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ABSTRACT 

Type 1 diabetes (T1D) is a T cell mediated autoimmune disease that targets and destroys 

insulin-secreting pancreatic beta cells. Beta cell specific T cells are highly differentiated and 

show evidence of previous antigen exposure. Exercise-induced mobilisation of highly-

differentiated CD8+ T cells facilitates immune surveillance and regulation. We aimed to 

explore exercise-induced T cell mobilisation in T1D. In this study, we compared the effects 

of a single bout of vigorous intensity exercise on T cell mobilisation in T1D and control 

participants. N=12 T1D (mean age 33.2yrs, predicted VO2 max 32.2 mL/(kg·min), BMI 

25.3Kg/m2) and N=12 control (mean age 29.4yrs, predicted VO2 max 38.5mL(kg.min), BMI 

23.7Kg/m2) male participants completed a 30-minute bout of cycling at 80% predicted VO2 

max in a fasted state. Peripheral blood was collected at baseline, immediately post-exercise, 

and 1 hour post-exercise. Exercise-induced mobilisation was observed for T cells in both 

T1D and control groups. Total CD8+ T cells mobilised to a similar extent in T1D (42.7%; 

p=0.016) and controls (39.7%; p=0.001). CD8 effector memory CD45RA+ (EMRA) subset 

were the only T cell lineage subset to be significantly mobilised in both groups though the 

percentage increase of CD8+ EMRA was blunted in T1D (T1D (26.5%) p=0.004, control 

(66.1%) p=0.010). Further phenotyping of these subsets revealed that the blunting was most 

evident in CD8+ EMRA that expressed adhesion (CD11b: T1D 37.70%, Control 91.48%) and 

activation markers (CD69: T1D 29.87%, Control 161.43%), and appeared to be the most 

differentiated (CD27-CD28-: T1D 7.12%, Control 113.76%). CD4+ T cells mobilised during 

vigorous intensity exercise in controls (p=0.001), but not in T1D. The blunted mobilisation 

response of particular T cell subsets was not due to CMV serostatus or apparent differences 

in exertion during the exercise bout as defined by heart rate and RPE. Predicted VO2 max 

showed a trend to be lower in the T1D group than the control group but is unlikely to 

contribute to this blunted response. We postulate the reasons for a blunted mobilisation of 

differentiated CD8+ EMRA cells includes differences in blood glucose, adrenaline receptor 

density, and sequestration of T cells in the pancreas of T1D participants. In conclusion, 

mobilisation of CD8+ EMRA and CD4+ subsets T cells is decreased in people with T1D 

during acute exercise.  

Key words:  Exercise, Physical activity, Type 1 Diabetes, Immunity, T cells 
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INTRODUCTION 

Type 1 Diabetes (T1D) is an autoimmune disorder characterised by T cell mediated 

destruction of insulin secreting pancreatic beta cells. Peripheral T cells are mobilised by acute 

exercise in health, and exercise may also modulate the number and function of these cells. 

We therefore wished to explore the effect of exercise on T cell mobilisation in people with 

T1D.  

 

T cells in T1D 

Beta cell specific T cell subsets are mainly comprised of late differentiated memory T cells 

that show evidence of previous antigen exposure [1-3]. Indeed, circulating islet specific CD8+ 

T cells have been detected at similar frequencies in both T1D and non-diabetic cohorts [4]. 

However, antigen-experienced islet reactive CD8+ T cells (ZnT8186–194 multimer+) were found 

sequestered in the pancreas of T1D donors, but not non-diabetic donors [4]. Islet resident 

CD8+ T cells in the human pancreas also express CD11b, CD69, and CD103, which are 

markers of tissue resident memory cells [5-7]. In particular, elevated highly differentiated 

CD8+ effector memory T cells re-expressing CD45RA (EMRA) have been found in T1D [1, 

2, 8].  

 

T cell differentiation 

Re-expression of CD45RA on fully differentiated effector memory (EM) T cells (EMRA) is 

the final stage of T cell differentiation in the T cell lineage pathway [9] (Figure 1), which 

gives rise to a range of phenotypically and functionally diverse T cell subsets. This re-

expression of CD45RA leads to a more stable resting memory T cell pool that can respond to 

recall antigens [10, 11]. Differentiation status of EMRA subsets can be identified in a number 

of ways; cell surface expression of markers such as CD26, CD57, and killer cell lectin-like 

receptor subfamily G member 1 (KLRG1) [1, 2, 8]; lack of CD27 and CD28 expression [12, 

13]; and evidence of shortened telomeres indicative of successive rounds of cell division [2, 

8]. Although conventionally EMRA are CD27-CD28-, there is evidence of further 

subdivisions of differentiation based on the differential expression of these markers [14]. 
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Pedro Romero et al., 2007 identified small subpopulations of CD27-CD28+ and CD27+CD28- 

EMRA [14]. Nonetheless, CD27+CD28+ and CD27-CD28- EMRA make up the larger 

proportion of EMRA subpopulations [14, 15].  

Towards the beginning of the linear differentiation pathway, CD8+ T cells are released into 

the circulation as naïve T cells which are characterised by their cell surface co-expression of 

CD45RA, CCR7, CD27 and CD28 [16-21]. CD45, the leukocyte common antigen, has 

multiple isoforms which are differentially expressed based on maturation status [22]. Central 

memory (CM) cells are formed (CD45RA-CCR7+) following antigen experience and loss of 

CD45RA [18, 21]. Memory cells lose the expression of the high molecular weight CD45RA 

isoform and gain expression of the low molecular CD45RO isoform following activation 

[23]. Following antigen presentation, CM T cells can rapidly differentiate into T cells with 

effector functions [20]. CCR7 is down-regulated as CM T cells become specialised, antigen 

specific effector T cells. CM T cells progress to effector memory (EM) T cells through three 

progressively differentiated subpopulations defined based on their expression of CD27 and 

CD28: early differentiated (ED) (CD27+CD28+), early-like differentiated (ELD) (CD27-

CD28+), and intermediate differentiated (ID) (CD27+CD28-). CD27 and CD28 diminish in a 

stepwise fashion following successive rounds of differentiation in response to antigen 

stimulus, corresponding with an increase in cytotoxic functions [12, 13, 24]. Following the 

loss of both CD27 and CD28, ID T cells become fully differentiated EM T cells (CD27-

CD28-) [24, 25].  

Amidst these earlier stages of differentiation exists a dynamic population CD8+ T cells which 

have recently been implicated in T1D [2, 3]. Stem cell like memory T cells (TSCM) 

(CD27+CD45RO-CD95+CCR7+) express naïve surface markers (CD45RA, CCR7) and are 

capable of extensive proliferation and self-renewal, similar to hematopoietic stem cells [26-

28].  However, TSCM also have the ability to rapidly acquire effector functions upon 

stimulation and respond to recall antigens, analogous to effector memory subsets [28, 29]. 

Beta cell specific T cell populations in the peripheral blood have been identified with this 

phenotype in T1D, indicating a role for TSCM in the pathogenesis of the disease [2, 3]. 

In addition to progressive differentiation of CD8+ T cell lineage subsets, CD4+ T cells are 

characterised in a similar manner (Figure 1).  However, in addition to this phenotypic 

approach, CD4+ T cells are also defined based on their differentiation into T-helper (Th) 

(CD45RO+CD127hiCD25low) and T-Regulatory (TRegs) (CD4+CD127lowCD25+) subsets [17, 
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30]. The T-helper subpopulations are distinguished by chemokine receptor expression and 

cytokine secretion patterns [17, 31-33]. These include type 1 helper (Th1) cells [17, 34, 35], 

type 2 helper (Th2) [17, 34], Th9 [36], Th17 [17, 37-39], and Th22 cells [36]. CD4+ TReg 

subpopulations consist of naïve (naTRegs) and memory TRegs (mTRegs). As described for 

lineage T cell subsets, naTRegs express CD45RA whereas mTRegs lose CD45RA and 

acquire CD45RO upon antigen exposure [18, 40]. mTRegs are an activated antigen primed 

subset of CD4+ TRegs [41, 42]. mTREGs express TIGIT, a coinhibitory molecule [43], 

which supress pro-inflammatory Th1 and Th17 cells, but promote Th2 cell responses and 

therefore support an anti-inflammatory environment [43]. In T1D, there is strong evidence to 

suggest that the balance between T-helper and TRegs is disrupted. CD4+ Th differentiation is 

skewed towards increased pro-inflammatory Th1 and Th17 cells [44, 45]. Whereas CD4+ 

TReg function, and potentially TReg frequency, are compromised in T1D [46]. This 

increases immune dysregulation already upheld by memory CD8+ T cell subsets.  

Acute exercise and T cell mobilisation 

To date, the effects of acute exercise on T cells, including those implicated in T1D 

pathogenesis, outlined above, have not been investigated. In healthy individuals, acute 

exercise induces a significant increase in the T cell frequency, proportional to exercise 

intensity, in the peripheral blood immediately following exercise.  

The largest mobilisation within T cells is seen among CD8+ T cells, with minimal CD4+ T 

cell mobilisation [47-50]. Although mobilisation of CD4+ T cells is minimal, there is 

evidence to support that exercise induces a shift from Th1 to Th2 polarization, reducing pro-

inflammatory CD4+ T cell phenotypes [6, 7, 79-81]. Within the CD8+ T cell compartment, 

CD8+ T cells with a highly differentiated memory phenotype are preferentially mobilised 

following exercise [50-55]. CD8+ EMRA have been reported to increase by 450% following 

vigorous exercise compared to naïve CD8+ T cells which increased by 84% [51]. Further 

studies show that CD8+ effector memory (EM) and EMRA that exhibited the largest increase 

following exercise were fully differentiated (CD27-CD28-) [52] and expressed markers of 

terminal differentiation and senescence (killer cell lectin-like receptor subfamily G member 1 

(KLRG1)+CD57+) [53]. Whilst the cells detectable in the T1D pancreas express markers of 

differentiation, memory and residency [4-7], the effects of acute exercise on the mobilisation 

of these T cell subsets in T1D is yet to be explored.  
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Investigating the effects of exercise on T cell subsets in T1D may be critical for the 

understanding and treatment of this disease. Lymphocytosis is followed by intensity-

dependent lymphopenia in the period that follows a bout of exercise [47-49, 56-58]. 

Following the dramatic increase in CD8+ EM and EMRA frequency following exercise, it is 

these same subsets which exhibit the largest egress from the peripheral blood during the 

recovery period [52, 53]. This flux may play a role in immune regulation. Tissue 

redistribution of lymphocytes is one cause of exercise-induced lymphopenia [58]. Krüger et 

al. 2007 demonstrated using fluorescent cell tracking in mice that T cells were released from 

the spleen and accumulated in the lungs, bone marrow, and Peyer's patches of the mice 

following acute exercise [59]. Such movement of immune cells may support immune 

surveillance. Post-exercise lymphopenia is also thought to result partially from lymphocyte 

apoptosis [60-62]. Acute exercise, particularly of vigorous intensity (i.e. above 70% VO2 

max), mobilises CD95+ memory T cells [60, 63]. It has been postulated that CD95 expression 

may indicate an apoptotic fate and subsequently create “immunological space” [64, 65]. The 

percentage of apoptotic lymphocytes as well as CD95+ T cells increases following exhaustive 

exercise (80% VO2 max) in healthy participants. [60, 62, 63]. Furthermore, mice subjected to 

a strenuous 90-minute treadmill running protocol showed a decrease in CD8+ T cells 24 

hours following exercise, and apoptosis of intestinal CD8+ T cells was higher 24 hours after 

exercise [61]. It is hypothesised that this vacant immune space following exercise can be 

taken up by newly generated immature cells, creating the opportunity to reprogram immune 

memory. In support of this, vigorous acute exercise increases hematopoietic stem and 

progenitor cells (HSPC) post-exercise as well as stimulates haematopoiesis [66, 67].  

Exploring the effects of acute exercise on T cells in T1D 

Given that acute exercise mobilises CD8+ T cells with a highly differentiated phenotype that 

express markers of tissue residency, and that CD8+ T cells with this phenotype are thought to 

sustain beta cell destruction in T1D, it is important to explore the impact of acute exercise on 

these T cell subsets in T1D. A limited amount of research has been conducted in exercise 

training in T1D. Exercise training in streptozotocin-induced T1D mice significantly increased 

insulin content and insulin secretion compared to sedentary mice [68]. Furthermore, exercise 

training in non-obese diabetic (NOD) mice reduced immune cell infiltration into the pancreas 

and subsequently the insulitis index. This is the only exercise study in a model of T1D to 

demonstrate the modulatory effects of exercise on islet immunity [69]. We therefore aimed to 
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provide a comprehensive phenotypic characterisation of exercise-induced mobilisation of 

potentially pathogenic T cell subsets in T1D, and compare this response to that observed in 

healthy participants.  

METHODS 

Participants 

Ethical approval was granted by the Preston Research Ethics Committee (REC) for this 

study. Twelve controls and twelve T1D participants were recruited. All participants were 

male and between 16-65 years of age. Male only participants were chosen to minimise 

differences in immunity evident in females due to higher oestrogen levels [70-72]. Participant 

baseline characteristics are reported in table 1. T1D participants had a clinical diagnosis of 

T1D, were on basal bolus insulin regime or insulin pump therapy, competent in carbohydrate 

content estimation of meals, were willing to test glucose through capillary testing, and were 

able to recognise hypoglycaemic symptoms before blood glucose fell to 3.9mmol/L. 

Participants did not have a history of cardiac disease or other significant illness that would 

prevent attendance at the study sit. All T1D participants did not have active proliferative 

diabetic retinopathy, autonomic neuropathy, or history of severe hypoglycaemia requiring 

third party assistance within the last 3 months prior to the study. 

Experimental design 

Participants had one enrolment visit, where baseline demographics and anthropometric 

assessment was carried out (table 1). During the enrolment visit, each participant completed a 

non-fasted incremental sub-maximal (85% HRmax) cycle ergometer test to calculate their 

predicted VO2 max. This was used to calculate workload and heart rate for the subsequent 

exercise visit adjusted to individual fitness [73]. The enrolment visit and exercise visit were 

separated by one week. Participants were asked to abstain for vigorous exercise 24 hours 

prior to the exercise visit. Participants were also required to record a food diary for the 24 

hours prior to the exercise visit. Participants were advised to use these diaries to ensure that 

the same foods were consumed in the 24 hours prior to each exercise bout.  . The exercise 

visit started at 8.30am for all participants and consisted of a thirty-minute bout of cycling at 

80% predicted VO2 max. An initial fasting blood sample was taken for each participant once 

the cannula was inserted. The participant was then allowed to rest for a further 20 minutes 

before preparing for the acute exercise bout. Fasting blood samples were collected 

Formatted: Highlight

Formatted: Highlight
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intravenously at immediately pre-exercise, immediately post-exercise, and 1 hour post-

exercise.  Pre- and post-exercise samples were taken whilst the participant was sitting on the 

cycle ergometer and sampling was strictly timed using a stopwatch. All participants 

completed an international physical activity questionnaire (IPAQ) [74] and perceived stress 

questionnaires; the life scale events questionnaire [75], perceived stress scale [76], the 

undergraduate stress questionnaire [77], self-perceived health status [78], and the Pittsburgh 

sleep quality index [79]. 

Sample processing 

All blood samples were processed under identical conditions using the same laboratory 

reagents and apparatus. Blood samples for immunophenotyping analysis were taken in 

lithium heparin vacuette tubes (95057-405, Greiner Bio-one GmbH, Frickenhausen, 

Germany) and placed on roller at room temperature to ensure constant mixing of the blood 

sample until processing. All sample processing was initiated within 2 hours of blood-draw. 

Haematological measures were conducted on 25μl of whole blood using an automated coulter 

counter (ABX Micros ES 60, HORIBA Medical). Relative cell number (cells/μl) of T cell 

subsets was then calculated from this.   

Whole blood staining 

The whole blood staining protocol was optimised prior to the start of the study. The protocol 

was adapted from the Clinical Immunology Service, University of Birmingham. Red blood 

cells were lysed by preparing whole blood in 4ml aliquots and washed with 16mls 

Ammonium Chloride lysis buffer (16g Ammonium Chloride (326372, Sigma-Aldrich, 

Dorset, UK), 2g sodium hydrogen carbonate (S/4240/60, Fisher scientific Ltd, 

Loughborough, UK), 0.2g EDTA (E5134, Sigma-Aldrich, Dorset, UK), and 2L ddH2O). The 

sample was centrifuged at 1000g for 5 minutes. Pelleted cells were resuspended in 10mls 

RPMI-1640 (R0833, Sigma-Aldrich, Dorset, UK) (supplemented with 2% FBS) and 

centrifuged at 1000g for 5 minutes. Cells were then counted and resuspended to a 

concentration of 1x106 cells/ml. Cells were stained with appropriate antibodies and incubated 

in dark at 4°C for 20minutes. Stained cells were lysed and fixed with 500µl 1X BD FACS 

lysing solution (containing 14% formaldehyde) (349202, BD Biosciences, Wokingham, UK) 

and incubated in dark at 4°C for a further 15minutes. Fixed cells were washed (centrifuged at 

1000g for 5 minutes) in 2mls phosphate-buffered saline (PBS). Pelleted cells were 
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resuspended in 500µl PBS and stored at 4°C until flow cytometry analysis. The stability of 

fixed stains was assessed and confirmed that cells could be stored up to 24hours at 4°C 

before flow cytometry analysis. All samples were analysed using BD LSR Fortessa X-20. 

Parent populations (i.e. lymphocytes) were selected based on their size on FSC/SSC dot 

plots. Doublets were omitted by selecting the linear population shown on FSC-A/FSC-H dot 

plots prior to recording. Events to record were set to 100,000 within the parent population 

gate. Compensation was carried out monthly using compensation beads and single stained 

cells. The most recent compensation set up was linked to each experiment. A negative control 

(unstained whole blood) was run for each experiment.  

T cell subset analysis 

Individual T cell phenotypes along the linear differentiation pathway of CD4+ and CD8+ T 

cells (Figure 1), as well as CD4+ T-helper (Th) and T-Regulatory (TReg) subsets following 

an acute bout of vigorous intensity exercise (80% predicted VO2 max) were measured in T1D 

and healthy participants. Two multi-colour flow cytometry panels were designed to 

phenotype lineage T cell subsets (panel 1) and CD4 T-helper/T-Regulatory subsets (panel 2) 

using the following anti-human monoclonal antibodies (mAbs) obtained from BD 

Biosciences (Wokingham, UK) (unless stated otherwise): Panel 1 anti-CD3 PE-Cy7 

(UCHT1), anti-CD4 APC-R700 (RPA-T4), anti-CD8 APC-H7 (SK1), anti-CD11b PE-CF594 

(ICRF44), anti-CD27 BB515 (M-T271), anti-CD28 BV510 (CD28.2), anti-CD45RA BV786 

(HI100), anti-CD69 BV650 (FN50), anti-CD95 BV421 (DX2), anti-CD127 AF647 (HIL-7R-

M21), anti-CCR7 PE (3D12), anti-7-AAD PerCP-Cy5.5. Panel 2 anti-CD3 PE-Cy7 

(UCHT1), anti-CD4 APC-R700 (RPA-T4), anti-CD25 PE (M-A251), anti-CD45RO BV786 

(UCHL1), anti-CD127 AF647 (HIL-7R-M21), anti-CXCR3 PE-CF594 (1C6), anti-CCR4 

BV421 (1G1), anti-CCR6 BV711 (11A9), anti-IL-6R FITC (AS12), anti-TIGIT PerCP-Cy5.5 

(MBSA43) (eBioscience, San Diego, CA, US), and Live/Dead-Fixable Viability Stain 780.  

Data analysis 

Flowjo version 10 (FlowJo LLC, Oregon) was used to analyse flow cytometry data. Doublets 

were removed using FSC-A versus FSH-H dot plots. Dead cells positive for 7-AAD viability 

stain were removed, and lymphocytes were selected based on size on SSC-A versus FSC-A 

dot plots. Total T cells were selected as CD3+, and further selected as separate CD4+ and 

CD8+ populations. Spider gates were used within CD4+ and CD8+ populations to define 
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distinct progressively differentiated subsets as outlined in supplementary Figure 1; naïve 

(CD45RA+CCR7+), TSCM (CD45RA+CCR7+CD95+CD127+), central memory (CM: CD45RA-

CCR7+), effector memory (EM: CD45RA-CCR7-), early differentiated (ED: CD45RA-CCR7-

CD27+CD28+), early-like differentiated (ELD: CD45RA- CCR7- CD27-CD28+) and 

intermediately differentiated (ID: CD45RA- CCR7-CD27+CD28-), and effector memory re-

expressing CD45RA (EMRA: CD45RA+CCR7-). The gating strategy for TSCM is displayed in 

supplementary Figure 2. Single cell surface expression of CD69, CD11b, CD127, and CD95 

was gated on CD4 and CD8 naïve, CM, EM, and EMRA T cell subsets.  

CD4+ T cells were further divided into T-helper (supplementary Figure 3) and T-Regulatory 

(supplementary Figure 4) subsets; CD4+ T-Regulatory (CD127loCD25hi), naïve T-Reg 

(CD45RO-CD127loCD25hi), memory T-Reg (CD45RO-CD127loCD25hi), T-helper (Th: 

CD127+CD25-CD45RO+), Th1 (CXCR3+CCR6+CCR4-), Th2 (CXCR3-CCR6-CCR4+), and 

Th17 (CXCR3-CCR6+CCR4+).  

Statistical analysis 

Statistical analysis was performed using SPSS version 24 (IBM, Chicago) and GraphPad 

Prism version 7 (GraphPad Software, California). Firstly, normality tests were performed on 

all data using Q-Q plots in SPSS. Data which was not normally distributed was logged and 

normality tests were repeated, confirming all subsets to have normal distribution. Multiple 

regression analysis was used to analyse within subject’s effect (time) and between subject’s 

effects overtime (time*group). Main effects of exercise are described as changes over time. 

Changes immediately post-exercise and 1 hours post-exercise are compared to baseline 

values and are reported in tables for each group under the heading “contrast”. P values were 

reported as sphericity assumed however where mauchly’s test of sphericity was violated i.e. p 

0.05, Greenhouse-Geisser corrected value was used. Student T-tests were performed on 

baseline characteristics. The p values, F values, and degrees of freedom (df) are reported in 

tables as [F = (df, df error) value, p-value]. Variation in n numbers is a result of a participant 

having no data for 1 hour post-exercise time-point. Data are presented in tables as mean ± 

standard deviation (SD) unless otherwise stated. P values 0.05 were considered significant. 

Significantly mobilised subsets in control and T1D groups, but blunted in T1D, are presented 

in tables as bold.  

RESULTS 
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Participants anthropometric and physiologic characteristics are shown in table 1. No 

statistically significant differences between groups were found for anthropometric and 

physiologic characteristics. The results obtained for CD8+ lineage subpopulations are 

summarized in tables 2-3. CD4+ T-Regulatory and T-helper subpopulations are summarized 

in table 4. Extensive T cell subpopulations analysis is included in supplementary tables 1-3.   

The mobilisation CD8+ EMRA T cells is blunted in T1D during vigorous intensity 

exercise 

Lymphocytosis and CD8+ T cell mobilisation occurs in both T1D and control groups as 

summarized in supplementary table 1. However, the most dramatic changes were observed 

within the CD8+ lineage subsets (depicted in Figure 1) during vigorous intensity exercise in 

T1D and control participants. The results for CD8+ lineage subsets are displayed in table 2. 

As anticipated, within the CD8+ T cell populations, less differentiated cells such as naïve, 

TSCM, and CM subsets did not significantly change with exercise in either group. As 

expected, significant changes were however observed in the more differentiated subsets such 

as CD8+ ED, ELD, ID, EM, and EMRA subsets during vigorous exercise. Therefore, the 

increase in CD8+ T cells is driven by mobilisation of later differentiated CD8+ T cell subsets, 

and these changes were most significant in the CD8+ EMRA subsets for each group.  

Although statistically significant changes in CD8+ TSCM were not observed during vigorous 

intensity exercise in either group, increases in the number CD8+ TSCM immediately post-

exercise were suggested in both control and T1D participants (table 3). However, during 

vigorous intensity exercise a blunted response is noted in the T1D group. CD8+ TSCM 

decreased following vigorous exercise by 90.97% in the T1D group but increased 

dramatically by 1898.69% in the control group. It is worth noting that the total cell numbers 

for CD8+ TSCM subsets were very small.  

Within the later differentiated subsets, CD8+ ED significantly changed during vigorous 

intensity exercise overall only (p=0.040), but this was not seen in either T1D or control 

groups independently. There was an overall change in CD8+ ELD during vigorous intensity 

exercise (p<0.001), with a non-significant trend to change in the T1D group (p=0.054) but 

not in the control group. This change was driven by an increase in CD8+ ELD post-exercise 

followed by a significant decrease below baseline in CD8+ ELD 1 hour post vigorous 
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exercise in the T1D group only (p=0.029). CD8+ ID significantly changed over time with 

vigorous exercise (p<0.001) but not in either T1D or control groups independently. CD8+ ID 

significantly decreased below baseline 1 hour post vigorous exercise in the control group 

only (p=0.027). CD8+ EM showed a trend to mobilise during vigorous exercise (p=0.067), 

driven by a trend to increase post-exercise, with a decrease below baseline at 1 hour post-

exercise (p=0.040) in the T1D group. No significant changes were observed for CD8+ EM in 

the control group.  

Finally, CD8+ EMRA cell frequency significantly changed overall during vigorous intensity 

exercise (p=0.001). CD8+ EMRA were significantly mobilised by vigorous intensity exercise, 

driven by a trend to increase post-exercise, in T1D (p=0.004) and control groups (p=0.010). 

There was a significant decrease 1 hour post-exercise in both T1D (p=0.019) and control 

groups (p=0.004). In summary, CD8+ EMRA were the only CD8+ T cells subset mobilised by 

vigorous intensity exercise in both the T1D and control group. However, the percentage 

increase post vigorous intensity exercise is much lower in the T1D group (control: 66.67%, 

T1D: 26.45%) suggesting a blunted egress of CD8+ EMRA during exercise in T1D (Figure 

2); however, no significant time*group differences were observed. 

Vigorous intensity exercise mobilises fully differentiated CD8+ EMRA T cells expressing 

markers of activation and adhesion in T1D and control participants, with evidence of a 

blunted response in T1D 

A number of cell surface markers were measured on CD8+ T cells to define the homing 

propensity and function of circulating CD8+ populations in T1D and control participants. 

These were examined on naïve, CM, EM, and EMRA CD8+ T cell subsets. These markers 

included CD69 (a marker of activation and tissue-resident populations), CD11b (an adhesion 

marker involved in lymphocyte migration), CD127 (IL-7R, necessary for memory CD8+ T 

cell maintenance), and CD95 (expressed on memory subsets and a marker of apoptosis). The 

combination of CD27 and CD28 expression was used to define the differentiation status of 

CD8+ EMRA subsets. Conventionally EMRA are defined as CD27-CD28-. However, more 

recently further subdivisions of EMRA differentiation based on the differential expression of 

CD27 and CD28 have been described and also shown in this study herein [14, 15]. 

As described earlier, CD8+ EMRA are the only subsets which are significantly mobilised in 

both T1D and control participants. Interestingly, the percentage increase of CD8+ EMRA T 
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cells is blunted in T1D. Further phenotyping of CD8+ EMRA T cell subsets using the surface 

markers described above show that CD8+ EMRA expressing markers of activation and tissue 

residency (CD69), homing propensity (CD11b), and are the most differentiated (CD27-CD28-

) are significantly mobilised by acute vigorous intensity exercise in both groups. Again, the 

percentage increase of these CD8+ EMRA T cell subsets is blunted in T1D compared to 

control participants. No significant mobilisation was observed for CD8+ EMRA expressing 

CD127 or CD95 in either group independently. The results for the above cell surface markers 

on CD8+ lineage subsets during vigorous intensity exercise in T1D and control participants 

are displayed in table 3 and described below. 

Vigorous intensity exercise significantly mobilised all but naïve subsets expressing CD69. 

The most profound effect was observed CD8+ EMRA T cells expressing CD69. Vigorous 

intensity exercise resulted in the mobilisation of CD8+CD69+ EMRA T cells in T1D 

(p=0.002) and control groups (p=0.003), with a significant increase immediately post-

exercise observed in the control group only (p=0.010). The percentage increase was blunted 

in the T1D group following vigorous (T1D: 29.87%, Control: 161.43%) intensity exercise 

(table 3).   

Likewise, the most profound effect on CD8+ T cell subsets expressing CD11b was observed 

for the EMRA. Vigorous intensity exercise significantly mobilised CD8+ EMRA T cells 

expressing CD11b in T1D (p=0.007) and control groups (p=0.001), with no significant 

changes in CD8+CD11b+ naïve, CM, or EM subsets during vigorous exercise in either group. 

There was a significant increase immediately post-exercise in the control group only 

(p=0.010). However, in the T1D group, this subset significantly decreased below baseline 1 

hour post vigorous exercise (p=0.006). The percentage increase of CD8+CD11b+ EMRA was 

blunted in the T1D group following vigorous intensity exercise (T1D: 37.70%, Control: 

91.48%) (table 3). 

Lastly, fully differentiated CD8+ EMRA (CD27-CD28-) were the only subset of EMRA to 

significantly mobilise both the T1D (p=0.050) and control group (p=0.037) independently. 

The percentage increase post vigorous exercise was considerably blunted in the T1D group 

(T1D: -7.02%, control: 113.76%). There was a significant decrease below baseline 1 hour 

post vigorous intensity exercise in the T1D group only (p=0.005).  
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Vigorous intensity exercise mobilises CD4+ T-Regulatory cells, mainly comprised of 

memory T-Regulatory cells, in control but not T1D participants 

Vigorous intensity exercise mobilises CD4+ T cells in control but not T1D participants 

(supplementary table 1). A similar pattern was observed for CD4+ lineage subsets 

(supplementary table 2-3). Significant mobilisation patterns were also observed within the 

CD4+ T-Regulatory and T-helper subsets, and is described below. 

Total CD4+ T-Regulatory cells (CD127loCD25hi), and the naïve (CD45RO-CD127loCD25hi) 

and memory (CD45RO-CD127loCD25hi) compartment, were measured during vigorous 

intensity exercise in T1D and control participants. The results are displayed in table 4. CD4+ 

TReg subsets were significantly mobilised by vigorous intensity exercise overall (p=0.010) 

and in control (p=0.009) but not T1D participants. There was a significant decrease below 

baseline 1 hour post-exercise overall (p=0.038), but this was not seen in either T1D or control 

groups independently (Figure 3a). The percentage change following exercise was much lower 

in the T1D compared to the control group (T1D: 23.74%, Control: 47.65%). Further 

delineation of CD4+ TRegs revealed that memory TReg subsets were significantly mobilised 

by vigorous intensity exercise overall (p=0.004) and in the control group (p=0.006) (Figure 

3b). There was a significant decrease below baseline overall 1 hour post-exercise (p=0.042), 

but this was not seen in either T1D or control group independently. Naïve TReg subsets did 

not significantly mobilise (Figure 3c).  

Th1 (CXCR3+CCR6+CCR4-), Th2 (CXCR3-CCR6-CCR4+), and Th17 (CXCR3-

CCR6+CCR4+) cells were measured during vigorous intensity exercise in T1D and control 

participants. The results are displayed in table 4. Vigorous intensity exercise mobilised CD4+ 

Th2 cells in control but not T1D participants. However, neither CD4+ Th1 or Th17 cells 

significantly mobilised in either control or T1D groups independently. In summary, CD4+ T-

helper subsets do not significantly mobilise in T1D participants. However, some mobilisation 

of Th2 subsets were observed in control participants, shifting the Th1/Th2 ratio towards anti-

inflammatory subsets. Th2 subsets significantly mobilised during vigorous intensity exercise 

in control (p=0.042) but not T1D participants, with a significant increase post-exercise in the 

control group (p=0.039).  

DISCUSSION 
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This study has, for the first time, characterised the effects of acute exercise on the 

mobilisation of T cell subsets in people with T1D. The use of surface markers to define T cell 

function and fate improves understanding of the specific subpopulations mobilised during 

exercise in a T cell mediated autoimmune disease characterised by profound T cell 

involvement.  

Acute exercise causes an intensity-dependent lymphocytosis in people with T1D. Total 

lymphocytes, including CD3+ T cells are mobilised in both T1D and control participants. 

This agrees with previous studies where vigorous exercise induces a significant rise in 

peripheral blood lymphocytes, followed by lymphopenia, in healthy cohorts [48, 56-58, 80]. 

Within the T cell compartment, CD4+ T cells mobilised during vigorous exercise in the 

control group, but not the T1D group. This had a downstream effect on CD4+ T cell subsets 

in T1D participants because no significant mobilisation of differentiated CD4+ T cell lineage 

subsets was observed during exercise. In agreement with previous studies, the changes seen 

during exercise within the CD4+ compartment were minimal compared to changes seen 

within the CD8+ compartment [50, 51].  

Vigorous intensity exercise significantly mobilised CD8+ T cells in both T1D and control 

participants. CD8+ T cells increased to the same extent after vigorous intensity exercise in 

both the T1D and control group. As reported in previous studies, CD8+ EMRA were the most 

sensitive T cell subset to mobilisation, and are shown to mobilise by vigorous exercise in this 

study herein and others [50-52]. However, the percentage increase of CD8+ EMRA in the 

T1D group following vigorous intensity exercise was blunted. Further phenotyping of CD8+ 

EMRA populations revealed that the mobilised subsets mainly comprised of fully 

differentiated (CD27-CD28-), recently activated tissue-resident (CD69+) EMRA with 

migratory capacity (CD11b+). Again, the percentage increase of these CD8+ EMRA subsets 

following vigorous exercise was blunted in the T1D group. To the best of our knowledge, this 

is the first time this effect has been described in T1D. 

Furthermore, the effects of exercise on TSCM subsets have not been previously examined. This 

is the first time this has been investigated in T1D and healthy cohorts. Although no 

significant changes overtime for either CD4+ or CD8+ TSCM were found, a trend to increase 

following vigorous intensity exercise as shown by percentage increase was observed in 

healthy participants. Furthermore, an impaired response in T1D was noted for CD4+ and 

CD8+ TSCM subsets, with both subsets decreasing following vigorous intensity exercise.  
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In this study, we used additional cell surface markers to define the function and fate of CD4+ 

and CD8+ T cell lineage subsets. Increases in both CD69 and CD11b on CD4+ and CD8+ 

lymphocytes have been reported following exercise previously, but not on specific T cell 

subsets as demonstrated in this study herein [57, 81-89]. An increase in CD4+ and CD8+ T 

cell lineage subsets expressing CD69 is evident in both groups, with a larger percentage 

increase post-exercise observed in healthy participants. CD4+ and CD8+ T cell lineage 

subsets expressing CD11b is also noted following exercise in both groups. However, the 

percentage increase post-exercise in the T1D participants is smaller. CD95+ memory T cells 

are known to mobilise following vigorous intensity exercise in healthy participants [60, 63]. 

In our study, CD95+ EM and EMRA T cells from both the CD4+ and CD8+ compartments 

increased immediately post-exercise, however this increase did not reach statistical 

significance. Again, it is evident that this response is blunted in T1D as the percentage 

increase following vigorous intensity exercise is much lower than that of the control group.  

There are a number of potential reasons for this blunted response in T1D. Firstly, blood 

glucose levels are elevated in people with T1D (above 5mM) during and following. High 

glucose conditions affect the mobilisation of several cell types and therefore may affect 

lymphocytosis. Elevated plasma glucose in T1D and T2D rodent models have been reported 

to impair CD34+ HSPC, CD45+, and fibroblast cell migration [90, 91]. Furthermore, fewer 

lymphocytes were found in the wound site of streptozotocin-induced diabetic mice compared 

to control, suggesting lower migration of lymphocytes in T1D [92]. Therefore, high glucose 

levels in T1D may have an effect on T cell migration during exercise. 

Secondly, the T cell subsets which exhibit blunted lymphocytosis during vigorous exercise in 

T1D are those which typically exhibit a high level of beta-adrenergic receptor expression. It 

is recognised that catecholamine responses can be blunted in T1D. Natural killer (NK) cells 

and cytotoxic T lymphocytes express much higher levels of beta-adrenergic receptors than 

other mononuclear cells, causing their dramatic mobilisation during exercise [93-96]. 

Alterations in these receptors in T1D would alter the stress response to exercise. Reduced 

beta-adrenergic sensitivity of lymphocytes in T1D has been reported, resulting in a dampened 

adrenaline response [97-99]. During acute exercise, increased beta-adrenoceptor density and 

sensitivity of lymphocytes is noted in healthy participants. However, patients with congestive 

heart failure (CHF) exhibited a blunted increase in beta-adrenoceptor density and no increase 

in sensitivity [100]. A similar effect may be seen in T1D and may impact exercise-induced 

lymphocytosis.  
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Lastly, the T cell subsets exhibiting blunted lymphocytosis during vigorous exercise share 

characteristics with those sequestered in the T1D pancreas [6, 7, 101, 102]. These include 

CD8+CD69+ T cells [101, 103], CD8+CD11b+ T cells [6, 7], and highly differentiated 

memory T cells [2, 4, 8]. The proportion of CD8+CD69+ T cells was higher in the pancreas 

than salivary glands taken from NOD mice [101]. CD8+CD11b+ T cells have also been found 

within NOD islets [6, 7] and found to be higher in the islets of NOD mice compared to 

peripheral blood [102]. Furthermore, antigen-experienced islet reactive CD8+ T cells were 

found sequestered in the pancreas of T1D donors [4]. Islet reactive CD8+ T cells have been 

shown to exhibit a highly differentiated memory phenotype [2, 8], similar to the CD8+ 

EMRA T cell phenotype. More recently, islet specific CD8+ T cells were shown to display a 

TSCM phenotype. In our study, lymphocytosis of highly differentiated CD8+ EMRA that 

express CD69 and CD11b was blunted immediately following vigorous exercise in T1D. 

Both CD4+ and CD8+ TSCM also displayed a blunted percentage increase following vigorous 

exercise compared to the control group. It therefore is possible to postulate that the blunted 

increase following exercise in these CD8+ T cell subsets is due to their sequestration in the 

pancreas in T1D.  

The results of our study have a number of implications for T1D. Firstly, this study provides  

imperative evidence of the effects of acute exercise on immunity in people with T1D. 

Importantly, this provides a platform for future investigations of exercise in T1D, allowing 

for new avenues to be explored to increase the initial honeymoon phase following diagnosis 

[104], reduce disease severity, and ultimately for the treatment of T1D. Acute exercise has 

the potential to regulate immunity in T1D through increased immunosurveillance, deletion of 

islet reactive T cells and thereby creation of immune space. Lymphocyte trafficking and 

tissue redistribution is essential for immunosurveillance and regulation [58, 59]. The deletion 

of exercise sensitive EM and EMRA CD8+ T cells following acute exercise has the potential 

to regulate immunity through the creation of “immunological space” in people with T1D [60-

65]. This immune space following exercise could be taken up by newly generated HSPC and 

reprogram immune memory [66, 67], thereby reducing aggressive memory T cell phenotypes 

and ultimately modulating beta cell autoimmunity in T1D. 

Furthermore, acute exercise could be used in combination with current trial immunotherapies, 

and possibly boost the response to immunotherapeutic agents, which to date have been 

lacking for treatment of T1D. Some immunotherapeutic approaches to modulate beta cell 

autoimmunity in T1D aim to reduce aggressive memory phenotypes and promote the 
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generation of new naïve cells in T1D. This has been achieved previously with both acute 

exercise and exercise training in healthy cohorts. Therefore, exercise in T1D may be used as 

an adjunct for other immunotherapeutic agents. One such immunotherapy, teplizumab, a 

nonactivating anti-CD3 monoclonal antibody, aims to reduce effector memory subsets, and 

increase naïve and early memory subsets. This could potentially also be achieved solely by an 

acute exercise bout or used to boost target T cell populations by administering the treatment 

directly after an acute exercise bout. Anti-CD3 mAbs that are non-Fc receptor (FcR) binding, 

like teplizumab, selectively induce apoptosis of antigen-activated T cell phenotypes such as 

those with memory/pathogenic phenotypes but not naïve T cells [105]. Teplizumab treatment 

resulted in maintained or improved beta cell function for at least 2 years post treatment in 

recent-onset T1D patients [106-109]. Evidence for beta cell preservation was also reported in 

long standing T1D patients up to 1 year post clinical diagnosis [110]. One study identified a 

group of responders who had higher activated CD8+ terminally differentiated effector and 

CD8+ EM in T cells at baseline [111]. This is consistent with increased CD8+ terminally 

differentiated EM T cells following acute exercise.  Therefore, frequent bouts of acute 

exercise could create an environment in which T1D participants respond better to treatment.  

Preliminary data from this study herein also provides a basis to investigate exercise training 

(as opposed to a single bout of exercise) in T1D. Chronic exercise reduces senescent T cells 

in the blood [112]. In an ageing study, physically fit age matched controls had a lower 

proportion of peripheral blood memory T cells (KLRG1+CD57+, KLRG1+CD28-) compared 

to those with a lower VO2 max [65, 113]. Naïve-memory T cell balance is disrupted in the 

ageing population and a similar observation has been found in T1D [114]. Therefore, reduced 

senescent memory T cell populations may also occur from exercise training in T1D.  

The mechanisms by which exercise training could preserve beta cells in T1D have yet to be 

explored. Evidence of immunomodulation by exercise training in T1D is limited. Two studies 

to date have examined exercise training in T1D mouse models.  The first study showed that 6 

weeks of exercise training in streptozotocin-induced T1D mice significantly improved insulin 

content and insulin secretion in islets compared to sedentary mice, suggesting a protective 

effect against the destruction of the remaining beta cells or the generation of new beta cells 

[68]. A more recent study has examined the effects of exercise training on immune 

parameters in T1D [69]. Twenty weeks of training in non-obese diabetic (NOD) mice 

resulted in reduced immune cell infiltration into the pancreas and subsequently the insulitis 
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index. This is the only exercise study in a model of T1D to demonstrate the modulatory 

effects of exercise on islet immunity [69].  

Although not well studied in T1D, exercise training has been demonstrated to modulate 

immunity in other T cell mediated autoimmune disorders [115]. Mice with EAE, a model for 

multiple sclerosis (MS), underwent 6 weeks exercise training. T cells taken from lymph 

nodes had an inhibited immune response to autoantigen whilst sustaining an increased 

immune response to non-specific stimulus such as concanavalin A [115]. This suggests the 

generation of new naïve and early memory T cells with exercise training as the recall 

response to autoantigen is reduced. Another study showed improved immune modulation by 

exercise in EAE models resulting in delayed onset of disease and increased T cells with a 

regulatory phenotype [116]. However, other autoimmune disorders such as rheumatoid 

arthritis (RA) and systemic lupus (SLE) have different responses to exercise, where CD8+ T 

cells are reduced following exercise and CD4+ T cells are reduced at peak exercise but 

increased after cessation [117]. It is unclear if exercise training (as opposed to a single bout 

of exercise) would result in responses to exercise that are comparable to healthy participants.  

In conclusion, we show for the first time that acute exercise preferentially mobilises 

differentiated and antigen experienced CD8+ T cells in T1D, but to a lesser extent than in 

healthy individuals. A contributing factor to the relatively reduced mobilisation pattern in 

T1D was attributable to a blunted response among highly differentiated CD8+ T cells, which 

may indicate sequestering of CD8+ T cells in the pancreas. These findings need to be 

extended and investigated in an exercise training programme, and the functional implications 

of this effect on beta cell function explored in a formal clinical trial.  

We have previously hypothesised that an exercise training programme has the potential to 

modulate beta cell loss in people newly diagnosed with T1D [118]. We have tested this 

hypothesis in a pilot randomised controlled trial [119, 120]. This study showed that beta cell 

function, when corrected for the changes in insulin sensitivity that accompany physical 

exercise, appears to be preserved in people with T1D. The results of this most recent work 

exploring the effect of a single bout of exercise on T cell mobilisation provides mechanistic 

insight into how exercise may bring about a benefit to beta cell health in people newly 

diagnosed with T1D. Further evaluation of the immunomodulatory effects of acute exercise 

on autoreactive memory T cells in T1D is warranted to ascertain impact on disease prognosis. 

These findings need to be validated in an exercise training study. 
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Abbreviations 

BMI Body Mass Index 
BP Blood Pressure 

CA2+ Calcium 

CCL Chemokine Ligand 
CCR Chemokine Receptor 
CD Cluster of Differentiation 
CMV Cytomegalovirus 
CTL Cytotoxic T Lymphocyte 
CXCR C-X-C chemokine receptor 
ddH2O Double-distilled water 
ED Early Differentiated 
EDTA Ethylenediaminetetraacetic Acid  
ELD Early-like Differentiated 
EM Effector Memory 
EMRA Effector Memory  re-expressing CD45RA 
EXTOD Exercise for Type One Diabetes 
FBS Fetal Bovine Serum 
FcR Fc Receptor 
FMO Fluorescence Minus One 
FoxP3 Forkhead winged helix transcription factor 
FSC-A Forward Scatter-Area 
FSC-H Forward Scatter-Height 
HbA1c Haemoglobin A1c  
HSPC Hematopoietic Stem and Progenitor Cells  
ID Intermediately Differentiated 
KLRG1 Killer cell Lectin-like Receptor subfamily G member 1  
mAb Monoclonal antibody 
mTReg memory T-Regulatory 
naTReg Naïve T-Regulatory 
NK Natural Killer 
O2 Oxygen 
PBS Phosphate Buffer Saline 
pTReg periphery T-Regulatory cell 
REC Research Ethics Committee 
S1PR Sphingosine-1-Phosphate Receptor  
sIL2RA soluble IL2RA 
sIL-6R soluble IL-6R 
SSC-A Side Scatter- Area 
SSC-H Side Scatter- Height 
T1D Type 1 Diabetes 
T2D Type 2 Diabetes 
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Th1 Type 1 helper  
Th2 Type 2 helper  
Th17 Type 17 helper  
TIGIT T cell immunoreceptor with Ig and ITIM domains  
TReg T-Regulatory 

TSCM Stem cell like memory T cells 
UHBFT University Hospitals Birmingham NHS Foundation Trust 
WTCRF Wellcome Trust Clinical Research Facility 
ZnT8 Zinc Transporter 
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