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We provide a new value for the ratio R ¼ Γ(π0 → eþe−γðγÞ)=Γðπ0 → γγÞ ¼ 11.978ð6Þ × 10−3, which
is by 2 orders of magnitude more precise than the current Particle Data Group average. It is obtained using
the complete set of the next-to-leading-order radiative corrections in the QED sector, and incorporates
up-to-date values of the π0-transition-form-factor slope. The ratio R translates into the branching ratios of
the two main π0 decay modes: Bðπ0 → γγÞ ¼ 98.8131ð6Þ% and B(π0 → eþe−γðγÞ) ¼ 1.1836ð6Þ%.

DOI: 10.1103/PhysRevLett.122.022003

Introduction.—The present 3% experimental precision
on Bðπ0DÞ [1] (We use the shorthand notation π0f ≔ π0 → f,
with D ≔ eþe−γ and DD ≔ eþe−eþe−.) represents a
limitation for rare-π0-decay measurements, which com-
monly use the Dalitz decay π0D for normalization, and is
also becoming a limiting factor for rare-kaon-decay mea-
surements. An example is the Kþ → πþeþe− decay [2]:
accurate knowledge of Bðπ0DÞ would improve the precision
on the rate measurement by 30%, and the precision on the
low-energy parameter aþ [3] by 10%. The uncertainty
on Bðπ0DÞ also dominates the precision on the K� →
π�π0eþe− rate measurement [4], and is among the princi-
pal contributions to the uncertainties on the measured
KL;S → πþπ−eþe− rates [5]. In these circumstances, con-
sidering the improving precision on rare-decay measure-
ments, and the recent progress on the π0-form-factor
measurement [6] and radiative corrections for the π0D decay
[7], both a precision measurement of Bðπ0DÞ and an updated
theoretical evaluation of this quantity are becoming more
important.
Branching ratios can serve to translate lifetimes into decay

widths and vice versa. There are several methods to deter-
mine the π0 lifetime: a direct average-distance measurement
of the highly relativistic pion, the conserved-vector-current
hypothesis connecting the vector form factor (i.e., charged
pions) to the π0 lifetime [8], and the Primakoff effect [9].
Since 2012 its Particle Data Group (PDG) value settled to
τPDG
π0

¼ 8.52ð18Þ × 10−17 s [10]. Presently, the most precise

π0-lifetime measurements are given by two different meth-
ods: τPrimEx

π0
¼ 8.32ð23Þ × 10−17 s [11] (Primakoff effect,

PrimEx experiment at JLab) and τCERN
π0

¼8.97ð28Þ×10−17 s
[12] (directmeasurement, CERN). It is clear that the situation
is unsatisfactory and a new independent measurement is
desirable. For the Primakoff-effect-type π0-lifetime mea-
surements, Bðπ02γÞ constitutes an essential input.
In this work we discuss the theoretical determination of

the following ratio of decay widths:

R≡ Γðπ0 → eþe−γÞ
Γðπ0 → γγÞ ¼ Bðπ0DÞ

Bðπ02γÞ
: ð1Þ

The current PDG value RjPDG ¼ 11.88ð35Þ × 10−3 is an
average of experimental results, the most recent of which
comes from 2008 and is based on archived ALEPH data
[13]. Other measurements with competitive uncertainties
date back to 1981 [14] and 1961 [15]. The branching ratios
Bðπ02γÞjPDG ¼ 98.823ð34Þ% and Bðπ0DÞjPDG ¼ 1.174ð35Þ%
[1] are subsequently obtained from a constrained fit.
Besides the direct extraction of R from experiment, the

shape of the singly virtual π0 transition form factor (TFF)
can be measured. This can be expanded in the transferred
momentum squared, with the linear coefficient called the
(TFF) slope aπ . Since the slope embodies the most relevant
input to the ratio R regarding the (nonperturbative) low-
energy QCD sector [the peculiar [16] TFF normalization
F ð0Þ conveniently drops out], its knowledge from experi-
ment is crucial to obtain a model-independent prediction of
R. Recently, it was measured in the NA62 experiment,
which analyzed 1.1 × 106 fully reconstructed π0D decays
with the result aNA62π ¼ 3.68ð57Þ% [6], taking into account
the complete set of next-to-leading-order (NLO) radiative
corrections in the QED sector [7]. The current PDG value is
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dominated by two inputs: the above NA62 result and the
value provided by the CELLO Collaboration [aCELLOπ ¼
3.26ð37Þ%] [17] by (model-dependent) extrapolation from
the spacelike region.
Our calculation combines a wide range of theoretical

models and available experimental results on the TFF shape
and the well-established QED calculation including the
complete set of NLO corrections, taking into account higher
orders in the QED expansion in a conservative uncertainty
estimate. As such, it represents a precise and reliable
improvement (by two orders of magnitude) to the current
PDG-based value of R, which might be further used in
various theoretical predictions and experimental analyses.
Moreover, for the first time, the slope corrections were not
neglected in the bremsstrahlung contribution. Finally, we
present R for the full as well as partial kinematic regions.
Measurements of the TFF shape or the ratio R require

significant theoretical input and depend crucially on the
proper incorporation of radiative corrections. Consequently,
a statement that experiment itself provides a more relevant
value of R than our theoretical prediction is by its nature
imprecise. However, the computation would not be possible
without the experimental evidence that the TFF slope lies
within a certain range of values. An example of how
theoretical inputs influence the experimental values in this
sector is the well-known discrepancy in the rare decay π0eþe−
driven most probably by the approximate radiative correc-
tions [18] which do not agreewith the exact calculation [19];
for details and discussion see Refs. [20,21].
Theoretical framework.—Considering the QED expan-

sion, the leading-order (LO) π0-Dalitz-decay differential
width reads [7,22,23]

d2ΓLOðx; yÞ
dxdy

¼ α

π
Γðπ0 → γγÞ

����F ðM2
πxÞ

F ð0Þ
����
2 ð1 − xÞ3

4x

�
1þ y2 þ 4m2

e

M2
πx

�
;

ð2Þ
where the two-photon decay width is parametrized as

Γðπ0 → γγÞ≡ e4M3
π

64π
jF ð0Þj2: ð3Þ

Above, Mπ and me are the neutral-pion and electron
masses, respectively. The definition (3) holds to all orders
in the QED and chiral perturbation theory expansions [16]
and covers also possible physics from beyond the standard
model, simply putting these nontrivial dynamical effects
into the TFF normalization F ð0Þ. As usual, kinematical
variables x and y are defined as

x ¼ ðpe− þ peþÞ2
M2

π
; y ¼ −

2

M2
π

pπ0 · ðpe− − peþÞ
ð1 − xÞ ; ð4Þ

with p denoting four-momenta of respective particles.
The slope aπ and curvature bπ of the singly virtual pion

TFF are defined in terms of the Taylor expansion in the
invariant mass of the vector current [24,25]:

����F ðM2
πxÞ

F ð0Þ
����≡ fðxÞ ¼ 1þ aπxþ bπx2 þOðx3Þ: ð5Þ

This parametrization is sufficient in thewhole (small) region
relevant to theπ0D decay.Havingparticular theoreticalmodels
at hand one can immediately explore the properties ofF ðq2Þ
and calculate aπ and bπ . As examples we briefly mention the
vector-meson-dominance (VMD) ansatz [25,26] together
with the lowest-meson-dominance (LMD) [27,28] and
two-hadron-saturation (THS) [21] models; see Ref. [29]
for more details. These belong to a family of large-Nc
motivated analytic resonance-saturation models and as such
they can be straightforwardly used in the calculation of
radiative corrections. By means of the first and second
derivatives it is easy to find the analytic expressions for
aπ and bπ within these models; for details see Sec. 5 of
Ref. [21]. Numerical results are shown in Table I, together
with other theoretical approaches and experimental results.
From Eq. (5) it follows that

f2ðxÞ ¼ 1þ 2aπxþ ða2π þ 2bπÞx2 þOðx3Þ: ð6Þ

We can use the expansion (6) to obtain a simple formula for
the LO width. Inserting Eq. (6) into Eq. (2) and taking into
account that x∈ð4m2

e=M2
π;1Þ and y∈(−βðM2

πxÞ;βðM2
πxÞ)

with βðsÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

e=s
p

, we get

TABLE I. The slope and curvature of the singly virtual pion TFF in various approaches. The values given by the VMD, LMD, and
THS models are compared with the results of the recent dispersive calculation [36,37] incorporating inputs from both the space- and
timelike regions (and updating Ref. [38]), the method of Padé approximants [39] mainly based on the extrapolation of the spacelike data
(as was the previous work [40]) and supported by the low-energy timelike data, the recent measurement performed by the NA62
experiment [6], or the PDG average [1]. Inherent model uncertainties (due to large-Nc and chiral limits) are not fully included in the THS
value [21]. Additionally, a recent time-like-region measurement by the A2 Collaboration reads aA2π ¼ 3.0ð1.0Þ% [41].

Source VMD LMD THS Dispers. Padé aps. NA62 PDG

aπ½%� 3.00 2.45 2.92(4) 3.15(9) 3.21(19) 3.68(57) 3.35(31)
bπ½10−3� 0.90 0.74 0.87(2) 1.14(4) 1.04(22) � � � � � �
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RLO ¼ α

π

�
4

3
ln
Mπ

me
−
1

3
ð7 − aπÞ þ

1

30
ða2π þ 2bπÞ

þ ð12 − 8aπÞ
m2

e

M2
π
þO

�
m4

e

M4
π

��
: ð7Þ

This expression is a very good approximation with the
precision ηðRLOÞ ≃ 10−9 (evaluated for parameters close to
the physical ones). As is a common practice, e.g., in Ref. [6],
further on the prescription f2ðxÞjlin ≡ ð1þ aπxÞ2 is used,
which is accurate to first order in x. The effect of the missing
2bπx2 term is negligible, since the region where such a
difference arises (i.e., when x ≃ 1) is suppressed; cf. Eq. (2)
and also Table III later on. If we consider bπ ≃ a2π, as
suggested by the models (cf. Table I), we introduce an error
of σðaπÞ ≃ a2π=5, i.e., a relative error ηðaπÞ≲ 1%, on the
estimate of aπ being well under the current experimental
precision. The previous discussion also implies that the
effect of the aπx term on the Dalitz-decay rate is limited,
letting us provide a very precise determination of R while
allowing for 20% uncertainty on aπ . Finally, let us note that
dropping bπ out of Eq. (7) decreases its precision down
to ηðRLOjbπ¼0Þ ≃ 10−5, being still a good approximation for
our purpose in view of the above discussion.
In the rest of the section we address the NLO QED-sector

radiative corrections; see Fig. 1 for Feynman diagrams. It is
convenient to introduce the NLO correction δ to the LO
differential width [and thus to write schematically dΓ ¼
ð1þ δþ…ÞdΓLO],which can be in general (for the two- and
onefold differential case, respectively) defined as

δðx; yÞ ¼ d2ΓNLO

dxdy

�
d2ΓLO

dxdy
; δðxÞ ¼ dΓNLO

dx

�
dΓLO

dx
:

ð8Þ

One can obtain δðxÞ from δðx; yÞ using the following
prescription:

δðxÞ ¼ 3

8

1

βðM2
πxÞ

�
1þ 2m2

e

M2
πx

�−1

×
Z

βðM2
πxÞ

−βðM2
πxÞ

δðx; yÞ
�
1þ y2 þ 4m2

e

M2
πx

�
dy: ð9Þ

To calculate the NLO radiative corrections we use the
approach documented in Refs. [7,42], which reviewed and
extended the classical work of Mikaelian and Smith [22].
Hence, together with the bremsstrahlung (BS) beyond the
soft-photon approximation, we take into account in the
following calculations the one-photon-irreducible (1γIR)
contribution; see Figs. 1(b) and 1(c).
For historical reasons [22,23,43–45], let us discuss the

case when the 1γIR contribution to the NLO radiative
corrections is not considered in the analysis to extract the
TFF slope from the data. If we start with the equation
among the measured spectral shapes (onefold differential
widths) and eliminate dΓLO=dxjfðxÞ¼1 from both sides, take
the expansion (6) to the linear order, and neglect the
corrections of order αaπ, we find

Δaπx≡ ðaπ − a1γIRπ Þx ≃ −
1

2
δNLO1γIR ðxÞ; x ≪ 1: ð10Þ

Numerically, Δaπ ≃ 0.5% [23]. This is the value to be
added to the experimental value a1γIRπ (extracted neglecting
the 1γIR contribution) in order to find an estimate of the
pure-low-energy-QCD-sector parameter aπ with all the
QED radiative corrections subtracted. Above, δNLO1γIR ðxÞ is
calculated from δ1γIRðx; yÞ stated in Sec. IV of Ref. [7]
using the prescription (9). Note that the 1γIR contribution
was already taken into account in the NA62 analysis [6] and
aNA62π does not need to be corrected by Δaπ.
Finally, taking the prescription f2ðxÞjlin and the NLO

QED radiative corrections to approximate the exact Dalitz-
decay differential width beyond LO (and consequently
ΔR≡ R − RLO) we arrive at

ΔR ≃ RNLO ≡ α

π

ZZ
ð1þ aπxÞ2δðx; yÞ

×
ð1 − xÞ3

4x

�
1þ y2 þ 4m2

e

M2
πx

�
dxdy: ð11Þ

Calculation and uncertainty estimation.—Our aim now
is to precisely and reliably (using conservative error
estimates) determine R. In the following we choose aunivπ ≡
3.55ð70Þ% by stretching the uncertainty band over the
whole interval of values suggested by different approaches;
cf. Table I. From Eq. (7) we get

RLO ¼ 11.879ð5Þ × 10−3; ð12Þ

and based on Eq. (11) we arrive at

(a) (b) (c)

(d) (e)

FIG. 1. NLO QED radiative corrections for π0D: (a) vacuum-
polarization insertion; (b),(c) one-loop 1γIR contribution;
(d) vertex correction; (e) bremsstrahlung.
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ΔR ¼ 0.099ð3Þ × 10−3: ð13Þ

During the estimation of the above uncertainty, higher
orders in the QED expansion were considered, surpassing
in size the uncertainty stemming from the TFF dependence.
In this regard, we can take the absolute value of the
dominant correction (RNLO

BS;div; see Table II) as the typical
expected maximum value appearing in NLO and anticipate
that the NNLO correction is suppressed compared to the
NLO one in the similar manner as NLO is suppressed with
respect to LO: circa on the level of 3%. This uncertainty is
already conservative: the total NLO correction is on the
level of 1%. Summing Eqs. (12) and (13) we finally obtain

R ¼ 11.978ð5Þð3Þ × 10−3: ð14Þ

This is one of the main results of the presented work. The
former uncertainty stands for the TFF effects and the latter
for neglecting the higher-order corrections; [Relaxing the
requirement of providing a conservative value, one can
significantly reduce the former uncertainty (stemming from
the TFF effects) taking into account a particular result from
Table I: e.g., with the most precise entry—the dispersion-
theoretical result [36,37]—by a factor of 8. Higher-order
QED corrections would need to be computed to achieve an
additional gain of precision.]me,Mπ , and α are known very
precisely.

This calculation also includes all contributions from the
decays where additional photon(s) with arbitrarily high
(kinematically allowed) energies are radiated. Indeed, the
bremsstrahlung correction at NLO (calculated à la
Refs. [7,22]) takes into account an additional final-state
photon and integrates over its energy and emission angle
without any additional cuts. The results are thus meant to be
used for the inclusive process. However, quantities for
exclusive processes can be obtained in a similar way while
introducing some specific cutoff in the bremsstrahlung
correction δBSðx; yÞ. A combined approach was used in the
analysis of the recent NA62 measurement [6], when an
additional photon was simulated above the cutoff given by
the detector sensitivity. To conclude, for each experimental
setup the specific approach for including radiative correc-
tions must be used. When it applies, we explicitly state (as
in the abstract) that the results include an additional final-
state photon, denoting it as (γ). We also take this tacitly into
account in the results for R, e.g., in Eq. (14).
In experiments, specific kinematic regions might be

considered. The sample values for

RðxcutÞ≡ B(π0 → eþe−γðγÞ; x > xcut)
Bðπ02γÞ

ð15Þ

are listed in Table III, using which one can also obtain
values for any intermediate region. As an example, in the
π0-rare-decay measurement performed by KTeV [47] the
region x > xcut ¼ 0.232 was used for the Dalitz decay,
which served as the normalization channel in this search.
The direct calculation based on this work leads to
Rð0.232Þ ¼ 0.380ð2Þ × 10−3 and the interpolation based
on Table III gives Rð0.232Þjintpol ¼ 0.379ð2Þ × 10−3, which
is compatible within uncertainties. In Ref. [48] the value
½Rð0.2319Þ=R�jKTeV ¼ 0.0319 was used, which is compat-
ible with our calculation: Rð0.232Þ=R ¼ 0.0317ð2Þ.
Based on R, we can predict Bðπ02γÞ and Bðπ0DÞ.

Considering the uncertainty of R, we can write

1 − Bðπ0DDÞ ≃ Bðπ02γÞ þ Bðπ0DðγÞÞ; ð16Þ

TABLE II. Individual contributions of the NLO radiative
corrections for R in [10−3]. The virt label stands for virtual
corrections [Figs. 1(a) and 1(d)] and div (conv) for the divergent
(convergent) parts of the bremsstrahlung contribution [Fig. 1(e)]
[46]. The listed uncertainties stem from the uncertainty of aunivπ .
In the case of the 1γIR correction [Figs. 1(b) and 1(c)], a
particular model for the doubly virtual TFF (LMD, etc.) is
necessary to introduce. The resulting model dependence is
suppressed [7] and related uncertainty included.

RNLO
virt RNLO

BS;conv RNLO
BS;div RNLO

1γIR RNLO

−0.0750ð2Þ −0.157 59ð2Þ 0.3363(3) −0.004 66ð2Þ 0.099 11(7)

TABLE III. The values of RðxcutÞ for chosen sample values of xcut. To be suitable for interpolation, higher precision
is used. The quoted uncertainties are dominated by the TFF-slope knowledge (for its value we assume aunivπ ); the additional
3% uncertainty covering the higher-order corrections is also included. Note different additional multiplicative factors depending
on xcut.

xcut RðxcutÞ½10−5� xcut RðxcutÞ½10−5� xcut RðxcutÞ½10−6� xcut RðxcutÞ½10−8�
0.05 203.72(45) 0.30 22.13(13) 0.55 24.20(22) 0.80 67.28(85)
0.10 117.03(36) 0.35 14.787(97) 0.60 14.07(14) 0.85 19.81(27)
0.15 74.38(29) 0.40 9.756(71) 0.65 7.703(80) 0.90 3.594(54)
0.20 49.11(23) 0.45 6.313(50) 0.70 3.890(43) 0.95 0.1967(35)
0.25 32.92(17) 0.50 3.978(34) 0.75 1.757(21) 1.00 0
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since the branching ratios of other decay modes are smaller
than 10−6. Using Bðπ0DDÞ ¼ 3.3ð2Þ × 10−5 [1,49] (double-
Dalitz decay), we find

Bðπ02γÞ ≃
1 − Bðπ0DDÞ

1þ R
¼ 98.8131ð6Þ%: ð17Þ

Note that taking tacitly into account inclusive Dalitz decays
in Eq. (16) is justified and contributes to the relevant decay
modes. Finally, the Dalitz-decay branching ratio reads

Bðπ0DðγÞÞ ≃
R

1þ R
½1 − Bðπ0DDÞ� ¼ 1.1836ð6Þ%: ð18Þ

The above results are compatible with the PDG averages,
exhibiting much higher precision.
Let us see how the new result on the Dalitz-decay

branching ratio (18) influences a completely different family
of processes on a simple example of the Kþ → πþeþe−
decaymeasurements. The low-energy parameters aþ and bþ
were measured by the NA48=2 collaboration to be
aþ ¼ −0.578ð16Þ and bþ ¼ −0.779ð66Þ, leading to the
model-dependent branching ratio BðKþ → πþeþe−Þ ¼
3.11ð12Þ × 10−7, using the 2008 PDG average Bðπ0DÞ ¼
1.198ð32Þ% [50] for normalization [2]. The central value of
our result (18) is 1.2% lower than the quoted PDG average
and has a negligible error. The remaining external uncertainty
on the measurement [2] related to the normalization comes
from BðKþ → πþπ0Þ known to 0.4% precision. The cor-
rected values are aþ ¼ −0.575ð14Þ, bþ ¼ −0.771ð64Þ, and
BðKþ → πþeþe−Þ ¼ 3.07ð10Þ × 10−7. Note that consider-
ing the external errors on aþ and bþ quoted in Ref. [2],
further experimental progress on Kþ → πþeþe− measure-
ment would be impossible without improvement on Bðπ0DÞ.
Comparison and conclusion.—Radiative corrections for

the integral decay width were first addressed by Joseph
[51], who numerically arrived to ΔRjJph ¼ 0.105 × 10−3

neglecting, among others, the pion TFF slope. A simple
analytical prescription in the limit of the vanishing electron
mass was later found by Lautrup and Smith [52]:

ΔRjL&S ¼
�
α

π

�
2
�
8

9
ln2

Mπ

me
−
1

9
ð19 − 4aπÞ ln

Mπ

me

þ 2ζð3Þ − 2

27
π2 þ 137

81
−

63

108
aπ þO

�
me

Mπ

��
:

ð19Þ

Numerically, ΔRjaπ¼0
L&S ¼ 0.10378 × 10−3 and ΔRjaunivπ

L&S ¼
0.10414ð7Þ × 10−3. The two approaches are compatible
and should be compared with our result (13). However, the
1γIR contribution was, due to inappropriate assumptions
and arguments based on Low’s theorem [53–55], consid-
ered negligible and left out; see also Refs. [22,44]. The
exact calculation shows its significance [7,23,43,45] and it

thus embodies the main source of the difference between
our result and the previous works. Moreover, the symmet-
rization with respect to the two photons in the bremsstrah-
lung contribution was neglected in Refs. [51,52]. This
interference of the diagrams from Fig. 1(e) is indeed
negligible and corresponds (for aπ ¼ 0) to ΔRBS

interf ¼
0.000360 × 10−3. Let us stress again that the prediction
(14) is based on the complete calculation which includes
the entire bremsstrahlung and 1γIR contributions. Here,
TFF effects were taken into account also in the brems-
strahlung correction [46] and the mass of the final-state
leptons was not neglected.
Our main result (14) together with the value (17) should

be considered as an alternative to the current PDG averages
which opens the way to a new level of precision for a whole
class of other processes, for instance, for the already
mentioned kaon decays. Similarly, the current situation,
when the precision on Bðπ0DÞjPDG dominates the uncertainty
on Bðπ0DDÞ [56] and is the largest source of uncertainty on
Bðπ0eþe−Þ [47], is improved.
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