceased (e.g. the 

baseline drip logger signals were constantly 0). Comparing the number and timing of 

recharge events to daily precipitation data, a recharge threshold of about 20mm/day 

precipitation is inferred. In the 18-month pre-fire monitoring period, there were 10 

days where daily precipitation exceeded 20 mm, with precipitation exceeding 

50mm/day on one of these occasions. In the 12-month post-fire monitoring period, 

there were 11 days where daily precipitation exceeded 20 mm, including precipitation 

exceeded 50mm /day on two occasions. The highest daily rainfall total over the 

monitoring period (91.4 mm) occurred one week after the fire. Despite minor 

differences in pre- and post-fire daily rainfall amounts, Figure 2 shows a notable 

change in the drip pattern after the fire. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

The descriptive statistics for basic parameters, including duration, peak rates, average 

rates, total drips, skewness and kurtosis for all individual recharge events are 

presented in Figure 3, which uses box plots to compare discharge patterns pre- and 

post-fire. Post-fire total drips were less variable but not significantly different to pre-

fire total drips. Both peak and average recharge rates increased noticeably and were 

associated with decreased duration after the fire. Detailed analyses of the event 

hydrographs are presented in Section 5.1. Overall, post-fire discharge events were 

characterised by higher mean and peak flows that were of shorter duration than pre-

fire discharge events. Increased peak recharge was observed at Sites 02, 04, 05, 07, 09 

and 11 (Supplementary Figure 2) two weeks post-fire. The skewed discharge peaks 

were shorter for post-fire recharge events than pre-fire ones. Conversely, there were 

no notable changes in dripping pattern for Site 01, which was not directly under the 

burnt area (Supplementary Figure 2).  

4.3 Isotope Results 

Isotopic data for the 184 precipitation events collected at Mt Werong from August 

2014 to May 2017 (January 2015 was missing due to insufficient rainfall) show that the 

values for 18O (n = 166) ranged from −17.7‰ to 3.1‰, and from −126.4‰ to 31.6‰ 

for the 2H samples (n = 184). The weighted mean of precipitation were isotopically 

higher in the 12 months pre-fire (18O = −6.3‰, 2H = −31.6‰) than the 12 months 

post-fire (18O =−7.9‰, 2H =−48.2‰).  

Post-fire, in June 2016, the lowest isotope values were observed, and when a 

prolonged period of rain occurred at both Mt Werong and Wombeyan Caves, where 

238 mm fell over 22 rain days, more than three times the long-term mean 
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precipitation for June (69.9 mm). This was associated with two consecutive east-coast 

low-pressure systems affecting the NSW coast in one month, resulting in record high 

daily and monthly rainfall records at many stations. The rain from these two systems 

was significantly isotopically lower, with a monthly 18O mean of −14.5‰ and a 2H 

mean of −98.7‰ in June 2016.  

Drip water 18O values for 213 samples are presented in Figure 5 which was controlled 

by the precipitation conditions and residual time in the flow paths (Cuthbert et al., 

2014; Jouzel et al., 2000). Until May 2016, 18O values ranged from -8.5‰ to -3.1‰, 

and 2H values ranged from -50.6‰ to -10.1‰. After the fire, sites behaved differently 

according to their locations (See Figure 1b). For the shallower sites (Sites 07–11), there 

was a response the day after the burn, with the mean 18O values being 4.5‰ lower 

than that for all pre-fire samples (-5.1‰ to -9.6‰). In contrast, there was only a slight 

difference in 18O at Sites 02–06 (-5.5‰ to -6.2‰).  

The largest shift occurred during the next sampling campaigns (5 and 21 June 2016). All 

isotopic values of the ten burnt sites were significantly lower (-76.5‰ and -84.1‰ in 


2H for Sites 02–06 and 07–11, respectively, and -11.9‰ and -12.7‰ in 18O). One 

month later, the sites showed a return trend to the pre-fire average until a new peak 

was reached in March 2017. The isotopic values of Site 01 were consistently lower 

than its pre-fire mean values. After December 2016, drips at the Site 1 were 

isotopically lower than those at the burnt sites. Over the post-fire hydrological year, 

drip water became more isotopically depleted than that pre-fire.  

Comparison of drip water and precipitation D-excess identifies a higher D-excess in the 

drip waters compared to precipitation pre-fire. D-excess for drip waters and 
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precipitation are more similar immediately post-fire. This lower D-excess verified that 

the fire depleted the stores, such that old water which would have been affected by 

evaporation was removed by the fire and the stores were replenished with new 

recharge (Froehlich et al., 2008). 

The pre-fire drip water stable isotope composition was above the global meteoric 

water line (GMWL; Figure 6). The local meteoric water line (LMWL) was established 

using precipitation data from Mt Werong. Three different groups based on their spatial 

locations in the cave were plotted separately in Figure 6.a and Figure 6.b. In Figure 6.a, 

the slope for Sites 07–11 (slope = 6.5 ± 0.4) was similar to the LMWL (slope = 6.6 ± 0.3), 

and Site 01 (slope = 5.8 ± 1.4). Three groundwater samples from the borehole in 

Wombeyan camping area were collected, on 23 September 2015, 11 Jan and 23 March 

2017, and had an average 2H of -38.45 ± 5.10 ‰ and an average 18O value of -7.31 ± 

0.59 ‰ (Figure 5, shaded blue).  

4.4 Solute Results 

The solutes showed great variability between sites. Results of Mann-Whitney U tests 

showed there was a significant difference between different time periods for some 

drip water solute concentrations (Table 1, and the time series for individual solute in 

Supplementary Figure 4). The concentrations of all bedrock-derived solutes in drip 

water (Ca2+, Mg2+ and Sr2+) were significantly lower after the fire. Barium did not 

change immediately but decreased after six months. The decreases in concentrations 

of Ca2+, Mg2+ and Sr2+ were substantial one month post-fire and partially recovered six 

months post-fire. Cl- remained lower after the fire. SO4
2- increased 10-fold one month 

post-fire and although it decreased between one and six months post-fire, it remained 
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above pre-fire levels. Iodide slightly increased initially, but returned to below the pre-

fire level half a year later. 

5 Discussion 

5.1 Changes in Cave Drip Hydrology and Karst Architecture  

By comparing log10-transformed changes in drip rates over time (see Supplementary 

Figure 3), the drainage stages during the recession stage of individual recharge events 

can be identified. These stages are represented conceptually in Figure 7. Through the 

changes of the slopes (the log10-transformed rates of decrease in recharge), we can 

interpret the changes to the dominant recharge flow patterns at each site. Three 

different stages in the recession stage of recharge for individual precipitation events 

are identified. 

a) In the first stage of recession (Figure 7, green), when both the soil and karst 

are saturated with event water, soil moisture is above field capacity, which 

permits the maximum possible recharge rate from the soil to the karst 

stores. The major pathway for the event water is through preferential paths 

in the surface soil directly to the karst fractures, with bypass or overflow of 

the karst stores. Flow rates are mainly restricted by the minimum diameter 

of the fracture in the karst, or the internal diameter of the stalactite.  

b) In the second stage (Figure 7, blue), the soil is no longer saturated enough 

to support preferential flow in the soil and overflow or bypass flow in the 

karst. Soil diffuse flow from the soil into the karst stores becomes the 

dominant flow pathway. In this way, relatively slower recharge rates from 

the soil, and longer residence time in karst stores, generate lower slopes. In 
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some cases, especially in the inner part of the cave like Site 07, this stage is 

less frequently observed or even mixed with the first stage. We hypothesise 

that this is due to lower soil water storage volumes and weaker capillarity 

effects from a thinner soil layer.  

c) In the final stage (Figure 7, yellow), when the surface precipitation has 

stopped and soil moisture falls below field capacity, drainage to the karst by 

soil diffuse flow also stops. The amount of new event water is now low. The 

cave drips are quickly recharged from the residual karst stores, and the drip 

rate is again limited by the diameters of the fractures or stalactites.  

There is no sign of any original sedimentary structures in the Wombeyan Limestone as 

it is formed of marble and therefore it effectively contains only secondary porosity. 

Preferential flow in the soil and overflow or bypass flow in the karst dominates cave 

recharge in Wildman’s Cave. Theoretically, discharge from soil storage would be 

buffered by soil capillarity (Fredlund and Rahardjo, 1993) resulting in moderate drip 

rates and soil diffuse flows to the karst and cave below. When there is no interaction 

between the soil water store and the bedrock, discharge only occurs from the karst 

water store and drip rate peaks are likely to decline more rapidly.  

Fires can change the physical and chemical properties of soil (Bonacci et al., 2008). 

Post-fire, with low soil water content and high air saturations, the relative permeability 

to water is negligible. Therefore soil diffuse flow should be severely reduced after the 

fire, at least initially (Russo, 1998). Immediately post-fire, in an initially gas saturated 

soil, part of the first recharge will be consumed to fill the capillary reservoir, and will 

therefore not contribute to the flow recorded in the cave drips. An increase in soil 
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hydrophobicity can affect flow paths within the soil (Huffman et al., 2001). Stoof et al. 

(2014) reported that fire-induced preferential flows are associated with a change in 

soil water repellency. Plaza-Álvarez et al. (2018) also reported the increased soil water 

repellency after prescribed burns in forest ecosystems, and a recovery trend was 

monitored. The total storage volume is unchanged post-fire, with similar total recharge 

amounts pre- and post-fire (see Figure 3c). The post-fire recharge in Wildman’s Cave 

was more intense, having a higher magnitude, shorter duration and less frequent 

hydrographic peaks than the pre-fire recharge. Hereby, a post-fire increase in 

preferential flow in the soil could explain the observed change in drip rates in the three 

stages described in Figure 7.  

Three effects of fire on the recession stages (arrows in Figure 7) are described below:  

Effect 1) For the deeper sites, which were covered with a thicker soil layer (Sites 02–

04), A Model predict increases in mean post-fire drip rates for all 

precipitation events across all the stages of recession. The peak flow rates 

increased slightly. Fire-induced increases in soil preferential flow pathways 

increased the drip rates in the stage a green. In the second stage, an 

increase in soil hydrophobicity weakened the soil’s capillary action, which 

substantially decreased the duration of the soil diffuse flow controlled stage. 

In the final recession stage, the karst stores were unaffected by the surface 

fire, and there was no change in the draining of the last water from the 

fractures. 

Effect 2) For the shallower sites (Site 07), B Model describes the amplified effects of 

changes in soil hydrophobicity and preferential flows. At Site 07, soil diffuse 
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flow was the dominant process pre-fire, and the preferential flows were not 

obvious. Post-fire, newly created preferential flows dominated the soil 

diffuse flows, so that the drip rate for this site was mainly controlled by the 

first stage.  

Effect 3) For sites in the middle part of the cave, deeper than Site 02 and with a 

thinner soil layer than Site 01 (e.g. Site 05), there was a similar pre-fire drip 

rate A Model to that at Sites 02–04. Increased preferential flows dominated 

the soil diffuse flows which originally appeared in the second stage.  

Both Sites 06 and 11 were fed by two asynchronously dripping stalactites, making it 

difficult to identify the specific stages (See Supplementary Figure 3). However, 

increased preferential flows possibly still occurred at both sites. Overall, we propose 

that the fire-induced increase in preferential flows and the loss of soil capillarity both 

led to more intense cave drip recharge.  

5.2 Stable Isotope Behaviour and Residence Time of Drip Waters 

Figure 4 showed that Wildman’s Cave drip water 2H and 18O values were less 

variable than the values for Mt Werong precipitation, indicative of mixing of water in 

the soil and karst. Figure 4 and 5 above show that the variability in drip water isotopic 

composition broadly follows that of precipitation, albeit damped and lagged. Post fire, 

drip water stable isotope composition has a negative isotopic excursion following a 

high magnitude (164.0 mm over three days), isotopically low precipitation event, 

which occurred one week after the fire.  

The post-fire decrease in drip water 18O, associated with a convergence of drip water 

and precipitation d-excess, is attributed to the recharge from this post-fire 
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precipitation event. No similar 18O or 2H isotope excursions are observed in the drip 

waters in the pre-fire period (Figure 4), although no equivalently large and isotopically 

anomalous precipitation events occurred over this time period (Supplemental Table 2). 

From our drip hydrology data we would infer a loss of soil capillarity and an increase in 

preferential flow after the fire, which might be expected to increase the magnitude of 

the drip water isotopic response to precipitation. Changes in the slopes of 2H vs 18O 

for drip waters pre and post fire, in comparison to the local meteoric water line, could 

help elucidate changes in soil and vadose zone residence time if drip waters were 

affected by evaporation, however results are inconclusive as observed changes in 

slopes are within their uncertainties (Figure 6). Comparison of d-excess of drip water 

and precipitation shows that drip water d-excess returns to a higher value than 

precipitation at the end of the monitoring period, suggesting a return to pre-fire 

conditions by this time. 

We therefore summarise that we do not see more positive isotopes as reported by 

Nagra et al (2016)), and attributed to increased evaporation and partial enrichment of 

soil water isotope due to evaporative fractionation. We hypothesise that for our 

experimental fire, whose severity was such that soil properties changed, that there 

was a complete evaporation of soil and shallow vadose zone water. Drip water isotopic 

compositions post-fire therefore represent the isotopic characteristics of the first 

recharge, and subsequent recharge events helped replenish the karst fractures and 

stores and soil water, whose isotopic composition gradually returns to an integrated 

mean of those event after 6 months.  

5.3 Drip Water Solutes Signatures  
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The hydrological interpretation indicates a decrease in water residence time, which is 

associated with decreased dissolution of bedrock and subsequent precipitation of 

calcite (Fairchild and Treble, 2009). Bedrock-related solutes including Ca2+, Mg2+ and 

Sr2+ decreased one month post-fire (see Table 1). This could reflect a decrease in 

carbonate dissolution due to the evaporation of old storage water and a shorter water 

residence time. Decreased soil CO2 from the destruction of plant roots and microbial 

communities could also enhance this effect.  

Comparison of Mg/Ca and Sr/Ca ratios can be used as a geochemical signature of the 

amount of bedrock dissolution based on the prior calcite precipitation effects (Treble 

et al., 2003; Fairchild and Treble, 2009). These ratios did not show any notable 

differences between the pre- and post-fire groups within the study timescale (see 

Figure 8). It suggests that, for this shallow cave, each precipitation event barely 

reached saturation for calcite before discharging into the cave.  Within-cave evidence 

for this interpretation is abundant stalactite formations occurring without associated 

deposition of stalagmites. 

Despite ash being present across the fire site, there was only limited geochemical 

evidence of ash-derived solutes in the drip waters. Sulfate drip water concentration 

significantly increased ten-fold one month after fire, whereas concentrations of 

analysed cations decreased after the fire experiment. The lack of a post-fire rise in ash-

derived cations including K, Na and Fe that would be expected from ash production, 

could be due to the volatilisation of solutes at high temperatures (Bodí et al., 2014). 

The fire temperature exceeded 929 °C in some areas (see Supplementary Figure 1) 

which could volatilise organic compounds leaving white ash, which was observed at 
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the experiment site (Figure 1). Moreover, I- and Cl- concentrations both increased 

slightly, respectively, and I- concentration increased significantly six months after the 

fire. Concentrations of Cl- also indicated the removal of soil water by the fire. This 

agrees with limited saturation index values for calcite calculated from 6 drip activities, 

from 0.44 ± 0.13 pre-fire to 0.62 ± 0.17 post-fire. 

In summary, the combustion of vegetation and soil fauna is hypothesised to lead to a 

decrease in limestone dissolution (lower Mg2+, Ca2+, and Sr2+and a volatilisation in soil- 

and vegetation-derived solutes (K+, Na+, Si4+, I- and Fe2+).  
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6 Conclusion 

This research has demonstrated the impacts of a high-severity experimental fire on the 

karst vadose zone, including 1) short-term complete evaporation of soil water; 2) 

increased preferential flows and decreased soil diffuse flows; and 3) increased soil 

hydrophobicity. Three different stages of discharge: preferential flows dominated 

stage, soil diffuse flows dominated stage and residual flows dominated stage were 

defined based on the hydrograph analysis on the cave drip rates in this study. Based on 

that, a more intense stage 1 post fire was attributed to the increased preferential flows, 

and decreased stage 2 to the decreased importance of soil diffuse flow post fire.  

The short-term responses observed in cave drip water isotopic and hydrochemical 

composition were large shifts in stable water isotope composition to lower  values and 

decreased concentrations of bedrock-derived solutes within the first month post-fire. 

The lower isotopic values shows that older pre-existing soil water with a higher 

isotopic value was removed by evaporation due to the heat of the fire. A shorter water 

residence time post fire resulted in relatively lower values with respect to 2H and 18O. 

A return to a more enriched isotopic composition was observed.  

The bedrock-related solute concentrations decreased after the fire experiment 

because of lower recharge durations and potentially decreased partial pressure of 

carbon dioxide (pCO2). Ash products were largely volatilised due to the severe intensity 

of the fire and were not captured by the cave, instead leaving white-coloured ash 

above the cave.  

This study has demonstrated a potential explanation for the lower 18O values in fire 

records which is opposite to the higher 18O from increased albedo observed by Nagra 
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et al. (2016), and provides evidences to utilise the decreased bedrock solutes as one 

important factor for paleo-fire tracing. If another fire experiment was conducted 

during dry season, a smaller change in the hydrological regime would be expected as 

antecedent soil moisture would already be low. In addition to this, similar nutrient 

solutes trends should be observed with similar fire volatilisation. 
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Table 1 Descriptive statistics and Mann-Whitney U test results for solute concentrations. Samples are separated into three groups 

(pre-fire, 1 month post-fire and 6 months post-fire). Statistical significance (p < 0.05) is indicated in bold text. Z-scores represent 

the number of standard deviations between each data point and the mean.  

Ion Sampling Time Number Min Quartile 1 Median Quartile 3 Max U Z Exact 

Prob>|U| 

B2+ 

/g∙L-1 

Pre-fire 7 4.9 11.6 27.4 33.3 62.4    

1 mth post-fire 15 2.2 3.5 5.0 10.2 14.4 95.0 3.0 0.0 

Ba2+ 

/mg∙L-1 

Pre-fire 12 1.4 3.9 4.4 6.4 23.3 - 

1 mth post-fire 13 1.6 2.3 3.0 12.8 30.1 105 1.4 0.2 

6 mth post-fire 10 2.0 2.0 2.0 4.3 6.0 94 2.2 0.0 

Pb3+ 

/g∙L-1 

Pre-fire 14 0.0 0.0 0.1 0.2 0.2    

1 mth post-fire 15 0.0 0.0 0.0 0.1 0.1 147.5 1.8 0.1 

Ca2+ 

/mg∙L-1 

Pre-fire 40 47.0 87.2 107.9 119.1 150.5 - 

1 mth post-fire 14 49.4 57.1 65.8 74.4 81.9 525 4.8 0.0 

6 mth post-fire 10 67.9 75.4 91.8 99.8 110.0 288 2.1 0.0 
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Mg2+ 

/mg∙L-1 

Pre-fire 29 0.4 0.8 1.3 1.5 2.3 - 

1 mth post-fire 14 0.6 0.7 0.7 0.8 1.4 311 2.8 0.0 

6 mth post-fire 10 0.7 0.8 1.1 1.2 1.6 179 1.1 0.3 

Sr2+ 

/g∙L-1 

Pre-fire 38 1.4 61.4 72.5 84.5 109.4 - 

1 mth post-fire 13 0.2 36.2 40.1 71.7 78.9 384 3.0 0.0 

6 mth post-fire 10 37.0 46.8 50.5 57.8 64.0 10 3.5 0.0 

Na+ 

/mg∙L-1 

Pre-fire 20 1.1 1.6 1.8 2.0 2.6 - 

1 mth post-fire 14 1.0 1.2 1.4 2.0 2.0 190 1.7 0.1 

6 mth post-fire 10 1.1 1.2 1.3 1.9 2.5 142 1.8 0.1 

Cl- 

/mg∙L-1 

Pre-fire 27 1.2 2.5 3.1 4.0 11.6 - 

1 mth post-fire 14 2.1 2.7 4.5 6.7 13.1 12 -1.5 0.1 

6 mth post-fire 10 2.7 2.9 3.7 6.5 14.0 101 -1.2 0.3 

K+ 

/mg∙L-1 

Pre-fire 21 0.1 0.6 0.8 3.0 25.2 - 

1 mth post-fire 14 0.1 0.1 0.4 1.0 1.5 218 2.4 0.0 

6 mth post-fire 10 0.1 0.1 0.2 0.3 1.2 190 3.6 0.0 
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Si4+ 

/mg∙L-1 

Pre-fire 39 1.0 1.5 2.0 2.0 2.3 - 

1 mth post-fire 14 1.0 1.1 1.2 1.3 1.4 516 4.9 0.0 

6 mth post-fire 10 1.2 1.4 1.5 1.6 1.8 303 2.7 0.0 

I- 

/mg∙L-1 

Pre-fire 19 0.1 0.1 0.3 1.5 7.3 - 

1 mth post-fire 8 0.1 0.5 1.0 1.3 1.5 61 -0.8 0.4 

6 mth post-fire 10 0.1 0.1 0.1 0.1 0.1 180 4.0 0.0 

SO4
2-

 

/mg∙L-1 

Pre-fire 27 0.0 0.1 0.1 0.2 0.4 - 

1 mth post-fire 14 0.3 0.4 1.2 6.2 20.6 3 -5.1 0.0 

6 mth post-fire 10 0.4 0.6 0.8 1.4 2.6 0 -4.6 0.0 

Fe2+ 

/mg∙L-1 

Pre-fire 35 0.6 1.5 2.0 2.8 5.5 - 

1 mth post-fire 14 0.9 1.1 2.0 3.2 9.7 243 0.0 1.0 

6 mth post-fire 6 0.0 0.0 0.0 0.0 0.0 210 3.9 0.0 
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Highlights  

 

 Severe fire over a shallow cave system leads to changed soil hydrology.  

 Cave drip discharge shows increased preferential and decreased diffuse flows.  

 Post-fire, stable water isotopes show that soil water was evaporated.  

 6 months post-fire, drip water isotopes have returned to the pre-fire mean.  

 Nutrient elements were largely volatilised by the severe fire.  
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