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Abstract 

Four billion years ago the formation and preservation of the Earth’s first continental 

crust marked a new stage in the long-term geochemical evolution of our planet. This 

continental material is predominantly composed of plagioclase-rich granitoids that form 

Eoarchaean Tonalite and Trondjhemite (ETT) rock suites. There are two plausible 

overarching models for generating ETT: by a variety of intraplate melting mechanisms 

or through the onset of primitive subduction. Here we use mass balance modelling to 

show that ETT can only be derived from the hydrous melting of mafic rocks in 

convergent margins. These mafic source regions could be composed of relatively 

undepleted (oceanic plateau-like) non-arc metabasalts with or without residual rutile.  

Melts derived from these metabasalts subsequently mix with a slab-related component 

to form ETT magmas. Additionally, ETT can be formed from partial melting of 

metabasalts with geochemical affinities similar to modern island arc basalts. We 

propose that a primitive form of plate tectonics began on the surface of Hadean magma 

ocean(s), in a similar way to the plate-like motions observed on modern lava lakes, and 

subsequently evolved into the plate tectonics operating today. Hydrous melting of 

subducted basaltic crust and the formation of the proto-continental ETT crust would 

have followed the onset of accumulation of liquid water on the Earth’s surface. 

 

Keywords: Eoarchaean Earth, Tonalite, Trondhjemite, Granodiorite (TTG), Mass balance 

modelling, Slab flux, Rutile, Subduction, Plate tectonics.  
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1. Introduction 

The presence of both oceanic and continental crust, large volumes of liquid water and active 

plate tectonics are three interlinked fundamental characteristics that distinguish the modern 

Earth from other planets in our solar system. Nonetheless, we still cannot agree when these 

three characteristics developed. How the continents initially formed and when plate tectonic-

like processes developed is important because both are ultimately responsible for modifying 

the composition of Earth’s early geochemical reservoirs, which have subsequently evolved 

into the present-day mantle, hydrosphere and atmosphere.  

Zircons from the Jacks Hills conglomerates, Australia suggest that continental crust existed 

~4.4 Ga (e.g., Harrison et al., 2005; Hopkins et al. 2008). These early ages, however, are 

obtained on detrital zircons from much younger rocks, whose protolith has long since been 

destroyed or reworked (O’Neil et al., 2007). The oldest stable and preserved juvenile 

continental crust began forming on the Earth, and possibly on other terrestrial planetary 

bodies (Sautter et al. 2015), ~4 billion years ago (e.g., Bowring and Williams, 1999; Nutman 

et al. 1999; 2009, Hoffmann et al. 2011). These ancient rocks are found in West Greenland 

(Baadsgaard et al., 1986, Crowley, 2003, Nutman and Friend 2009), Australia (Nutman et al., 

1993, Kinny and Nutman, 1996), Antarctica (Harley and Black 1997), China (Liu et al., 

2007, Ge et al., 2018) and Canada (Bowring and Williams, 1999, Iizuka et al., 2007, O’Neill 

et al., 2007). Nevertheless, the tectonic processes responsible for generating this ancient 

continental material are poorly understood and rival hypotheses of a dominant horizontal vs. 

vertical geodynamic regime are still hotly debated (Ernst et al. 2016; Hawkesworth et al., 

2016, 2017, Hastie et al., 2016a, Kaczmarek et al., 2016, Rozel et al. 2017, Cox et al. 2018, 

Ge et al., 2018, Keller and Schoene 2018, Moyen and Laurent 2018, Wiemer et al., 2018). 

Accordingly, the timing of the initiation of plate tectonics resembling either modern 

subduction zone processes or atypical subduction, is also highly contentious with estimates 

ranging from <1.0 to >4.0 Ga (Harrison et al. 2005; Jenner et al. 2009, Nutman et al. 2009, 

Dhuime et al. 2012, Foley et al., 2014; Nebel et al. 2014, Hastie et al. 2016a, Hawkesworth et 

al. 2016, Stern et al. 2016; Keller and Schoene 2018, Ge et al. 2018).  

Although Archaean time scales are debated (Kamber 2015), the oldest part is generally 

considered to be represented by the Eoarchaean Era from 4.0-3.6 Ga. No continental rocks 

(sensu stricto) from before the Eoarchaean, or the Eoarchaean/Hadean boundary, have yet 

been discovered and up to 90% of the earliest surviving continental crust from ~4.0-3.6 Ga is 

composed of plagioclase-rich granitoids that form Eoarchaean Tonalite and Trondjhemite 

(ETT) rock suites (Baadsgaard et al., 1986, Bowring and Williams, 1999; Nutman et al. 1999; 

2009, Crowley, 2003, Steenfelt et al., 2005, Iizuka et al., 2007; Liu et al., 2007, O’Neil et al., 

2007; Hoffmann et al. 2011, Polat et al., 2015). Granodiorites (G) are commonly included as 

an ETT(G) suite but the granodiorites, and potassic granites, are generally younger and are 

interpreted as being derived from melting older ETT (Baadsgaard et al., 1986; Numan et al., 

1993; Kinny and Nutman, 1996; Crowley, 2003; Steenfelt et al., 2005; Nutman et al. 2007; 

2009; Nutman and Friend 2009; Polat et al., 2015; Hoffmann et al., 2014). Nevertheless, 

exceptions do exist: see Bowring and Williams, 1999 and Iizuka et al., 2007 for examples of 

~4.0 Ga granodiorite and granite from the Acasta Gneiss Complex respectively. There is near 

universal agreement that the ETT are generated by the partial melting of metabasic source 

rocks (Sen and Dunn 1994, Wolf and Wyllie 1994, Rapp and Watson 1995, Drummond et al. 

1996, Nutman et al. 1999, Hoffmann et al., 2011, Hastie et al. 2016a), but the tectonic 

environment where this occurred is the subject of intense debate between primitive 

subduction zones (plate tectonics?) (Ernst et al. 2016; Nutman et al. 2009, 2015, Nutman and 

Friend 2009, Foley et al., 2014, Hastie et al. 2015, Polat et al. 2015, Kaczmarek et al. 2016, 

Ge et al. 2018) and a non-subduction (non-plate tectonic?) process (e.g., Robin and Bailey, 



  

2009, Smithies et al. 2009, Thébaud and Ray, 2013, Zhang et al. 2013; Hawkesworth et al. 

2016, Rozel et al., 2017; Wiemer et al., 2018). To complicate matters further, it is also argued 

that Archaean terranes show evidence of both horizontal tectonics (subduction or 

subcretion?) and vertical tectonics (Sizova et al. 2015; Bedard 2017) so that both tectonic 

regimes could have been operating at the same time. Furthermore, it has been suggested that 

subducting Archaean plates may have been weaker and may have broken up into drips as 

they descend (e.g., Moyen and van Hunen 2012). This process of weak plate subduction is 

termed dripduction (Moyen and Laurent 2018). Additionally, recent laboratory analogue 

experiments, numerical modelling and geological investigations of Earth and Venus, show 

that limited plume-induced subduction can initiate through slab roll back without active sea-

floor spreading (Gerya et al. 2015, Davaille et al. 2017). This suggests that evidence of 

subduction on the early Earth may not indicate plate tectonics sensu stricto as subduction may 

occur in the absence of mid-ocean ridge volcanism. 

Here, mass balance models are constructed using published data from high pressure-

temperature (P-T) experiments to re-investigate ETT petrogenesis and examine if subduction 

processes or intracrustal melting of thick basaltic crust are responsible for forming the first 

continental landmasses ~4.0 Ga. Relatively recent studies have interpreted Eoarchaean 

terranes from a geologically holistic stance (e.g., Nutman and Friend 2009; Polat et al., 2015), 

but here we contribute to the debate by focussing on the petrogenesis of the ETT. It is 

important that the precise mechanisms responsible for early continental growth are known so 

that we can understand what elemental outputs and sinks they might have imparted onto 

primitive ecosystems and environments. This is fundamental because we cannot fully 

understand why all of the Earth’s modern-day geochemical reservoirs have their present 

compositions and why life was able to evolve until we understand how the continents began 

to form.  

 

2. Formation of ETT 

It is generally accepted, based on high pressure-temperature (P-T) experiments and 

geochemical modelling, that the first continental materials (the ETT) were derived through 

partial melting of metamorphosed basic igneous protoliths (Sen and Dunn 1994, Wolf and 

Wyllie 1994, Rapp and Watson 1995, Winther 1996, López and Castro 2000, Foley et al. 

2002, Rapp et al. 2003, Martin et al. 2005, Moyen and Stevens 2006, Adam et al. 2012, 

Laurie and Stevens 2012, Moyen and Martin 2012, Nagel et al. 2012, Zhang et al. 2013, Ziaja 

et al. 2014, Hastie et al. 2015, 2016a, Palin et al. 2016a). In contrast, proposed Eoarchaean 

tectonic environments in which the ETT were generated are extremely varied in detail, but 

broadly fall into two contrasting models.  

Model 1 suggests that plate tectonic-like processes were absent in the Eoarchaean 

(Hamilton 1998, Van Thienen et al. 2004, Dhuime et al. 2012, Zhang et al. 2013, Kamber 

2015, Hawkesworth et al. 2016, Rozel et al., 2017; Wiemer et al., 2018) and that the 

formation of the early continental crust occurred through intraplate partial melt processes 

after the Earth’s magma ocean(s) had solidified, differentiated and formed a ~25-45 km thick 

stagnant basaltic lid. Published causal mechanisms for intraplate partial melting are diverse 

and can be interlinked (e.g., Sizova et al., 2015; Rozel et al., 2017), but are commonly 

attributed to: fusion of the base of the intraplate mafic crust due to upwelling of hot mantle 

(Zhang et al., 2013; Wiemer et al., 2018), heat pipes (Moore and Webb, 2013) or plutonic 

squishy lid tectonics (Rozel et al. 2017), crustal resurfacing (e.g., van Thienen et al., 2004), 

crustal overturn and sagduction (Robin and Bailey, 2009; Thébaud and Ray, 2013; Francois 



  

et al., 2014; Sizova et al., 2015; Wiemer et al., 2018) or a crustal drip (with or without 

delamination, e.g., van Thienen et al., 2004; Sizova et al., 2015) (Model 1, Fig.1).  

Model 2 requires that some sort of subduction was already underway in the Eoarchaean 

(and possibly >4.0 Ga) causing water from liquid oceans to be transported to depth in 

primitive flat/shallow subduction zones. In a process slightly different to present-day 

subduction the subsequent hydrous melting of thick basaltic subducting plates generated 

magmas with ETT compositions that solidified into the first continental crust (Fig. 2b) (Ernst 

et al. 2016; Harrison et al., 2005; Steenfelt et al., 2005; Hopkins et al. 2008; Chen et al., 

2009; Nutman and Friend 2009; Jenner et al., 2009; Nutman et al., 2009, Foley et al., 2014, 

Polat et al., 2015; Hastie et al. 2016a, Kaczmarek et al., 2016) (Fig. 1: Model 2). Model 2 

lacks a mantle wedge and would not generate the typical andesitic volcanism found in 

modern arc systems. However, small slivers of mantle material may have existed on the slab 

shear zone to give rise to small volumes of quartz diorite and andesite in the Eoarchaean rock 

record (Liu et al. 2007, Nutman et al. 2015). A variant of Model 2 involves Archaean 

subcretion tectonics whereby Eoarchaean continental drift would enable continents to push 

against thick Eoarchaean oceanic crust causing imbricated basaltic slabs that could melt to 

form silicic magmas (Bédard 2013, 2017). 

Models 1 and 2 have both been, and continue to be, supported by a wide variety of field 

observations, geochemical data and numerical modelling so the debate on generating the first 

continents is ongoing.  Here, we suggest that determining the most likely geodynamic make-

up of the Eoarchaean Earth is best explored by undertaking a detailed petrological 

examination of the possible petrogenesis of ETT. A common approach for investigating the 

potential composition of the protoliths from which ETT are derived and their likely tectonic 

environment is to carry out high P-T partial melting experiments on materials with the 

composition of basic igneous rocks and determine if melts generated have similar 

compositions to the first silicic crust (Beard and Lofgren 1991, Rushmer 1991, Sen and Dunn 

1994, Wolf and Wyllie 1994, Patiño Douce and Beard 1995, Rapp and Watson 1995, Skjerlie 

and Patiño Douce 1995, Winther 1996, Springer and Seck 1997, López and Castro 2000, 

Skjerlie and Patiño Douce 2002, Rapp et al. 2003, Adam et al. 2012, Laurie and Stevens 

2012, Zhang et al. 2013, Ziaja et al. 2014, Hastie et al. 2016a). Unfortunately, individual 

experimental studies on a range of metabasic compositions [e.g., mid-ocean ridge basalt 

(MORB) and island arc] and lithologies (amphibolites and eclogites) have not yet fully 

replicated the major- and trace-element characteristics of ETT (Beard and lofgren 1991, 

Rushmer 1991, Sen and Dunn 1994, Wolf and Wyllie 1994, Patiño Douce and Beard 1995, 

Rapp and Watson 1995, Skjerlie and Patiño Douce 1995, Winther 1996, Springer and Seck 

1997, López and Castro 2000, Skjerlie and Patiño Douce 2002, Rapp et al. 2003, Adam et al. 

2012, Laurie and Stevens 2012, Zhang et al. 2013, Ziaja et al. 2014, Hastie et al. 2016a). 

Nevertheless, all of the high P-T experiments have produced major element data for the 

resulting partial melts and, if all of these previous experiments are taken together as a single 

group, they generate magma compositions with such a wide major-element variability that 

they encompass all of the ETT compositions. In contrast, assessing the trace element 

variability of previous high P-T experiments is difficult because very few studies present 

trace element analyses of experimentally derived melt (Rapp et al. 1999, Adam et al. 2012, 

Laurie and Stevens 2012, Hastie et al. 2016a). Of those that do, the partial melting of 

metabasic MORB (Laurie and Stevens 2012), back-arc basalt (Rapp et al. 1999), Hadean 

greenstone (Adam et al. 2012) and oceanic plateau basalt (Hastie et al. 2016a) all generate 

magmas that approach ETT compositions – especially the oceanic plateau-derived melts. 

Major element analyses of experimentally derived melts are useful for determining if a 

partial melt from a particular protolith matches the earliest continental material because ETT 

have distinctive major element contents relative to other granitoids (Drummond et al. 1996, 



  

Martin et al. 2005, Kamber et al. 2002, Nutman et al. 2009, Hoffmann et al. 2011, 2014, Ge 

et al. 2018). For example, compared to modern granites, Archean TT(G) have low K2O- and 

very high Na2O contents leading to low K2O/ Na2O ratios of ~0.4 (granites are typically >0.8) 

(Martin et al. 2005, Nutman et al. 2009, Hoffmann et al. 2011, Moyen and Martin 2012) (Fig. 

2a). Importantly, ETT also have a very distinctive trace element composition compared to 

other granitoids and younger TTG (Condie 2005, Martin et al. 2005). Most TT(G) have 

strongly fractionated rare earth elements (REE) (expressed as high La/Yb), characteristically 

high Sr/Y ratios and low heavy (H)REE concentrations (Drummond et al. 1996, Kamber et 

al. 2002, Martin et al. 2005, Nutman et al. 2009, Hoffmann et al. 2011, 2014, Ge et al. 2018) 

(Fig. 2b). However, ETT typically have higher Ba contents and lower Sr and transition 

element abundances than do younger TT(G) (Martin and Moyen 2002, Martin et al. 2005) 

(Fig. 2c). Trace element concentrations and patterns are arguably more sensitive to different 

geological processes and more useful for determining the petrogenesis of an igneous rock 

than are major elements. Unfortunately, analysing the trace element abundances of 

experimentally derived phases is technically difficult and these are rarely reported. 

Nonetheless, it is known that the distinct trace element abundances and patterns seen in 

Archaean TTG (Figs. 2b and 2c), are generated in metabasic-derived partial melts by (1) the 

compositional diversity of the protolith (e.g., Adam et al. 2012, Laurie and Stevens 2012) and 

(2) modally variable residual mineral phases buffering and/or fractionating trace elements 

[e.g., Sr is compatible in plagioclase (Martin et al. 2005), the HREE are compatible in garnet 

(Sen and Dunn 1994) and Nb is compatible in rutile (Klemme et al. 2002)]. However, there 

are far too few actual trace element analyses from high P-T experiments to explore all of the 

complex trace element concentrations and patterns from ETT. Hence, in order to better 

understand how the compositionally unique ETT formed we have to undertake trace element 

modelling to identify the most likely starting protolith and residual mineralogy. If the 

modelling is successful, it may be possible to determine what tectonic environment(s) gave 

rise to the first continents and establish the geodynamic make-up of the early Earth. 

 

3. Modelling Methodology 

3.1 Current approach 

A number of recent studies (e.g., Nagel et al. 2012, Palin et al. 2016a, Johnson et al. 2017) 

have used computer programs based on phase equilibria (e.g., THERMOCALC) to model the 

derivation of TT(G) and have presented evidence in favour of intracrustal and/or subduction 

models. Our methodology is different in that we collate the mineral and melt modes of 

previous high P-T experiments and use mass balance to calculate the composition of the 

liquids generated. Previous experiments have used a variety of starting compositions [MORB 

(Winther 1996, López and Castro 2000, Laurie and Stevens 2012), arc (Beard and lofgren 

1991, Rushmer 1991, Adam et al. 2012), oceanic plateau (Hastie et al. 2016a), greenstone 

(Adam et al. 2012), alkali basalt (Rushmer 1991) and a range of synthetic (Archaean) 

material (Patiño Douce and Beard 1995, Zhang et al. 2013, Ziaja et al. 2014)]. A range of 

initial and/or residual mineral assemblages [amphibolites (Rushmer 1991, Sen and Dunn 

1994, Wolf and Wyllie 1994, Patiño Douce and Beard 1995, López and Castro 2000, Zhang 

et al. 2013) and eclogites (Sen and Dunn 1994, Laurie and Stevens 2012)] at a range of 

temperatures and pressures (790-1225°C and 0.1-3.2 GPa) at anhydrous to hydrous 

conditions (up to 32 wt.% water, Laurie and Stevens 2012) have also been used to generate 

silicic liquids. The many experimental results give us the actual modal residua-mineral and 

melt proportions over a P-T-X range that most likely encompasses the conditions required to 

derive ETT from an intracrustal and/or subduction environment.  

The experimental data are invaluable because, if we know the melt fraction (F), the modal 

proportion of residual equilibrium phases, and the distribution coefficient (D) between the 



  

residual solid and the melt, it is straightforward to calculate the liquid composition by mass 

balance 

    C0 = FCL+(1-F)CR  [1] 

where C0 is the initial concentration of some element in the experimental starting material, CL 

its concentration in the melt and CR its concentration in the residual phases. By definition 

             CR = DCL   [2] 

and substituting [2] in [1] and rearranging gives 

   
  

        
         

         

which is Shaw’s (1970) modal melting equation. Thus, we only need to know the initial bulk 

composition, the residual mineral assemblage, their respective solid/melt distribution 

coefficients, and the melt fraction in order to estimate the melt composition. The starting (un-

melted) metabasic protolith composition (C0) will be varied to see which protolith can best 

explain the ETT data. Here we use modern MORB, oceanic plateau basalt, theoretical 

Eoarchaean oceanic crust and Eoarchaean arc-like protoliths. The bulk distribution 

coefficient (D) appropriate to each residual assemblage is calculated from the modal mineral 

proportions reported in high P-T experimental studies and partition coefficients for the 

individual mineral phases. We use the partition coefficients given by Bédard (2006) because 

these are very widely used in the recent literature (e.g., Hastie et al. 2015, Johnson et al. 

2017). F (melt fraction) is the modal melt proportion reported in individual experiments. It is 

important to note that the modal proportions used in these mass balance calculations have to 

be in weight percent and not volume or mole percent. The only assumption we make is that 

the experiments have all reached equilibrium. 

In carrying out our calculations we assume that melts are produced by batch (equilibrium) 

melting in which melt remains in contact with residual solid until the final melt fraction F is 

reached. This approach is required because we base our calculations on the results of melting 

experiments in which melt and solid phases remain in equilibrium. However, partial melting 

in the Earth is better described by a fractional melting process in which melt is drained 

continuously as it forms and therefore does not remain in equilibrium with residual solid 

phases throughout the melting process. To model fractional melting requires knowledge of 

the initial proportions of each mineral phase (the phase mode) and the proportion that each 

phase contributes to the melt (the melt mode). We could then use Shaw’s (1970) equation for 

perfect fractional melting to calculate the composition of the accumulated melt. Fractional 

melting produces concentrations of incompatible elements that are up to 30% higher than 

those from batch melting because fractional melting is more efficient at stripping the more 

incompatible elements from the source. The maximum difference between the two models is 

found when F≈D and so ratios between highly incompatible and moderately compatible 

elements are likely to be the most affected by choice of model. We have calculated the 

magnitude of the difference between batch and fractional melting by estimating the phase and 

melt modes from some of the experiments (not all studies give enough information for us to 

work out the phase and melt modes) and then using Shaw’s (1970) equation for accumulated 

fractional melt to calculate the concentrations of a wide range of elements in melts formed 

from a normal (N)-MORB source. As we will show later, the calculated differences are too 

small to affect our conclusions and so we will use the more robust batch-melting approach 

here. 



  

3.2 Oceanic plateau starting composition 

It can be argued that the first stable and survivable continents, regardless if they were 

generated from primitive subduction zones, subcretion or intracrustal environments, are most 

likely derived from a protolith with basaltic oceanic plateau-like compositions. Mesozoic 

oceanic plateaus (e.g., Ontong Java Plateau and the Caribbean Oceanic Plateau) were 

generated by the partial melting of hot mantle in plume heads, and are composed of basaltic 

crust up to 20-35 km thick that is less incompatible element depleted than N-MORB 

(Herzberg and O'Hara 2002, Fitton and Godard 2004, Herzberg et al. 2007, Kerr et al. 2014, 

Herzberg and Asimow 2015, Hastie et al. 2016b). 

In the Hadean the Earth initially had a magma ocean(s) that solidified and differentiated 

into basaltic crust (Elkins-Tanton 2008). This first crust may have been mostly destroyed 

during the Late Heavy Bombardment (LHB) ~3.8-4.1 Ga (Gomes et al. 2005, Kamber 2015), 

but the basaltic crust that survived, and formed afterwards, was probably 25-45 km thick and 

would have had a composition similar to Mesozoic oceanic plateaus (e.g., the non-arc basalts 

of Herzberg et al. 2010). Archaean mantle plume-derived komatiites do exist alongside non-

arc basalts, but they are volumetrically minor (<5%) and are not representative of Eoarchaean 

crust (Herzberg et al. 2010; Johnson et al., 2014). Therefore, if ETT was derived by 

intracrustal melting, it was likely Mesozoic oceanic plateau-like material that melted. 

Conversely, if plate tectonic-like processes existed on the Eoarchaean Earth (Model 2), then 

crust formed at Eoarchaean spreading centres might have been a plausible protolith from 

which to generate the first continents through metamorphism and melting in an Eoarchaean 

subduction setting. Eoarchaean upper mantle was hotter and less depleted in incompatible 

elements than the present-day asthenosphere (Shirey et al. 2008, Herzberg et al. 2010). Thus, 

Eoarchaean spreading centres should have been characterised by larger degrees of partial 

melting, producing less depleted and thicker oceanic crust (~30-45 km) than today (~7 km) 

(Abbott et al. 1994, Smithies et al. 2003, Herzberg et al. 2010, Moyen and Martin 2012, 

Bedard 2017). The lack of continental crust before ~4 Ga, would have meant that this thick 

oceanic crust would have been the dominant surface rock type (Kamber 2010, Dhuime et al. 

2015, Tang et al. 2016), making it a likely protolith from which to derive Eoarchaean 

continents. As no definitive Eoarchaean oceanic crust has survived to be examined (e.g., 

Nutman et al., 2009) the closest analogue in terms of thickness and geochemistry, if not mode 

of formation, are the Mesozoic oceanic plateaus. This is supported by a geochemical study by 

Reimink et al. (2014) on a ~4.0 Ga mafic tonalite in Canada that has been interpreted as 

forming in an oceanic plateau (Iceland-like) environment. 

Hastie at al. (2016a), set out to replicate the composition of Eoarchaean silicic crust by 

carrying out high P-T experiments using a single sample of Mesozoic Ontong Java Oceanic 

Plateau (OJP) Kroenke-type basalt, which is anhydrous, primitive and relatively depleted 

[e.g., high MgO and low TiO2, light (L)REE, Th and U (Fitton and Godard 2004)]. This study 

also simulated a primitive subduction environment, and since a shallow subducting slab is 

converted to an amphibolite with ~1-3 wt. % water (Peacock et al. 1994, Kogiso et al. 1997, 

Tatsumi and Kogiso 1997), a similar amount of water was added to the anhydrous OJP 

experimental starting material. Hastie et al’s (2016a) experiments were run from 1.6-2.2 GPa 

and 825-1000°C and generated tonalite-composition liquids in equilibrium with plagioclase- 

and garnet-bearing amphibolites that lacked residual rutile (low TiO2 content prevents rutile 

stabilising).  Almost all elements from the OJP-derived tonalites match ETT compositions; 

however, the OJP experimental liquids have low K2O and Ba contents relative to the ETT 

data compiled by Nutman et al. (2009), Hoffmann et al. (2011, 2014), Kamber et al. (2002) 

and Ge et al. (2018) (Fig. 3a). Furthermore, ETT commonly have pronounced negative Nb-

Ta anomalies on N-MORB normalised multielement diagrams whereby ETT have 

(La/Nb)nmn (N-MORB normalised) ratios of 0.6-49.8. The OJP-derived melts overlap the 



  

ETT with (La/Nb)nmn of 0.7-2.3, but require either enrichment of the LREE and/or residual 

rutile (partition coefficients for Nb and Ta >>1) in order to increase the (La/Nb)nmn ratio 

(Hastie et al. 2016a) (Fig. 3a). As no rutile was stabilised in the OJP experiments, Hastie et 

al. (2016a) increased the incompatible element contents and the (La/Nb)nmn ratio of the OJP-

derived melts by assuming that the melts mix with dehydration fluids released from deep 

within a subducting slab (Fig. 1: Model 2). The modelled OJP-derived partial melt + slab 

fluid mixtures have compositions that match a larger portion of, but not all, the ETT because 

the slab fluid increases the contents of the incompatible elements (K2O, Ba and LREE) in the 

mix (Fig. 3b). Nevertheless, although an OJP-derived melt and slab fluid mixture can explain 

some of the ETT compositions, a few questions remain:  

 

1. Can oceanic plateau material that has higher incompatible element contents and high 

enough TiO2 to stabilise residual rutile undergo partial melting to generate liquids 

(with or without a slab fluid) with compositions that can explain all ETT-like 

compositions? 

2. Can intracrustal melting of oceanic plateau material with high incompatible element 

and TiO2 contents at low pressures (≤1.4 GPa: maximum base of thick mafic crust) 

generate ETT like compositions without the need for a slab-fluid? 

 

3.3 Possible slab flux components 

The OJP-derived tonalite melts reported by Hastie et al. (2016a) have compositions that 

match a proportion of ETT only by mixing them with a hypothetical slab-derived fluid 

component. As such, it may be possible that melts derived from the fusion of different 

metabasic protoliths could be mixed with similar slab fluids to generate all ETT-like 

compositions.  Therefore, a slab component can be used in our models to explore all options 

for forming the ETT. The composition of a slab-derived fluid is calculated by using the 

methodology of Kogiso et al. (1997) who studied dehydration processes experimentally on a 

natural amphibolite under open system conditions. Kogiso et al. (1997) define the mobility of 

an element as 

   
      

  
                                       

 

where Em is element mobility, C0 is the element concentration in a starting amphibolite and 

Cfl is the concentration of an element in the amphibolite after fluid loss. The concentration of 

an element in a slab-derived fluid is then calculated based on the extracted water content in 

the altered slab by 

    
     

    
                    

 

Where Csf is the element concentration in the slab-derived fluid, C0 is the concentration of the 

element in the starting rock unit(s), P is the proportion that the rock unit(s) contribute to the 

slab fluid concentration, and XH2O is the mass fraction of water. The final composition of a 

combined ETT melt and slab-fluid mixture can be determined using mass balance 

 

                                       

 

where Cm is the concentration of an element in a mixture of ETT (CETT) with an added 

fraction (X) of the slab-derived component (Csf). 

 

3.4 Eoarchaean metabasaltic rocks with island-arc affinities 



  

Field observations in Archaean terranes (Polat et al., 2015), previous geochemical studies 

(Nutman et al. 1999, Hoffmann et al. 2011, Adam et al. 2012, Hastie et al. 2015, O'Neill et al. 

2016, O'Neill and Carlson 2017, Cox et al. 2018) and phase equilibria modelling (Nagel et al. 

2012, Hoffmann et al. 2014, Johnson et al. 2017, Ge et al. 2018) suggest that ETT could also 

be derived from the partial melting of Eoarchaean metamorphosed mafic crust with a 

chemical composition similar to that of present-day island arcs (e.g., negative Nb anomalies 

on multielement diagrams) (e.g., Jenner et al. 2009, Hoffmann et al. 2011). Some studies also 

suggest that these arc-like mafic protoliths are, themselves, possibly derived from the partial 

melting a mafic crustal precursor so that ETTs are derived through a multi-stage petrogenetic 

process (Johnson et al. 2017). Fusing of Eoarchaean arc-like metabasic rocks has been 

suggested to occur in both an intraplate (Hoffmann et al., 2011, Cox et al. 2018) and 

subduction environment (Ge et al., 2018). However, if this were the case then subduction 

similar to that on the modern Earth may have been operating before the formation of the 

earliest ETT crust. Therefore, Eoarchaean rocks with island arc-like compositions remain a 

plausible protolith from which to derive the earliest TTG and this leads us to a follow up 

question from those in section 3.2:  

 

3. Can partial melting of Eoarchaean island arc-like crust generate ETT like 

compositions? 

 

3.5 Which trace elements should we model? 

3.5.1 Investigating a slab fluid  

One of the key geochemical characteristics of ETT is a negative Nb-Ta anomaly on N-

MORB normalised multielement diagrams (Fig. 3a,b) (Nutman et al. 1999, 2009, Kamber et 

al. 2002, Hoffmann et al. 2011, 2014, Ge et al. 2018). This anomaly can either be explained 

by residual rutile in a metabasic source region (partition coefficients for Nb and Ta in rutile 

are ~40-70: Bédard 2006) and/or mixing a metabasic-derived partial melt with a slab fluid 

that is enriched in large ion lithophile elements (LILEs), LREEs, Th and U relative to Nb and 

Ta. Resolving whether residual rutile and/or a slab fluid are responsible for the negative 

anomalies in ETT is key to determining whether a subduction or an intraplate environment is 

dominantly responsible for ETT generation. An intraplate environment on an early Earth, that 

lacked a plate tectonic regime would have to be able to stabilise rutile at relatively low 

pressures (<0.8-1.4 GPa; <25-45 km) if the mafic crust undergoes in situ partial fusion to 

form ETT magmas (Kamber 2015, Hawkesworth et al. 2016, Palin et al. 2016). However, 

higher pressures can be invoked if ETT magmas are derived from lithospheric 

drips/delamination in an intracrustal regime. In order to determine if both residual rutile and a 

slab fluid are required to generate the full range of negative Nb-Ta anomalies seen in the 

ETT, trace element ratios in which the numerator element is transported in a slab fluid (e.g., 

K/Y and La/Y) or retained in residual rutile (Nb/Y) will be used in our models. 

 

3.5.2 A depth investigation using plagioclase (Sr), Garnet (HREE) and Rutile 

It is well documented in the literature that the stability of plagioclase and garnet in a 

metabasic igneous rock is highly pressure dependent, with plagioclase stable at low pressures 

and garnet at high pressures (Martin et al. 2005, Xiong et al., 2005; Moyen and Stevens 

2006). The exact pressure at which plagioclase is replaced by garnet is dependent on the 

temperature and composition of the system, but commonly, garnet is considered to be stable 

deeper than ~30 km (~1 GPa) (Beard and Lofgren 1991, Wolf and Wyllie 1994, Springer and 

Seck 1997, Zhang et al. 2013) and plagioclase can exist up to ~55 km (~1.6-1.8 GPa) (Sen 

and Dunn 1994, Wolf and Wyllie 1994, Patiño Douce and Beard 1995, Winther 1996, 

Springer and Seck 1997, Martin et al. 2005, Moyen and Stevens 2006, Zhang et al. 2013, 



  

Hastie et al. 2016a). Strontium is compatible in plagioclase and the HREEs are compatible in 

garnet (Bédard 2006). Thus, Sr and the HREE can be used, as in other studies (Van Hunen 

and Moyen 2012), to investigate the depth from which ETT are derived. Rutile stability is 

also pressure dependent and experimental studies show that it is stable above ~40-50 km 

depth (1.25-1.50 GPa) in a basaltic protolith (Patiño Douce and Beard 1995, Xiong et al. 

2005). In order to explore the changing mineralogy with depth, trace elements that would 

only be affected by residual plagioclase (e.g., Sr) and garnet (e.g., Y and the HREE) will be 

used in our models. 

 

4. Results and Discussion  

Tables 1-4 show a worked numerical example where the trace element concentration of 

partial melts from experimental runs reported by Hastie et al. (2016a) are calculated by mass 

balance calculations. The calculated melt compositions in Table 4 have similar trace element 

concentrations and patterns on N-MORB normalised multielement diagrams to actual partial 

melt analysed by Hastie et al. (2016a) (Figs. 3a and c). In particular, the positive Ba and 

negative Ti anomalies are replicated in the models. Also, as with the actual analyses, 

modelled partial melts calculated for experiments with residual plagioclase show low Sr 

concentrations relative to experiments with residual garnet, which show lower abundances of 

the HREE. As a consequence, because the compositions of the modelled melts match the 

analytical data so well, we think that the variables used in our calculations are appropriate. 

Unfortunately, a much wider comparison between actual analyses and modelled partial melt 

compositions cannot be undertaken because of the lack of published data. 

 

4.1MORB as a starting composition: testing the model 

Figures 4a and 4b show  plots of K/Y-Nb/Y in which fields for MORB, OIB and oceanic 

plateau basalt data define a ‘mantle array’ beneath island arc and ETT data fields. In 

calculating our theoretical MORB-derived partial melts we use the N-MORB starting 

composition of Hofmann (1988). The melt compositions shown in Figure 4a (yellow and 

green circles) were calculated by assuming batch melting only (equation [3]) whereas those in 

Figure 4b (yellow and cyan triangles) were calculated with Shaw’s (1970) batch and 

accumulated fractional melting equations respectively, as outlined in section 3.1. The batch 

melt compositions in Figure 4b are yellow triangles (as opposed to yellow circles as in 4a) 

because the batch melt trend in 4b is constructed with less samples than in 4a due to some 

experimental studies not publishing enough data to be able to calculate accumulated 

fractional melts for direct comparison to their batch melt counterparts. The differences in the 

two sets of calculated melt compositions (batch vs. accumulated fractional) is small and so 

the melt compositions shown in all subsequent figures (apart from 4g) are based on batch 

melting calculations. Batch melting is our preferred melting model because our melt 

compositions are based on batch melting experiments and we can construct the melt trends 

with more data points. 

In Figure 4a our calculated partial melts from a metabasic source of N-MORB composition 

form a linear melt array (yellow circles) that extends from low K/Y and Nb/Y values in the 

MORB field and passes through the oceanic plateau and OIB fields. The only compositions 

that deviate from the main trend are from the experimental runs that have residual rutile 

(highlighted as green circles). The presence of residual rutile with our N-MORB source 

composition is justified as the TiO2 content of the protolith is ~2.0 wt. %. (e.g., Klemme et al. 

2002).  We increased the original TiO2 concentration of 1.615 wt.% to 2.0 wt.% because the 

experimental residual mineral modes can have up to 2.0 wt.% rutile (although in natural 

systems amphibole would take a considerable amount of TiO2: Xiong et al., 2005). The 

calculated partial melt compositions derived from source regions with residual rutile are 



  

displaced to lower Nb/Y contents at a given K/Y value. In addition to the calculated melt 

compositions, actual analyses of partial melts derived from hydrous MORB-like eclogite 

starting compositions reported by Laurie and Stevens (2012) are also plotted (black circles).  

    In Figure 4a, our calculations show that partial melts derived from metabasic sources with 

an N-MORB composition do not plot in the ETT field. Niobium has a high partition 

coefficient between rutile and silicic liquid, which explains why partial melts derived from 

rutile-bearing residues are displaced to lower Nb/Y. Conversely, calculated partial melt 

compositions on Th/Y-Nb/Y, La/Y-Nb/Y and Sr/Y-Nb/Y diagrams do plot in the ETT field, 

but only do so in the La/Y-Nb/Y diagram if residual rutile is present at pressures >1.25 GPa 

(Figs. 4c-e).  

   Calculated metabasic-derived partial melt trends in the K/Y-Nb/Y diagram suggests that the 

presence of rutile by itself cannot generate ETT-like compositions by fusing an N-MORB 

protolith. This is confirmed in a K/Y-Zr/Y diagram (also a Ba/Y-Zr/Y diagram; not shown) 

which shows that calculated partial melt compositions also do not plot in the ETT field (Fig. 

4f). We again show a comparison of batch vs. accumulated fractional melts in Figure 4g to 

demonstrate the similarity of the results using the two partial melt equations. The K/Y-Zr/Y 

diagram is important because the presence of residual rutile has little effect on the melt trend 

due to the relatively low D values of K, Y and Zr between rutile and silicic melt (Bédard 

2006). Therefore, even N-MORB sources with higher modal proportions of rutile cannot be 

melted to reproduce the ETT K/Y-Zr/Y ratios (we shall discuss alteration processes in a later 

section). In contrast, La/Y and Th/Y-Zr/Y diagrams have partial melt trends that do intersect 

the ETT field (Figs. 4h and i).  

   

4.2 Oceanic plateau basalt as a starting composition 

Calculated batch partial melt compositions are shown in Figures 5a-g using a primitive high 

MgO oceanic plateau basalt from the Ontong Java Plateau (OJP) as a starting composition 

(KR1187-8: Fitton and Godard 2004). This sample was used by Hastie et al. (2016a) as the 

starting material in high-P-T laboratory experiments to replicate ETT magmas. Like the N-

MORB results, modelled oceanic plateau-derived metabasic silicic melts form melt trends 

from rutile-free residues that do not intersect the ETT field in K and La/Y-Nb/Y diagrams 

(Figs. 5a and c). However, modelled melts from source regions with residual rutile plot in 

the ETT field in the La/Y-Nb/Y diagram and in the extreme lower parts of the ETT field in 

the K/Y-Nb/Y diagram (Figs 5a and c). Modelled melts, with or without residual rutile, also 

plot in the ETT fields on Th/Y-Nb/Y and LILE and LREE/Y-Zr/Y diagrams (although only a 

few samples do so in the K/Y-Zr/Y plot) (Figs 5a-g).  

  Overall, Figure 5 suggests that melting a metamorphosed igneous protolith with an oceanic 

plateau composition can generate some ETT-like melts if residual rutile is present. 

Nevertheless, the experimental work in Hastie et al. (2016a) demonstrate that rutile is not a 

residual phase in primitive oceanic plateau starting compositions, even at 2.2 GPa. The 

KR1187-8 starting composition has a TiO2 content of ~0.75 wt.% and previous experimental 

work on eclogites suggests that rutile may not saturate unless the TiO2 composition of the 

starting protolith is >1.0 wt.% (Klemme et al. 2002). Additionally, 0.75 wt.% TiO2 is not 

enough TiO2 to form the high modal rutile abundances in some of the experimental studies 

(e.g., Patino Douce and Beard, 1995). This led Hastie et al. (2016a) to invoke a mixture of 

oceanic plateau-derived slab melt and slab-fluid to explain the composition and petrogenesis 

of ETT. Figures 5a-g show trace element data from analysed melt pools in the oceanic 

plateau fusion experiments of Hastie et al. (2016a) (orange circles). The analysed melt pools 

plot along the main modelled melt trends in all trace element ratio diagrams. Tables 1-4 show 

the procedure by which we calculated the composition of a slab-derived fluid from a 

hypothetical subducting section of OJP-like crust. Hastie et al. (2016a) originally used simple 



  

mass balance to suggest that a mixture of 4% slab fluid and 96% slab melt can generate ETT-

like magmas. Tables 1-4 show a slight modification of this mass balance analysis whereby 

the calculations are applied to more elements (e.g., Na). To be consistent with Hastie et al. 

(2016a) a mixture of 4% slab fluid and 96% slab melt is once again assumed for each of the 

experimental OJP-derived slab melt analyses (blue circles). Figure 6 shows that the major 

and trace element compositions of these mixtures (calculated as shown in Tables 1-4) have 

compositions almost identical to ETT. On Figures 5a-g the oceanic plateau-derived slab 

melts and slab fluid mixtures plot in the ETT fields, although the mixtures only plot in small 

parts of the ETT field in the K/Y-Nb/Y diagram. Thus, the addition of a slab fluid to an 

oceanic plateau-derived slab melt can explain some, but not all, of the ETT data.  

 

4.3 Are both rutile and a slab fluid needed to generate most of the ETT? 

Rutile or a slab fluid individually cannot account for high ETT-like K/Y, Th/Y and La/Y 

ratios at a given Nb/Y value in our initial models (Fig. 5). However, it is likely that melting a 

metamorphosed oceanic plateau-like protolith could generate the whole range of ETT 

compositions if both rutile and a slab fluid are involved in the petrogenesis. As such, it is 

possible that a more differentiated and/or enriched oceanic plateau-like protolith with higher 

TiO2 contents could stabilise rutile as a residual phase. If a partial melt derived from this 

more differentiated and/or enriched protolith also mixed with a slab fluid during ascent the 

resultant mixtures may explain the whole ETT compositional field. However, even though 

Mesozoic oceanic plateaus are the best modern-day analogues for possible Eoarchaean 

oceanic crust, the Mesozoic mantle plumes that they were derived from are generated from 

partial melting mantle material that is relatively depleted in incompatible elements compared 

to the more primitive mantle of the Eoarchaean Earth because of the extraction of continental 

crust over geological time (Fitton and Godard 2004, Dhuime et al. 2015, Moyen and Laurent 

2018). As a result, Eoarchaean upper mantle was probably more similar in composition to 

primitive mantle and would have undergone large degrees of partial melting to form thick 

oceanic crust that was relatively enriched in the more incompatible elements compared to 

Mesozoic oceanic plateau crust.  

Undepleted mantle source regions, similar in composition to pyrolite estimates, can 

generate 30% partial melts with major element contents identical to oceanic plateau primary 

melts (McDonough and Sun 1995, Walter 1998, Herzberg et al., 2007, Herzberg and Asimow 

2015). Oceanic plateau primary melts differentiate to primitive magmas through 

approximately 30% olivine fractional crystallisation (Korenaga and Kelemen 2000, Fitton 

and Godard 2004, Herzberg et al., 2007, Herzberg and Asimow 2015, Hastie et al. 2016b). 

More evolved oceanic plateau basaltic lavas are produced by subsequent crystallisation of 

plagioclase and clinopyroxene (Korenaga and Kelemen 2000, Fitton and Godard 2004). 

Fitton and Godard
 
(2004) estimate that differentiated OJP lavas are derived by up to 50% 

fractional crystallisation of a cotectic  assemblage of 0.15 olivine, 0.25 clinopyroxene and 0.6 

plagioclase after initial olivine crystallisation. Consequently, we have calculated the 

composition of two theoretical differentiated Eoarchaean basaltic crustal source regions by 

assuming (1) 30% partial melting of a primitive mantle source region to form a primary 

magma, (2) 30% fractional crystallisation of olivine from the primary magma to form a 

primitive basaltic liquid and (3) either 20 or 50% fractional crystallisation of the primitive 

magma to form a differentiated basalt using the crystallising mineral modes of Fitton and 

Godard (2004). 

We calculated the composition of silicic melts derived from the two Eoarchaean oceanic 

crust protoliths by using (1) the two theoretical Eoarchaean differentiated basalts as the 

starting compositions and (2) the modal mineral and melt proportions from the oceanic 

plateau-derived experiments in Hastie et al. (2016a). However, because the theoretical 



  

differentiated basaltic source regions have ~1.0 and 1.6 wt.% TiO2 with 20% and 50% 

fractionation of the cotectic assemblage respectively, we modified the oceanic plateau 

mineral modes to include 0.75 wt.% rutile. The amount of rutile would probably increase as 

pressure increases (e.g., Xiong et al., 2005), but to keep the models simple we kept the modal 

proportion constant. The use of a theoretical differentiated basalt, as opposed to the primitive 

Kroenke-type basalt in Hastie et al. (2016a), would result in slightly different residual 

mineral modes. However, we assume that the bulk residual mineral assemblies do not 

substantially change and would not bring about large compositional shifts on the bivariate 

plots that we have previously used. For example, our plots use Y as a denominator so slight 

differences in garnet abundance should just more the partial melt trends long a trend parallel 

to our ‘mantle’ or ‘arc-ETT’ arrays. Additionally, there are several igneous processes that 

may modify the composition of our modelled Eoarchaean silicic melts that we also need to 

address. These processes include: (1) for a potential subduction environment, possible partial 

melting of sedimentary rocks on an Eoarchaean slab shear surface, (2) near-surface alteration 

of the metabasic protolith affecting highly mobile elements, (3) extensive fractional 

crystallisation of the silicic melts on ascent and (4) assimilation of pre-existing shallow 

continental crust into the evolving silicic magma.  

Previous studies on ETT use major and trace element geochemistry to suggest that the ETT 

are near primary silicic liquids and have not undergone extensive fractional crystallisation 

(Nutman et al. 1999, 2009). Trace element and Sr-Nd-Pb radiogenic isotope geochemistry 

also show that ETT magmas are near-primary melts and have not been modified by pre-

existing crustal material (Nutman et al. 1993, Kamber et al. 2002, O'Neill et al. 2007, Nutman 

and Friend 2009, Hiess et al. 2009). δ
18

O data from zircons in ETT are lower than 6.5‰, 

which indicates that primary ETT magmas are not derived from, or have not been 

significantly contaminated by, source regions represented by low-moderate temperature (0-

100°C) altered continental crust, oceanic sediments or altered shallow oceanic crust (Hiess et 

al. 2009). This suggests that if ETT magmas are derived from a metabasic source in a 

primitive subduction zone any sedimentary veneer and the uppermost mafic section of the 

plate must have been scraped off during shallow subduction (Hiess et al. 2009). Conversely, 

the ETT have δ
18

OZr on the low end of zircon mantle values which suggests that ETT could 

be generated with a mafic source component that has been hydrothermally altered at high 

temperatures (20% by mass balance) (Hiess et al. 2009). Therefore, in our mass balance 

calculations, we model the effects of limited hydrothermal alteration of the Eoarchaean 

basaltic source region and limited fractional crystallisation of the silicic melts at low and high 

pressures. 

Figures 7a-g show the results of melting a theoretical Eoarchaean differentiated basalt 

generated with 20% fractionation of the cotectic assemblage, with rutile as a residual phase, 

and then mixing the resulting silicic melts with a calculated slab fluid (light blue circles). 

Again, the mixing ratio is 96:4 from Hastie et al. (2016a), but the results can be replicated 

with a wide variety of mixing percentages. Figures 8a-g replicate Figures 7a-g, but the 

theoretical Eoarchaean differentiated basalt is generated with 50% fractionation of the 

cotectic assemblage and has a higher TiO2 content. In both Figures 7 and 8, the calculated 

melts plot in the ETT fields in all diagrams, although only in the extreme lower part of the 

ETT field in the K/Y-Nb/Y diagram. We then model several fractional crystallisation trends 

that involve a low pressure assemblage (Plagioclase: 0.743, Amphibole: 0.215, Magnetite: 

0.042 (Macpherson et al. 2006), a high pressure assemblage (Amphibole: 0.1745, 

Clinopyroxene: 0.5296, Orthopyroxene: 0.1725, Garnet: 0.1234 (Macpherson et al. 2006) and 

amphibole only (Nutman and Bridgewater 1986, Hastie et al. 2015). We model 10% 

fractional crystallisation to generate the range of calculated melts in Figures 7 and 8 (dark 

blue, dark red and light green circles). The fractional crystallisation trends are very similar to 



  

the compositions of the primary silicic melt + slab fluid mixtures (light blue circles) and plot 

in the ETT fields also. The only remaining misfit is that all of the calculated melt 

compositions plot in the extreme lower part of the ETT field with regards to K/Y (Figs. 7a, e 

and 8a, e).  

Potassium concentrations are commonly increased markedly in igneous rocks because of 

secondary alteration processes (Fitton and Godard 2004, Hastie et al. 2007). Altered OJP 

samples with high loss on ignition (LOI) values can have K2O as high as 1.4 wt.% (sample 

803-2, Fitton and Godard 2004). K/Y ratios of silicic melt + slab fluid mixtures in Figures 

7a, e and 8a, e are presented that represent a mass balance mixture between 80% of our 

theoretical Eoarchaean oceanic crust protoliths (0.166 and 0.253 wt.% K2O with 20 and 50% 

cotectic fractionation respectively) and 20% of altered oceanic crust with 1.4 wt.% K2O 

(80:20 ratio was used as it is consistent with the oxygen isotope data: dark green circles). The 

new modelled melts plot much higher in the ETT field on the K/Y-Nb/Y and K/Y-Zr/Y 

diagrams. The case for high levels of K enrichment due to alteration, even higher than the 

value used in our modelling here, can be made because the early hydrosphere may have been 

significantly more saline than today (see Knauth 2005 for a review). 

The modelled melts in Figures 7 and 8 demonstrate that ETT can be generated by (1) the 

partial melting of slightly altered and differentiated metabasic Eoarchaean crust in the 

presence of residual rutile, (2) the mixing of these silicic slab-derived melts with a slab fluid 

component, and (3) limited fractional crystallisation of the ascending slab melt + slab fluid 

mixtures as they ascend through overlying mafic crust. It should, however, be noted that 

Jenner et al. (2009) suggest that >3.8 Ga ‘enriched’ mafic amphibolites with island arc-like 

compositions from the Isua Supracrustal Belt, Greenland are derived from a primitive 

Eoarchaean subduction zone and that their geochemistry can be partly explained with the 

addition of a sedimentary slab-derived component. Therefore, it may be possible to increase 

the K/Y ratios of some ETT if a sedimentary component is involved in their petrogenesis. 

Likewise, if the Eoarchaean oceans were more saline than today (Knauth 2005), slab-derived 

fluids may impart higher K contents to ETT source regions.  

 

4.4 Eoarchaean arc-like starting composition 

Major and trace element concentrations can be quite variable in Eoarchaean arc-like mafic 

rocks and it is difficult to decide on a single starting composition. However, the >3.8 Ga 

amphibolitised basalts with arc-like signatures from the Isua Supracrustal Belt analysed by 

Jenner et al. (2009) are categorised into a ‘normal’ group and an ‘enriched’ group. We use the 

averages from both the ‘normal’ and ‘enriched’ group as starting compositions in Figures 9 

and 10 respectively. However, the former and the latter have average TiO2 contents of 0.82 

and 0.94 wt.% respectively. Many of the high P-T experimental mineral residues have ≥1.0 

wt.% rutile. Therefore, in order to use these experiments in our calculations we assume that 

the Eoarchaean arc like protoliths have ~1.0 wt.% TiO2, and we have removed the 

experimental data that are generated with higher residual rutile.  Figures 9a-g show that the 

modelled melts with no residual rutile easily intersect the ETT fields on all the diagrams apart 

from K/Y-Nb/Y, and melts derived from source regions with residual rutile explain high K/Y 

in Figure 9a. Similarly, Figures 10a-g show that the modelled melts derived from ‘enriched’ 

basaltic source regions with no residual rutile also easily intersect the ETT fields on all the 

diagrams apart from K/Y-Nb/Y and most of the ETT field in La/Y-Zr/Y. Partial melts 

derived from source regions with residual rutile can explain high K/Y in Figure 10a. These 

results suggest that partial melting of compositionally heterogeneous Eoarchaean arc-like 

mafic source regions with residual rutile can generate melts that explain most of the ETT 

geochemical variability. 

 



  

5 A likely Eoarchaean geodynamic model 

The mass balance models presented here suggest that the ETT can be generated by three main 

processes: 

 

1. Partial melting, in the presence of slab-derived fluids, of relatively enriched, 

differentiated and altered non-arc metabasic source regions leaving a rutile-bearing 

residue. The melts ascend into the crust, lose their volatiles and crystallise as ETT. 

2. A small proportion of ETT can still be generated by partial melting of primitive non-arc 

rutile-free metabasic source regions that mix with a slab-derived fluid. This is 

especially so if saline-rich slab fluids are involved. 

3. Partial melting of variably altered metabasic crust that has island arc-like compositions. 

The melts ascend, lose any volatiles they may have and crystallise as ETT. 

 

We argue that all three processes probably contributed to early Archaean continental growth, 

and that all require subduction zone processes. The models need to reproduce the ETT 

negative Nb-Ta anomaly on N-MORB normalised multielement diagrams as well as the 

enrichment in the incompatible elements. Our calculations show that for a non-arc metabasic 

protolith, ideally, both a slab fluid component and residual rutile are needed for generating 

ETT negative Nb-Ta anomalies (although a rutile free-source contaminated with a slab fluid 

can still explain some ETT compositions: Hastie et al. 2016a). However, experimental 

petrology demonstrates that residual rutile requires TiO2 concentrations in the source region 

>1.0 wt.% (Klemme et al. 2002) and pressures of more than ~1.25-1.5 GPa (Patiño Douce 

and Beard 1995; Xiong et al., 2005) (>40-50 km). Eoarchaean mafic crust derived from 

‘normal’ mantle melting can be up to 45 km thick, with many estimates being ~25 km (~0.8 

GPa) (e.g., Hawkesworth et al. 2016, Kamber 2015). Therefore, it is doubtful whether 

intracrustal melting of non-arc metabasic crust derived by upper mantle melting or mantle 

plume activity can be a viable mechanism for ETT generation because of the lack of residual 

rutile at pressures less than ~1.25-1.5 GPa and the lack of a slab-fluid. Natural mafic 

granulites formed at similar depths to the estimates of Eoarchaean crustal thicknesses in a 

stagnant lid environment frequently contain ilmenite and magnetite, but lack rutile (Sheraton 

et al. 1980, Harley 1988, Ravindra Kumar and Chacko 1994, Hartel et al. 1996, Zhaoet al. 

1999, Wu et al. 2012). Therefore, only intracrustal melting of Eoarchaean mafic crust with 

island arc-like compositions can form ETT magmas. This is also demonstrated in recent 

thermodynamic and geochemical studies of ETT(G) (Cox et al. 2018, Ge et al., 2018). 

However, to form mafic crust with arc-like affinities may require melting of a mantle source 

region to which a component ultimately derived from a deeper source region with residual 

rutile has been added (Pearce and Peate 1995, Jenner et al., 2009). In the absence of 

continental crust in the Eoarchaean and the lack of crustal assimilation in ETT (Hiess et al. 

2009), the most plausible mechanism to form Eoarchaean mafic crust with arc affinities is by 

primitive subduction zones (possibly subcretion: Bédard 2013) (Jenner et al., 2009; 

Hoffmann et al., 2011). 

It is possible that ETT could still be generated in a stagnant lid environment by inferring 

that the lower crust ‘drips/delaminates’ into the mantle. Crust penetrating deeper into the 

mantle may reach depths at which rutile is stabilised as a residual phase if the ‘dripping’ crust 

undergoes partial melting to form ETT melts. However, our modelling suggests that a slab 

fluid component is ideally required with residual rutile for generating the negative Nb-Ta 

anomalies and incompatible element enrichments in ETT from non-arc metabasic protoliths. 

Melts from a de-stabilised and foundering portion of lower non-arc Eoarchaean mafic crust 

would not mix with slab fluids, which are required to explain high LILE and LREE 

concentrations in ETT rock suites.  



  

Although the Late Heavy Bombardment (LHB) is now controversial (e.g., Boehnke and 

Harrison 2016), geodynamic and geochemical models still propose that impacts linked to the 

LHB (Gomes et al. 2005) may be responsible for initiating subduction zone processes on the 

early Earth (O'Neill et al. 2017) and/or may be responsible for impact melting to form 

Hadean continental material (Johnson et al. 2018). Other geodynamic models also suggest 

that subduction processes (possibly short-lived), are viable in the Eoarchaean (e.g., Moyen 

and van Hunen, 2012; Sizova et al., 2015). Seismic and electrical anomalies below the 

Archaean Slave Craton, Canada have been linked to subduction at 3.5 Ga (Chen et al., 2009). 

Minerals trapped as inclusions in detrital Hadean zircons suggest that the zircons could be 

derived from melts at >4.0 Ga in ancient subduction zones (Hopkins et al. 2008). A recent 

statistical study of average basaltic geochemistry suggests that subduction and horizontal 

tectonics have operated consistently from the earliest Eoarchaean (Keller and Schoene 2018). 

Nutman and Friend (2009) also commented on the ‘normality’ of the rocks in the Eoarchaean 

record and emphasised that no lithologies are unique to the Eoarchaean era. They state that 

imbrication of volcanic and plutonic rocks with arc-like geochemical affinities by Eoarchaean 

accretion and collisional tectonics strongly suggests convergent margin processes. 

While numerical modelling provides theoretical insights into the possible tectonic regimes 

on the early Earth we propose that a natural analogue for the solidification of the Earth’s 

magma oceans can be found on lava lakes. Specifically, Duffield (1972) described a 

relatively large lava lake on Kilauea, Hawaii that developed all the basic elements of global 

plate tectonics. He showed that the surface of the lava lake solidified to form a thin crust that 

organised itself into crustal ‘plates’ that flowed laterally, driven by the convecting lava 

beneath. The boundaries of these ‘plates’ were fractures where new lava upwelled, 

amagmatic strike-slip occurred and where crustal plates underthrust each other. These three 

features resemble mid-ocean ridges, transform faults and subduction zones respectively. We 

suggest that as Hadean magma oceans solidified, the Earth’s thin initial mafic surface crust 

was as dynamic as the crust on a lava lake; basically a thin crust on a restless magma layer. 

On a hot and thermomechanically active early Earth, it seems unlikely that the initial mafic 

lid was completely inert. We speculate that mid-oceanic ridges and zones of convergence 

developed very early on the Earth’s surface. This is supported by Foley et al. (2014) who 

successfully modelled proto-subduction processes developing in the Hadean within ~100 

Myrs of magma ocean solidification. We are not advocating modern-style plate tectonics on 

the early Earth, but instead suggest that primitive constructive and proto-convergent margins 

with shallow underthrusting developed. The formation of new crust, the lateral movement of 

early thin mafic plates and zones of convergence on the Hadean magma ocean was a type of 

early proto-plate tectonics that subsequently evolved into modern-day plate tectonics. This 

process would have led to hydrous melting and the formation of the ETT crust as soon as 

liquid water began to accumulate on the Earth’s surface. 

We propose that ETT magmas were generated in Eoarchaean subduction environments 

either by melting a subducting portion of thick and enriched (relative to N-MORB) non-arc 

metabasic crust and/or by intracrustal partial melting of island arc-like mafic crust. 

Additionally, Ge et al. (2018) suggest that Eoarchaean mafic arc material could subduct and 

melt to form ETT. We propose that plate tectonic-like processes began in the Hadean and 

formed the ETT. Although the style of plate tectonics would have been different on the early 

Earth it may be appropriate to consider plate tectonic style evolving over geological time as 

opposed to trying to define multiple styles of differing plate tectonic-like processes. 
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Figure Captions 

Fig 1: Simple cartoons to show the tectonic models used to explain the generation of 

ETT plutons. Model 1: upwelling hot Eoarchaean mantle leads to the formation of ETT 

magmas due to partial melting of the base of existing thick probably mafic crust. 

Additionally, a crustal ‘drip’ could undergo partial fusion to generate ETT magmas. 

Model 2: a ~45 km thick oceanic plateau-like slab subducts beneath another at a 

flat/shallow angle. The slab shear surface undergoes fusion to form large volumes of 

ETT magmas. 

 

Fig 2: Various classification diagrams modified from Moyen and Martin (2012) and Martin 

et al. (2005). (a) an Anorthite-Albite-Orthoclase classification diagram. (b) A (La/Yb)cn-

(Yb)cn (chondrite normalised) diagram highlighting the compositional difference between 

young granites and Archaean TTG. (c) A Sr-Na2O+CaO diagram highlighting the 

geochemical difference between young TTG and ETT. ETT data from Kamber et al. (2002) 

Hoffmann et al. (2011; 2014), Nutman et al. (2009) and Ge et al. (2018). 

Fig 3: N-MORB-normalised multielement diagrams showing (a) analysed trace element 

concentrations of tonalite-composition glasses in OJP-derived partial melt experiments 

reported by Hastie et al. (2016a) (sample designations indicate if plagioclase and/or garnet 

was stable along with amphibole). (b) Modelled tonalite + slab fluid mixtures from Hastie et 

al. (2016a). (c) Theoretical compositions of the partial melts in OJP partial melt experiments 

from Hastie et al. (2016a) calculated using the mass balance technique outlined in this paper 

(see Tables 1-4). ETT data from Kamber et al. (2002) Hoffmann et al. (2011; 2014), Nutman 

et al. (2009) and Ge et al. (2018). 

Fig 4: Representative incompatible trace element ratio diagrams showing calculated partial 

melt compositions for metabasic source regions with an N-MORB starting composition from 

Hofmann (1988). Note that the TiO2 concentration from Hofmann has been increased from 

1.615 to 2.0 wt.%. Yellow circles are calculated melts from rutile-free source regions and 

green circles are from liquids calculated from rutile-bearing protoliths. Figure 4b is the same 

as Figure 4a except that batch melt compositions are compared to melt compositions 

calculated by using Shaw’s (1970) accumulated fractional melting equation, as described in 

section 3.1 (also see 4f and 4g). All other diagrams show batch-melt compositions. ETT field 

constructed from data in Kamber et al. (2002) Hoffmann et al. (2011; 2014), Nutman et al. 



  

(2009) and Ge et al. (2018); Island arc field from data in Pearce et al. (1995) and Elliott et al. 

(1997); MORB data from Dosso et al. (1993), Regelous et al. (1999) and Wendt et al. (1999); 

Ocean Island Basalt (OIB) data from Salters et al. (2010), Workman et al. (2004) and 

Woodhead et al. (1996); Oceanic Plateau data from Fitton and Godard (2004) and Hastie et 

al. (2016b). Experimentally derived liquids from MORB starting composition are from 

Laurie and Stevens (2012).  

Fig 5: Representative incompatible trace element ratio diagrams showing calculated partial 

melt compositions for metabasic source regions with an OJP starting composition; sample 

1187-8 from Fitton and Godard (2004). Yellow circles are calculated melts from rutile-free 

source regions and green circles are from liquids calculated from rutile-bearing protoliths. 

Fields constructed as in Figure 4. Experimentally derived liquids from OJP starting 

composition and OJP melt and slab fluid mixtures are from Hastie et al. (2016a) and Tables 

1-4 respectively.  

Fig 6: (a) N-MORB-normalised multielement diagram showing a larger range of elements 

than were reported by Hastie et al. (2016a) in calculated OJP-derived tonalite + slab fluid 

mixtures (Tables 1-4). (b-j) Major element variation diagrams showing ETT data from 

Kamber et al. (2002) Hoffmann et al. (2011; 2014), Nutman et al. (2009) and Ge et al. (2018) 

relative to our newly calculated OJP-derived tonalite + slab fluid mixtures (Tables 1-4).  

Fig 7: Representative incompatible trace element ratio diagrams showing calculated partial 

melt compositions for (1) a metabasic source region with a theoretical Eoarchaean crustal 

composition after 20% fractionation of a cotectic assemblage (light blue circles); (2) the same 

source region as (1), but with 10% fractional crystallisation of a low pressure mineral 

assemblage (plagioclase: 0.743, amphibole: 0.215, magnetite: 0.042), a high pressure mineral 

assemblage (amphibole: 0.1745, clinopyroxene: 0.5296, orthopyroxene: 0.1725, garnet: 

0.1234) and amphibole only (dark blue, dark red and light green circles respectively); (3) 

partial melting the source region in (1) that has undergone 20% hydrothermal alteration (dark 

green circles). Fields constructed as in Figure 4.  

Fig 8: Representative incompatible trace element ratio diagrams showing calculated partial 

melt compositions for (1) a metabasic source region with a theoretical Eoarchaean crustal 

composition after 50% fractionation of a cotectic assemblage (light blue circles); (2) the same 

source region as (1), but with 10% fractional crystallisation of a low pressure mineral 

assemblage (plagioclase: 0.743, amphibole: 0.215, magnetite: 0.042), a high pressure mineral 

assemblage (amphibole: 0.1745, clinopyroxene: 0.5296, orthopyroxene: 0.1725, garnet: 

0.1234) and amphibole only (dark blue, dark red and light green circles respectively); (3) 

partial melting the source region in (1) that has undergone 20% hydrothermal alteration (dark 

green circles). Fields constructed as in Figure 4.  

Fig 9: Representative incompatible trace element ratio diagrams showing calculated partial 

melt compositions for a metabasic source region with an average ‘normal’ Eoarchaean 

metabasic amphibolite, with island arc-like compositions (Jenner et al. 2009). Yellow circles 

are calculated melts from rutile-free source regions and green circles are from liquids 



  

calculated from rutile-bearing protoliths. Fields constructed as in Figure 4. Experimentally 

derived liquids from greenstone and back-arc starting compositions are from Adam et al. 

(2012) and Rapp et al. (1999) respectively. 

Fig 10: Representative incompatible trace element ratio diagrams showing calculated partial 

melt compositions for a metabasic source region with an average ‘enriched’ Eoarchaean 

metabasic amphibolite, with island arc-like compositions (Jenner et al. 2009). Yellow circles 

are calculated melts from rutile-free source regions and green circles are from liquids 

calculated from rutile-bearing protoliths. Fields constructed as in Figure 4. Experimentally 

derived liquids from greenstone and back-arc starting compositions are from Adam et al. 

(2012) and Rapp et al. (1999) respectively. 

  



  

OJP 

tonalite 

partial 

melts 

Temper

ature 

(°C) 

Pressu

re 

(GPa) 

Water 

added 

(wt.%) 

Si

O

2 

Ti

O

2 

Al

2O

3 

Fe

O(

t) 

M

n

O 

M

g

O 

C

a

O 

N

a2

O 

K

2

O 

P2

O

5 

T

ot

al 

OJPgwe1  925 2.0 2.2 

68

.8

2 

0.

3

7 

17

.0

8 

2.8

1 

0.

05 

1.

36 

5.

1

2 

3.

72 

0.

4

5 

0.

2

3 

10

0 

OJPgw13  950 1.8 2.2 

66

.6

4 

0.

4

7 

18

.0

1 

3.6

3 

0.

07 

1.

59 

5.

7

0 

3.

26 

0.

3

6 

0.

2

6 

10

0 

OJPgw11  950 1.6 1.8 

68

.8

0 

0.

2

2 

17

.0

3 

2.7

4 

0.

07 

1.

47 

4.

8

7 

3.

92 

0.

5

3 

0.

3

5 

10

0 

OJPgw3  925 1.6 2.5 

67

.7

0 

0.

2

7 

17

.6

4 

2.5

1 

0.

08 

1.

83 

5.

6

4 

3.

69 

0.

3

8 

0.

2

8 

10

0 

OJPgw24  950 2.2 2.1 

70

.3

2 

0.

5

5 

16

.4

2 

2.4

9 

0.

03 

1.

40 

4.

5

0 

3.

60 

0.

4

8 

0.

2

0 

10

0 

OJPgw9  900 2.0 2.1 

70

.2

7 

0.

2

5 

16

.6

1 

2.3

5 

0.

06 

1.

30 

5.

0

4 

3.

22 

0.

5

7 

0.

3

3 

10

0 

OJPgw5  900 1.8 2.3 

72

.2

6 

0.

1

5 

16

.1

7 

1.4

4 

0.

06 

1.

18 

4.

4

5 

3.

74 

0.

5

6 

- 
10

0 

OJPgw6 925 1.8 2.7 

71

.6

2 

0.

1

8 

15

.7

5 

1.7

4 

0.

07 

1.

48 

5.

4

6 

3.

23 

0.

4

7 

- 
10

0 

OJPgw8  925 2.0 3.1 

69

.8

0 

0.

4

9 

17

.1

1 

2.4

6 

0.

03 

1.

28 

4.

9

4 

3.

52 

0.

3

7 

- 
10

0 

OJPgw10  925 2.0 2.2 

67

.5

0 

0.

5

4 

16

.5

6 

3.5

8 

0.

04 

2.

35 

5.

4

6 

3.

43 

0.

3

8 

0.

1

5 

10

0 

 

Table 1 – Experimental conditions and average tonalite major element melt compositions derived 

from hydrous OJP-derived partial melt experiments in Hastie et al (2016a). Melt compositions are 

re-calculated to 100% totals, minus chlorine and sulphur analyses, so they can be compared to 

ETT compositions in the literature. All elements are derived from electron microprobe apart from 

TiO2 data that are from ion microprobe and LA-ICP-MS analysis (used so it is compatible with 

trace element modelling). 
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Table 2 – Average tonalite major and trace element melt compositions derived from hydrous 

OJP-derived partial melt experiments in Hastie et al (2016a). Melt compositions are ‘wet’ 

analyses not re-calculated to 100%, but chlorine and sulphur analyses have been removed. All 

elements are derived from electron microprobe apart from TiO2 data that are from ion microprobe 

and LA-ICP-MS analysis (used so it is compatible with trace element modelling). 
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Table 3 – Average anhydrous and hydrous (assuming 1 wt. % water) compositions of the end-

member igneous and volcaniclastic protoliths in the OJP. Major elements (including H2O) re-

calculated to 100% totals. OJP data from Fitton and Godard (2004), the volcaniclastic composition 

is derived from material in IODP Hole 1183 and HNB: High Niobium Basalt. ‘Average protolith is 

calculated assuming that a slab fluid is derived from all of the OJP end-members in the proportions 

Kroenke: 0.32167, Kwaimbaita: 0.32167, Singgalo: 0.32167, Volcaniclastic: 0.025 and HNB: 0.01. 

Element mobility factor for calculating the composition of a slab-derived fluid is derived from 

Kogiso et al. (1997). The mobility factor for K2O is taken to be the same as for Rb because the two 

elements have similar ionic charges and radii. Na does not share a similar ionic radius to other 

elements; however, Pearce and Peate (1995) show that Na has a slightly non-conservative nature 

(like the MREEs). Therefore, the Sm mobility factor is used for Na2O. The theoretical Slab-derived 

fluid composition is calculated using equations in section 3.3 in this paper that are derived from 

Kogiso et al. (1997). 
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OJP-derived tonalite + slab flux mix (96:4 ratio) after 
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Table 4 – The first half of the Table is a mass balance mixture of the OJP-derived experimental 

tonalites with the theoretical slab-fluid in Table 3. The mixing proportion is 96% tonalite and 4% 

slab-fluid (same as Hastie et al. 2016a) and the scenario represents the mixing of the two 

components on, or close to, a slab shear surface before any volatile loss. The second half of the 

Table represents the composition of the tonalite + slab-fluid mixtures after they have ascended 

and degassed (lost their water) in the overlying crust. 

  



  

Highlights 

1. The first stable and preserved continental crust was derived from metabasic source 

regions that formed by subduction processes. 

2. Preferentially, residual rutile and a slab-fluid are required in the petrogenesis of the 

first continents. 

3. Proto-plate tectonics began in the Hadean and evolved though out geological time to 

become the current plate tectonic system. 
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