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Average Drift Analysis and Population Scalability
Jun He, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—This paper aims to study how the population size
affects the computation time of evolutionary algorithms (EAs) in
a rigorous way. The computation time of EAs can be measured
by either the number of generations (hitting time) or the number
of fitness evaluations (running time) to find an optimal solution.
Population scalability is the ratio of the expected hitting time
between a benchmark algorithm and an algorithm using a larger
population size. Average drift analysis is introduced to compare
the expected hitting time of two algorithms and to estimate lower
and upper bounds on the population scalability. Several intuitive
beliefs are rigorously analyzed. It is proven that: 1) using a pop-
ulation sometimes increases rather than decreases the expected
hitting time; 2) using a population cannot shorten the expected
running time of any elitist EA on any unimodal function on
the time-fitness landscape, however, this statement is not true
in terms of the distance-based fitness landscape; and 3) using a
population cannot always reduce the expected running time on
deceptive functions, which depends on whether the benchmark
algorithm uses elitist selection or random selection.

Index Terms—Computation time, drift analysis, evolutionary
algorithm (EA), fitness landscape, population size.

I. INTRODUCTION

POPULATION is one of the most important features
of evolutionary algorithms (EAs). A wide range of

approaches is available to design population-based EAs. Using
a population delivers many benefits [1]. The study of the
relationship between the performance of an EA and its pop-
ulation size can be traced back to early 1990s. For example,
Goldberg et al. [2] presented a population sizing equation to
show how a large population size helps an EA to distinguish
between good and bad building blocks on some test problems.
Mühlenbein and Schlierkamp-Voosen [3] studied the critical
(minimal) population size that can guarantee the convergence
to the optimum. Arabas et al. [4] proposed an adaptive scheme
for controlling the population size, and the effectiveness of
the proposed scheme was validated by an empirical study.
Eiben et al. [5] reviewed various techniques of parameter con-
trolling for EAs, where the adjustment of population size was
considered as an important research issue. Harik et al. [6]

Manuscript received November 26, 2015; revised March 15, 2016,
June 18, 2016, and August 16, 2016; accepted August 18, 2016. Date of
publication September 29, 2016; date of current version May 25, 2017.
This work was supported in part by the Engineering and Physical Sciences
Research Council under Grant EP/I009809/1, Grant EP/I010297/1, and Grant
EP/K001523/1, and in part by the National Natural Science Foundation of
China under Grant 61329302. The work of X. Yao was supported by the Royal
Society Wolfson Research Merit Award. (Corresponding author: Jun He.)

J. He is with the Department of Computer Science, Aberystwyth University,
Aberystwyth, SY23 3DB, U.K. (e-mail: jun.he@aber.ac.uk).

X. Yao is with the Centre of Excellence for Research in Computational
Intelligence and Applications, School of Computer Science, University of
Birmingham, Birmingham, B15 2TT, U.K. (e-mail: x.yao@cs.bham.ac.uk).

Digital Object Identifier 10.1109/TEVC.2016.2608420

linked the population size to the quality of solution by the
analogy between 1-D random walks and EAs.

The theoretical analysis of the impact of the population size
on the computation time of EAs starts in early 2000s [7].
There has been an increasing interest in rigorously analyzing
the relationship between the computation time of an EA and
its population size. The computation time of an EA can be
measured by either the expected hitting time or the expected
running time. The theoretical studies on this topic can be
classified into two directions.

One direction aims to estimate a bound on the compu-
tation time of EAs as a function of the population size.
This direction belongs to the time complexity analysis of
EAs. Drift analysis and tail inequalities are often used for
estimating the time bound. This direction may be called a
bound-based study. A lot of work has done along this direc-
tion. The earliest one was conducted by Jansen et al. [8] who
first obtained the cut-off point for a (1 + λ) EA on three
pseudo-Boolean functions, leading-ones, one-max, and Suf-
Samp. Jägersküpper and Witt [9] analyzed how the running
time of a (μ + 1) EA on the sphere function scales up with
respect to μ. Witt [10] proved theoretically that the running
time of a (μ+1) EA on a specific pseudo-Boolean function is
polynomial with an overwhelming probability, when μ is large
enough. Storch [11] presented a rigorous runtime analysis of
the choice of the population size with respect to a (μ + 1)

EA on several pseudo-Boolean functions. Yu and Zhou [12]
investigated the expected hitting time of (λ + λ) EAs when
λ = 1 and λ = n (where n is the problem input size) on the
trap problem. Oliveto et al. [13] presented a runtime analysis
of both (1 + λ) and (μ + 1) EAs on some instances of the
vertex covering problem. Friedrich et al. [14] analyzed the
running time of a (μ+1) EA with diversity-preserving mech-
anisms on the two-max problem. Chen et al. [15] obtained
an upper bound on the hitting time of (λ + λ) EAs on
leading-ones and one-max problems. Lässig and Sudholt [16]
presented a running time analysis of a (1 + λ) EA with an
adaptive offspring size λ on several pseudo-Boolean func-
tions. Rowe and Sudholt [17] discussed the running time of
(1+ λ) EAs in terms of the offspring population size on uni-
modal functions. Doerr and Künnemann [18] analyzed the
time bound of (1 + λ) EAs for optimizing linear pseudo-
Boolean functions. Doerr and Künnemann [19] showed that
(1+ λ) EAs with even very large offspring populations does
not reduce the runtime significantly on the royal road function.
Oliveto and Witt [20] presented a rigorous running time anal-
ysis of the well-known simple genetic algorithm for one-max.
Gießen and Witt [21] studied the relation between the pop-
ulation size and mutation strength for a (1 + λ) EA on
one-max.
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Another direction aims to calculate a ratio, named popula-
tion scalability, which is described as follows:

expected hitting time of a benchmark EA

expected hitting time of an EA using a population
. (1)

This direction may be called a ratio-based study. As one of the
earliest analyses, He and Yao [7] investigated how the popula-
tion scalability of EAs varies as the population size changes on
two simple functions (one-max and deceptive). In that paper,
EAs are assumed to be run on a hypothetical parallel com-
puter, that is, to assign each individual on one processor. If
the communication cost is ignored, the population scalabil-
ity is equivalent to the speedup in parallel computation. The
link between population scalability and parallelism was further
discussed in [22]. However, since calculating the population
scalability is not an easy job, no further development has been
made since then.

This paper belongs to the ratio-based study. It is significantly
different from the bound-based study. The bound-based study
focuses on an asymptotic time bound as a function of the
population size. It does not calculate the population scalability
and will not answer whether a (2+2) EA is faster than a (1+1)

EA. The ratio-based study aims to calculate the population
scalability and will answer whether a (2+2) EA is faster than
a (1+1) EA. But it is not necessary to estimate an asymptotic
time bound.

Compared with previous work on the analysis of population-
based EAs, this paper has two novelties.

1) Average drift analysis is presented as a tool of comparing
the expected hitting time of two EAs and studying pop-
ulation scalability. The approach used in [7] is based on
the fundamental matrix of absorbing Markov chains. It
is hard to calculate the expected hitting time through the
fundamental matrix. But using average drift analysis, it
is possible to estimate population scalability without cal-
culating the expected hitting time. This is an important
improvement in the analysis tool.

2) The scalability threshold replaces the cut-off point. The
population threshold is the minimal population size at
which the running time of an EA using a larger pop-
ulation size is greater than that of the benchmark EA.
The cut-off point [8] is the maximize population size at
which the running time of the EA is in the same order
as that of the benchmark EA. Let us show the advan-
tage of population scalability by an example: (1 + λ)

EAs (using bitwise mutation and elitist selection) for
solving the one-max problem. According to [8], the cut-
off point is �((ln n)(ln ln n)/ln ln ln n). This means when
the population size λ is smaller than the cut-off point,
the running time of the (1 + λ) EA is in the same
order as that of the (1 + 1) EA but different by a con-
stant factor. The constant could be = 1, > 1 or < 1.
Therefore the cut-off point does not answer the ques-
tion whether the expected running time of a (1+λ) EA
[where 2 ≤ λ = O((ln n)(ln ln n)/ln ln ln n)] is smaller
or larger than that of the (1+ 1) EA. However, accord-
ing to Proposition 4 and its discussion in this paper, the
scalability threshold is 2. This means that the running

Algorithm 1 (μ+ λ) EA, where μ, λ ≥ 1
1: initialise a population �0 consisting of μ individuals

(solutions) and t← 0;
2: evaluate the fitness of individuals in �0;
3: while �t does not include an optimal solution do
4: mutate (or crossover) individuals in �t and generate a

children population �t consisting of λ individuals;
5: evaluate the fitness of individuals in �t;
6: probabilistically select μ individuals from �t ∪ �t as

�t+1;
7: t← t + 1;
8: end while

time of the (1+λ) EA (for any λ ≥ 2) is larger than that
of the (1+ 1) EA. Therefore the scalability threshold is
more accurate than the cut-off point.

With the help of average drift analysis, this paper analyzes
the following intuitive beliefs in a rigorously way.

1) Using a population “always” reduces the expected hit-
ting time (not running time) of an EA to find an optimal
point.

2) Using a population cannot shorten the expected running
time of an elitist EA on “unimodal” functions.

3) Using a population can reduce the expected running time
of an EA on “deceptive” functions.

This paper is organized as follows. Section II defines
population scalability. Section III presents drift analysis for
population scalability. Section IV analyzes scenario 1: using a
population does not reduce the hitting time. Section V analyzes
scenario 2: using a population reduces the hitting time, but not
the running time. Section VI investigates scenario 3: using a
population reduces the running time. Section VIII concludes
this paper.

II. POPULATION SCALABILITY

A. Evolutionary Algorithms

Consider the problem of maximizing a function f (x), where
x ∈ S and S is a finite set. A point in S is called a solu-
tion or an individual. A population consists of one or more
individuals. A (μ + λ) EA is described in Algorithm 1. The
stopping criterion is that the EA halts once an optimal solu-
tion is found. The criterion is used for the sake of analysis
because our interest is the first hitting time (when the EA
finds an optimal solution for the first time). If �t includes an
optimal solution, assign �t = �t+1 = �t+2 = · · · for ever.

The sequence {�t; t = 0, 1, . . .} can be modeled by a
Markov chain [23]. Each generation of the EA consists of two
steps: to generate new individuals by mutation or crossover
and to select individuals for next generation

�t
mutation (or crossover)−→ �t ∪�t

selection−→ �t+1.

Let P denote the set of all populations, Popt the set
of populations including an optimal solution, and Pnon the
set of populations without an optimal solution. The tran-
sition from �t to �t can be represented using mutation
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(or crossover) probabilities

Pm(X, Y)
def= P(�t = Y | �t = X), X, Y ∈ P (2)

where �t and �t are random variables representing the tth
generation population and its children population. X and Y
are their values taken from P .

The transition from �t and �t to �t+1 can be represented
using selection probabilities

Ps(X, Y, Z)
def= P(�t+1 = Z | �t = X, �t = Y). (3)

The transition from �t from �t+1 can be represented using
transition probabilities

P(X, Y)
def= Pr(�t+1 = Y | �t = X). (4)

The hitting time is the number of generations of an EA to
find an optimal solution for the first time.

Definition 1: Given �0 = X, the expected hitting time of
an EA is defined by

g(X)
def=
+∞∑

t=0

Pr(�t ∈ Pnon). (5)

If the initial population �0 is chosen according to a probability
distribution over P , the expected hitting time is given by

g(�0)
def=

∑

X∈P
g(X) Pr(�0 = X).

The expected running time of a (μ + λ) EA is the expected
number of fitness evaluations, which equals to μ + λg(�0).
For the sake of simplicity, we always omit the first term μ,
which is the number of fitness evaluations in initialization.

If genetic operators do not change in time, the sequence
{�t; t = 0, 1, . . .} can be modeled by a homogeneous
Markov chain. According to the fundamental matrix theo-
rem [24, Theorem 11.5], the expected hitting time of an EA
can be calculated from transition probabilities.

Theorem 1: If the population sequence {�t, t = 0, 1, . . .} is
a homogeneous Markov chain and converges to Popt, that is,
limt→+∞ Pr(�t ∈ Popt) = 1, then the expected hitting time
g(X) satisfies a linear equation system

{
g(X) = 0, if X ∈ Popt∑

Y∈P P(X, Y)(g(X)− g(Y)) = 1, if X /∈ Pnon.
(6)

The fundamental matrix theorem is useful in analyzing
elitist EAs [7], [23], [25]. However, its disadvantage is the
difficulty of solving the above linear equation system.

B. Population Scalability

The population scalability is defined as the ratio of the
expected hitting time between a benchmark EA and an EA
with a larger population size. In this paper, the benchmark is a
(1+1) EA using mutation and selection operators. Other types
of EAs may play the role of a benchmark too. For example,
a (2+ 2) EA could be chosen as a benchmark when studying
EAs with crossover. But we will not discuss them here.

Definition 2: Given a (1 + 1) EA and a (μ + λ) EA that
exploit an identical mutation operator to optimize the same

fitness function, let �
(1+1)
0 and �

(μ+λ)
0 denote their corre-

sponding initial populations, then the population scalability
is defined by

PS

(
μ+ λ

∣∣∣∣�
(1+1)
0 ,�

(μ+λ)
0

)
def=

g(1+1)
(
�

(1+1)
0

)

g(μ+λ)
(
�

(μ+λ)
0

) (7)

where the superscripts (1+1) and (μ+λ) are used to distinguish
the (1+ 1) EA and (μ+ λ) EA.

An essential part of the definition above is that both EAs
must adopt identical mutation operators. This ensures that
the comparison is meaningful. Nonetheless, it is impossible
for the selection operators to be identical. Indeed even if the
selection operators are of the same type, for example roulette
wheel selection, the conditional probabilities determining the
actual selection operators are never identical under distinct
population sizes.

Obviously, the value of population scalability relies on ini-
tial populations. Due to the use of a population, �

(μ+λ)
0 may

contain several individuals some of which are different from
�

(1+1)
0 . For the sake of comparison, we restrict our discussion

to identical initialization, that is, for the (1+1) EA, �
(1+1)
0 = x

and for the (μ + λ) EA, �
(μ+λ)
0 = (x, . . . , x). In this case,

PS(μ + λ | �(1+1)
0 ,�

(μ+λ)
0 ) is denoted by PS(μ + λ | x) in

short. There exist other types of initialization but we will not
discussed them here.

The notion of population scalability is similar to that of
the speedup widely used in analyzing parallel algorithms. The
speedup of parallel EAs have been studied through experi-
ments [26]–[28]. If each individual is assigned to a processor,
then EAs turn into parallel EAs. Under this circumstance, pop-
ulation scalability is equivalent to speedup if ignoring the
communication cost. Hence population scalability is called
speedup on a hypothetical parallel computer in [7].

The following questions are essential when studying popu-
lation scalability.

1) Given a λ ≥ 2 or μ ≥ 2, is the population scalability
PS(μ+λ | x) > 1? If it is, we may assign each individual
to a processor in a parallel computing system and then
the CPU computation time of the (μ+λ) EA is less than
that of the (1 + 1) EA (if ignoring the communication
cost).

2) Given a λ ≥ 2 or μ ≥ 2, is the population scalability
PS(μ + λ | x) > λ? If it is, then the CPU computation
time of the (μ+ λ) EA on a computer is less than that
of the (1+ 1) EA.

3) Where are the smallest population sizes (μ, λ) such that
the expected running time of the (μ + λ) EA is larger
than that of the (1 + 1) EA? We call this point the
scalability threshold, which satisfies

{
min{μ : PS(μ+ λ | x) > λ}
min{λ : PS(μ+ λ | x) > λ}. (8)

In general, the scalability threshold is not a single point
but a Pareto front due to minimizing both population
sizes μ and λ simultaneously. However, in a (1+ λ) or
(λ+ λ) EA, the scalability threshold is a single point.
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III. AVERAGE DRIFT ANALYSIS AND

TIME-FITNESS LANDSCAPE

A. Average Drift Analysis

Average drift analysis is a variant of drift analysis for esti-
mating the expected hitting time of EAs. The idea of average
drift was first used by Jägersküpper [29] who considered the
average drift of a (1+1) EA on linear functions and provided
a delicate analysis of the running time of the (1 + 1) EA.
Nevertheless his work was restricted to the (1 + 1) EA and
linear functions. Even the term of average drift did not appear
in [29] but was first adopted by Doerr [30] for introducing
Jägersküpper’s work [29]. In this section, the average drift is
formally defined and then general average drift theorems are
presented.

In drift analysis, a distance function d(X) is used to measure
how far a population X is away from the optimal set Popt. It
is a non-negative function such that 0 < d(X) < +∞ for any
X ∈ Pnon and d(X) = 0 for X ∈ Popt. Drift is used to measure
the progress rate of a population moving toward the optimal
set per generation.

Definition 3: Given a population X, the pointwise drift
at X is

�(X)
def=

∑

Y∈P
(d(X)− d(Y)) Pr(�t+1 = Y | �t = X). (9)

Given a generation t, the average drift at t is

�̄t
def=

{
0, if Pr(�t ∈ Pnon) = 0∑

X∈Pnon �(X) Pr(�t=X)

Pr(�t∈Pnon)
, otherwise.

(10)

The following theorem provides an approach to estimating
a lower bound on the expected hitting time. It is a variation
of [31, Th. 4].

Theorem 2: Provided that the population sequence {�t, t =
0, 1, . . .} converges to Popt where �0 satisfies Pr(�0 ∈
Pnon) > 0. Given a distance function d(X), if for any t and
any �t such that Pr(�t ∈ Pnon) > 0, the average drift �̄t ≤ c
where c > 0, then the expected hitting time g(�0) ≥ d(�0)/c,
where

d(�0)
def=

∑

X∈P
d(X) Pr(�0 = X).

Furthermore if for at least one t, the average drift �̄t < c,
then g(�0) > d(�0)/c.

Proof: Without loss of generality, let c = 1. From the condi-
tion �̄t ≤ 1 for any t and any �t such that Pr(�t ∈ Pnon) > 0,
we have

Pr(�t ∈ Pnon) ≥
∑

X∈Pnon

�(X) Pr(�t = X)

≥
∑

X∈Pnon

d(X) Pr(�t = X)

−
∑

Y∈Pnon

d(Y) Pr(�t+1 = Y). (11)

Summing the term Pr(�t ∈ Pnon) from t = 0 to k, we get

k∑

t=0

Pr(�t ∈ Pnon) ≥
k∑

t=0

⎛

⎝
∑

X∈Pnon

d(X) Pr(�t = X)

−
∑

Y∈Pnon

d(Y) Pr(�t+1 = Y)

⎞

⎠

=
∑

X∈Pnon

d(X) Pr(�0 = X)

−
∑

Y∈Pnon

d(Y) Pr(�k+1 = Y). (12)

Notice that
∑

Y∈Pnon

d(Y) Pr(�k+1 = Y)

≤ max
X∈P

d(X)
∑

Y∈Pnon

Pr(�k+1 = Y)

= max
X∈P

d(X) Pr(�k+1 ∈ Pnon). (13)

Since the EA is convergent: limk→+∞ Pr(�k+1 ∈ Pnon) = 0,

then from inequality (13) we have

lim
k→+∞

∑

Y∈Pnon

d(Y) Pr(�k+1 = Y) = 0. (14)

Applying the above result to inequality (12) (let k → +∞),
we get

g(�0) =
+∞∑

t=0

Pr(�t ∈ Pnon)

≥
∑

X∈Pnon

d(X) Pr(�0 = X) = d(�0) (15)

which gives the desired result. If for some t, the average drift
�̄t < 1, then inequality (12) is strict for any k ≥ t and
inequality (15) is strict too.

Similarly, the theorem below provides an approach to esti-
mating an upper bound on the expected hitting time. It is a
variation of [31, Th. 1]. Its proof is similar to that of the above
theorem.

Theorem 3: Provided that population sequence {�t, t =
0, 1, . . .} converges to Popt, where �0 satisfies Pr(�0 ∈
Pnon) > 0. Given a distance function d(X), if for any t and
any �t such that Pr(�t ∈ Pnon) > 0, the average drift �̄t ≥ c,
where c > 0, then the expected hitting time g(�0) ≤ d(�0)/c.
Furthermore if for at least one t, the average drift �̄t > c, then
g(�0) < d(�0)/c.

Pointwise drift theorems are corollaries of average drift
theorems, because it requires a stronger condition on the point-
wise drift: �(X) ≥ c (or ≤ c) for any X ∈ Pnon. It implies the
average drift �̄t ≥ c (or ≤ c) for any �0 ∈ Pnon.

Theorem 4 [23, Th. 2]: Provided that population sequence
{�t, t = 0, 1, . . .} converges to Popt. Given a distance function
d(X), if for any X ∈ Pnon, the pointwise drift �(X) ≤ c (where
c > 0), then for any initial population X0 ∈ Pnon, the expected
hitting time g(X0) ≥ d(X0)/c.
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Theorem 5 [23, Th. 3]: Provided that population sequence
{�t, t = 0, 1, . . .} converges to Popt. Given a distance function
d(X), if for any X ∈ Pnon, the pointwise drift �(X) ≥ c, where
c > 0, then for any initial population X0 ∈ Pnon, the expected
hitting time g(X0) ≤ d(X0)/c.

The average drift analysis provides a useful tool for compar-
ing the expected hitting time of two EAs. Its idea is simple.
One EA is taken as the benchmark and its expected hitting
time is used to define a distance function for the other EA.
Then the average drift of the other EA is estimated and then its
expected hitting time is bounded using average drift analysis.

Theorem 6: Given two EAs A and B to optimize the same
fitness function, let {Xt, t = 0, 1 · · · } and {Yt, t = 0, 1, . . .}
denote their population sequences, respectively. For algorithm
B, define a distance function dB(X) such that dB(Y0) =
gA(X0), where gA(X0) is the expected hitting time of algo-
rithm A starting at X0. If for any t and any Yt such that
Pr(Yt ∈ Pnon) > 0, average drift �̄B

t ≤ c, where c > 0,
then the expected hitting time of algorithm B satisfies that
gB(Y0) ≥ gA(X0)/c. Furthermore if for at least one t ≥ 0,
�̄B

t < c, then gB(Y0) > gA(X0)/c.
Proof: It is a direct corollary of Theorem 2.
Theorem 7: Given two EAs A and B to optimize the same

fitness function, let {Xt, t = 0, 1 · · · } and {Yt, t = 0, 1, . . .}
be their population sequences, respectively. For algorithm B,
define a distance function dB(X) such that dB(Y0) = gA(X0),

where gA(X0) is the expected hitting time of algorithm A start-
ing at X0. If for any t and any Yt such that Pr(Yt ∈ Pnon) > 0,
average drift �̄B

t ≥ c, where c > 0, then gB(Y0) ≤ gA(X0)/c.
Furthermore if for some t ≥ 0, �̄B

t > c, then gB(Y0) <

gA(X0)/c.
Proof: It is a direct corollary of Theorem 3.

B. Average Drift Analysis for Population Scalability

Average drift analysis for estimating the population scala-
bility is based on a simple idea. Given a benchmark EA and
another EA using a larger population size, we assume that
both EAs start at the same point with an equal distance to the
optimal set. If at each generation, the average drift of the other
EA is ten times that of the benchmark EA, then the expected
hitting time of the other EA will be 1/10 of that of the bench-
mark EA. Thus the population scalability is 10. This simple
idea can be formalized as follows.

Consider a (1+1) EA and a (μ+λ) EA (where λ ≥ 2) that
exploit an identical mutation operator to optimize the same
fitness function. Provided that �

(1+1)
0 = x0 and �

(μ+λ)
0 =

(x0, . . . , x0) for some x0 ∈ Pnon, for the (μ + λ) EA,
define a distance function d(X) such that d(μ+λ)(x0, . . . , x0) =
g(1+1)(x0).

The first theorem establishes a sufficient condition for esti-
mating the upper bound on population scalability. Thanks
to average drift analysis, there is no requirement that the
population sequence is a Markov chain.

Theorem 8: If for all t ≥ 0 and any �
(μ+λ)
t such that

Pr(�(μ+λ)
t ∈ Pnon) > 0, average drift �̄

(μ+λ)
t ≤ c, where

c > 0, then PS(μ + λ | x0) ≤ c. Furthermore if for at least
one t ≥ 0, average drift �̄

(μ+λ)
t < c, then PS(μ+ λ | x0) < c.

Fig. 1. Unimodal time-fitness landscape. The x-axis is the expected hitting
time of the (1+ 1) EA. The y-axis is the fitness function.

Proof: According to Theorem 6, the expected hitting time
satisfies: g(μ+λ)(x0) ≥ g(1+1)(x0)/c. Then we have PS(μ+λ |
x0) ≤ c. If for at least one t ≥ 0, average drift �̄

(μ+λ)
t < c,

then according to Theorem 6, g(μ+λ)(x0) ≥ g(1+1)(x0)/c and
then PS(μ+ λ | x0) < c.

Similarly, the second theorem establishes a sufficient condi-
tion for estimating the lower bound on population scalability.
Its proof is almost the same as the that of the above theorem
except using Theorem 7.

Theorem 9: If for all t ≥ 0 and any �
(μ+λ)
t such that

Pr(�(μ+λ)
t ∈ Pnon) > 0, average drift �̄

(μ+λ)
t ≥ c where

c > 0, then PS(μ + λ | x0) ≥ c. Furthermore if for at least
one t ≥ 0, average drift �̄

(μ+λ)
t > c, then PS(μ+ λ | x0) > c.

C. Time-Fitness Landscape

In this paper, unimodal and multimodal functions are estab-
lished upon the time-fitness landscape, a concept introduced
in [32]. It aims at describing the fitness landscape related to
a general search space, which is a finite set.

Definition 4: Given a (1 + 1) elitist EA for maximizing
a function f (x), its time-fitness landscape is the set of pairs
(g(x), f (x)), where g(x) is the expected hitting time of the
(1+1) EA starting at x. The neighbor of x includes two points:
1) the point y1 such that g(y1) is the closest to g(x) from the
direction g(y) < g(x) and 2) the point y2 such that g(y2) is
the closest to g(x) from the direction g(y) > g(x).

The time-fitness landscape is completely different from tra-
ditional ones based on a distance. The former is related to a
(1+ 1) EA, but the latter usually not. Let us show the differ-
ence by unimodal functions. A function is called unimodal if
every nonoptimal point has a neighbor with a strictly better
fitness [17]. Traditionally the definition of the neighbor relies
on a distance. For example, if the search space is the set of
binary strings, the neighbor of a point x includes all points
y with Hamming distance 1 from x [17]. But such a defini-
tion is not applicable to a finite set because the distance is
unknown or not defined. Therefore for a general finite set,
unimodal functions are defined on the time-fitness landscape
instead [32].

Definition 5: Let S = {s0, s1, . . . , sK} and f a fitness func-
tion such that f (s0) > f (s1) > · · · > f (sK). Given a (1 + 1)

elitist EA to maximize a function f , f is called unimodal to
the (1+ 1) EA if g(1+1)(s1) < · · · < g(1+1)(sK).
A unimodal time-fitness landscape is visualized in Fig. 1.

According to [32], unimodal functions to a (1 + 1) elitist
EA are the easiest among all fitness functions with the same
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optimum at s0. Furthermore, according to [32], for any fitness
function f (x), we can construct a (1+1) elitist EA to which f
is the easiest (unimodal). Therefore, any fitness function can
be unimodal to a (1+ 1) elitist EA.

Here are two instances of unimodal functions. The two-max
function [32] below is unimodal under Hamming distance

f (x) = max{|x|, n− |x|}, x ∈ {0, 1}n (16)

where |x| denotes the number of 1-valued bits. It is unimodal
to the following (1+ 1) elitist EA with p = (1/n) [32].

1) Bitwise Mutation p: Flip each bit independently with
flipping probability p.

2) Elitist Selection: Select the best individual from �t∪�t.
The two needles in the haystack function [32] below is also

unimodal to the above (1 + 1) elitist EA with p = (1/2),
although it is regarded as a plateau function under Hamming
distance

f (x) =
{

1, if |x| = 0 or |x| = n;
0, otherwise.

(17)

IV. SCENARIO 1: USING THE POPULATION

CANNOT REDUCE HITTING TIME

A. Case Study 1: Two-Paths-I Functions

It is an intuitive belief that using a population will reduce
the number of generations to find an optimal solution. The
following case study shows this belief is not always true.

Before the case study, the concept of path [33] is revisited.
Given a (1+ 1) EA for maximizing f (x), a path is a sequence
of points {x0 → x1 → · · · → xk} such that P(xi−1, xi) > 0 for
i = 1, . . . , k. The path is denoted by path(x0, x1, . . . , xk). The
case study is about two-paths-I functions which are defined as
below.

Definition 6: Let S = {s0, s1, . . . , sK+L, sK+L+1}, where
L > K and f a fitness function such that

f (s0) > f (sK+1) > f (sK+2) > · · · > f (sK+L)

> f (s1) > f (s2) > · · · > f (sK) > f (sK+L+1). (18)

Given a (1 + 1) elitist EA to maximize a function f , f is
called a two-paths-I function to the (1 + 1) EA if there exist
two paths to the optimum: 1) path1(sK+L+1, sK, . . . , s1, s0) and
2) path2(sK+L+1, sK+L, . . . , sK+1, s0) such that:

1) for k = 1, . . . , K and k = K + 2, . . . , K + L, mutation
probabilities Pm(sk, sk−1) = 1;

2) for k = K + 1, mutation probability Pm(sk, s0) = 1;
3) for k = K + L+ 1, mutation probabilities P(sk, sK) = p

and Pm(sk, sK+L) = 1− p, where 0 < p < 1;
4) for any other i, j, Pm(si, sj) = 0.

Fig. 2 visualizes a two-paths-I time-fitness landscape.
Consider a (1 + λ) EA (where λ ≥ 2) for maximizing a

two-paths-I function.
1) Mutation: Mutation probabilities are identical to those

in the (1+ 1) EA. Generate λ children.
2) Elitist Selection: Select the best individual from �t∪�t.
The theorem below shows that using a population will

increase the expected hitting time if the EA starts at sK+L+1.
Proposition 1: Given the (1 + 1) elitist EA and a (1 + λ)

EA (where λ ≥ 2) for maximizing a two-paths-I function,

Fig. 2. Two-paths-I time-fitness landscape. The x-axis represents the expected
hitting time of the (1+ 1) EA. The y-axis is the fitness function.

let �
(1+1)
0 = �

(1+λ)
0 = sK+L+1, then PS(1+ λ | sK+L+1) < 1.

The scalability threshold is 2.
Proof: For the (1 + λ) EA, let its distance function

d(1+λ)(x) = g(1+1)(x).
Consider the pointwise drift at sK+L+1. There are two

potential events at SK+1+1.
1) The (1 + λ) EA moves from sK+L+1 to sK . This event

happens if and only if all children are sK . The probability
for the event happening is pλ.

2) The (1+λ) EA moves from sK+L+1 to sK+L. This event
happens if and only if at least one child is sK+L. The
probability for the event happening is 1− pλ.

We calculate the pointwise drift at sK+L+1 as follows:

�(1+λ)(sK+L+1) =
(
1− pλ

)(
g(1+1)(sK+L+1)− g(1+1)(sK+L)

)

+ pλ
(

g(1+1)(sK+L+1)− g(1+1)(sK)
)

= (
1− pλ

)
[1+ pK + (1− p)L− L]

+ pλ[1+ pK + (1− p)L− K]

= 1+ (
p− pλ

)
(K − L) < 1 (19)

[since L > K, p ∈ (0, 1) and λ ≥ 2].

For any other nonoptimal s ∈ {s1, . . . , sK+L}, we calcu-
late the pointwise drift �(1+λ)(Sk) = 1 from P(sk, sk−1) = 1
(except k = K + 1) and P(sK+1,0) = 1.

Since �
(1+λ)
0 = sK+L+1, average drift �̄

(1+λ)
0 < 1. For any

t ≥ 1, �
(1+λ)
t has left the point sK+L+1, then average drift

�̄
(1+λ)
t = 1. According to Theorem 8, we get that PS(1+ λ |

sK+L+1) < 1.
It is easy to understand the proposition. There are two paths

toward the optimum: short and long. If using a population, the
long path is more likely to be chosen than the short path. Then
the expected hitting time is increased.

Example 1: Consider an instance of two-paths-I functions.
Let x ∈ {0, 1}n and |x| denote its number of 1-valued bits

f (x) =
⎧
⎨

⎩

n, if |x| = 0 or |x| = n
−|x|, if |x| ≤ 2
|x|, otherwise.

(20)

There are two optima: |x| = 0, n. Let x0 be a string such
that |x0| = 2. It takes the minimum value of the fitness.
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TABLE I
EXPERIMENTAL RESULTS FOR EXAMPLE 1 AVERAGED OVER

1000 RUNS. n = 1000. THE EA STARTS AT x0 WITH |x0| = 2

A (1+ λ) EA uses adaptive mutation and elitist selection for
solving the above problem.

1) Adaptive Mutation: Adaptive Mutation: Flip one bit of
the binary string �t adaptively;

a) when t = 0, flip one of 1-valued bits with the
probability 0.5, otherwise flip one of 0-valued bits.
In this way, generate λ children as �0;

b) when t ≥ 1, if f (�t) > f (�t−1) and �t is gen-
erated by flipping a 0-valued bit (or 1-valued) in
�t−1, flip a 0-valued bit (or 1-value bit). Then
generate λ children as �t;

c) when t ≥ 1, if f (�t) = f (�t−1), either flip one
of 1-valued bits with probability 0.5 or flip one of
0-valued bits. Then generate λ children as �t.

2) Elitist Selection: Select the best individual from �t∪�t

as �t+1.
f is a unimodal function under Hamming distance but a

two-paths-I function (multimodal) to the (1 + 1) EA on the
time-fitness landscape. When the (1+ 1) EA starts at |x| = 2,
there are two paths toward the optima |x| = 0, n. The short
path is |x| = 2 → 1 → 0. The long path is |x| = 2 → 3 →
· · · → n. Table I shows that using a population increases the
expected hitting time.

B. Case Study 2: Unimodal Functions

This subsection presents another case study to show that
using a population can not reduce the expected hitting time.
The case study discusses a (μ+ 1) elitist EA (where μ ≥ 1)
with global mutation for maximizing any unimodal function.

1) Global Mutation: Choose one individual from �t at
random and generate a child by mutation. Mutation
probability Pm(si, sj) > 0 for any i and j.

2) Elitist Selection: If the child’s fitness is better than that
of one or more parents, then the child will replace one
of these parents at random.

The proposition below asserts that using a population
increases the expected hitting time of the (μ+ 1) EA.

Proposition 2: Given the (1 + 1) EA and a (μ + 1) EA
(where μ ≥ 2) for maximizing a unimodal function, for any
x ∈ {s2, . . . , sK}, let �

(1+1)
0 = x and �

(μ+1)
0 = (x, . . . , x),

then PS(μ+ 1 | x) < 1. The scalability threshold is 2.
Proof: For the (1+1) EA, choose g(1+1)(x) to be its distance

function. According to Theorem 1, the pointwise drift satisfies
�(1+1)(sk) = 1 for any sk ∈ {s1, . . . , sK}. Since selection is
elitist and the function is unimodal, we have

�(1+1)(sk) =
k−1∑

l=0

Pm(sk, sl)
(

g(1+1)(sk)− g(1+1)(sl)
)
= 1.

(21)

For the (μ+1) EA, define its distance function d(μ+1)(X) =
min{g(1+1)(x) : x ∈ X}.

Let X be a parent population: X = (s1(X), . . . , sμ(X)) ∈ Pnon
in which the best parent is sk. Let their child be sl. Since the
(μ+ 1) EA adopts elitist selection and the fitness function is
unimodal, the pointwise drift satisfies

�(μ+1)(X) =
k−1∑

l=0

Pm(X, sl)
(

g(1+1)(sk)− g(1+1)(sl)
)
. (22)

The probability of mutating a parent si(X) to the child sl

(where l < k) is Pm(si(X), sl). Since each parent is chosen for
mutation at random, we have

Pm(X, sl) = 1

μ

μ∑

i=1

Pm(si(X), sl).

Then we get

Pm(X, sl)
(

g(1+1)(sk)− g(1+1)(sl)
)

= 1

μ

μ∑

i=1

Pm(si(X), sl)
(

g(1+1)(sk)− g(1+1)(sl)
)
.

Since l < k ≤ i(X), according to the definition of unimodal
functions, we have

g(1+1)(sl) < g(1+1)(sk) ≤ g(1+1)(si(X))

and then

Pm(X, sl)
(

g(1+1)(sk)− g(1+1)(sl)
)

≤ 1

μ

μ∑

i=1

Pm(si(X), sl)
(

g(1+1)(si(X))− g(1+1)(sl)
)
.

The pointwise drift satisfies

�(μ+1)(X)

= 1

μ

μ∑

i=1

k−1∑

l=0

Pm(si(X), sl)
(

g(1+1)(sk)− g(1+1)(sl)
)

≤ 1

μ

μ∑

i=1

k−1∑

l=0

Pm(si(X), sl)
(

g(1+1)(si(X))− g(1+1)(sl)
)
.

(23)

1) Case 1: For all parents in X, si(X) = sk. According to
equality (21), we have

k−1∑

l=0

Pm(sk, sl)
(

g(1+1)(sk)− g(1+1)(sl)
)
= 1.

Then the pointwise drift satisfies

�(μ+1)(X) = 1

μ

μ∑

i=1

1 = 1. (24)

2) Case 2: For at least one parent in X, si(X) 
= sk. Since
sk is the best parent in X, the indexes satisfy i(X) > k.
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TABLE II
EXPERIMENTAL RESULTS FOR EXAMPLE 2 AVERAGED OVER

1000 RUNS. n = 200. THE EA STARTS AT x0 WITH |x0| = 100

Thanks to global mutation, we have Pm(si(X), sl) > 0 for
any i(X), and then

k−1∑

l=0

Pm(si(X), sl)
(

g(1+1)(si(X))− g(1+1)(sl)
)

<

i(X)−1∑

l=0

Pm(si(X), sl)
(

g(1+1)(si(X))− g(1+1)(sl)
)

= �(1+1)(si(X)) = 1. (25)

The last equality “=1” comes from equality (21). Then
the pointwise drift satisfies

�(μ+1)(X) <
1

μ

μ∑

i=1

1 = 1. (26)

Since �0 = (sk, . . . , sk), where k ≥ 2, the average drift
�̄

(μ+1)
0 = 1. When t = 1, the probability of �1 ∈ Pnon includ-

ing two different nonoptimal points is always greater than 0
due to global mutation. Thus the average drift �̄

(μ+1)
1 < 1.

When t ≥ 2, the average drift �̄
(μ+1)
t ≤ 1. According to

Theorem 8, we get PS(μ+ 1 | sk) < 1.
Here is an explanation of this proposition. For unimodal

functions, the higher the fitness of a point is, the closer to the
optimal set the point is (Fig. 1). Given a parent population in
the (μ+1) EA, a good strategy is to mutate the best parent in
the population. Unfortunately, a population may include some
parent which is worse than the best. If a worse parent is chosen
to mutate, it will increase he expected hitting time.

Example 2: Consider the two-max function [32]. Let x ∈
{0, 1}n and |x| denote the number of 1-valued bits

f (x) = max{|x|, n− |x|}. (27)

There are two optima: |x| = 0, n. A (μ+ 1) elitist EA is used
for solving the maximization problem.

1) Bitwise Mutation: Choose one individual from μ parents
at random. Flip each bit with a probability 1/n.

2) Elitist Selection: If the child’s fitness is better than that
of one or more parents, then the child will replace one
of these parents at random.

f is unimodal to the (1 + 1) EA [32]. Table II shows that
using a population increases the expected hitting time.

V. SCENARIO 2: USING THE POPULATION CAN REDUCE

HITTING TIME BUT NOT RUNNING TIME

A. Case Study 3: Unimodal Functions

Let us reinvestigate the intuitive belief that using a popu-
lation can reduce the expected hitting time of elitist EAs for
maximizing unimodal functions. Although this belief is not

true for the (μ+1) EA, it is still true for the (λ+λ) EA with
global mutation and elitist selection.

Consider a (λ + λ) EA (λ ≥ 1) using elitist selection and
global mutation for maximizing a unimodal function.

1) Global Mutation: Mutation probability Pm(si, sj) > 0
for any i, j. Each individual in �t generates a child.

2) Elitist Selection: Probabilistically select λ individuals
from �t ∪ �t, while the best individual is always
selected.

First we prove an inequality which will be used later.
Lemma 1: Given ai > 0, bi > 0, ci > 0, where i =

0, 1, . . . , k such that
∑j

i=0 ai >
∑j

i=0 bi, j = 0, . . . , k and
c0 > c1 > · · · > ck, it holds

∑k
i=0 aici >

∑k
i=0 bici.

Proof: From the conditions a0 + · · · + aj > b0 + · · · + bj

and c0 > c1 > · · · > ck, we have

k∑

i=0

(ai − bi)ci = (a0 − b0)c0 +
k∑

i=1

(ai − bi)ci

> (a0 − b0)c1 +
k∑

i=1

(ai − bi)ci

= (a0 − b0 + a1 − b0)c1 +
k∑

i=2

(ai − bi)ci

> (a0 − b0 + a1 − b1)c2 +
k∑

i=2

(ai − bi)ci

= (a0 − b0 + a1 − b0 + a2 − b2)c2

+
k∑

i=3

(ai − bi)ci.

By induction, we can prove that

k∑

i=0

(ai − bi)ci > (a0 − b0 + a1 − b1 + · · · + ak − bk)ck > 0.

This gives the desired result.
Proposition 3: Given the (1 + 1) elitist EA and a (λ + λ)

EA (where λ ≥ 2) using global mutation and elitist selection
for maximizing any unimodal function, let �

(1+1)
0 = x and

�
(λ+λ)
0 = (x, . . . , x), where x ∈ Pnon, then PS(λ+ λ | x) > 1.
Proof: For the (1+1) EA, choose g(1+1)(x) to be its distance

function. According to Theorem 1, the pointwise drift satisfies
�(1+1)(sk) = 1 for any sk ∈ Pnon. Since selection is elitist and
the function is unimodal, we have

�(1+1)(x) =
k−1∑

l=0

Pm(sk, sl)
(

g(1+1)(sk)− g(1+1)(sl)
)
= 1.

(28)

For a (λ+ λ) EA, define its distance function d(λ+λ)(X) =
min{g(1+1)(x) : x ∈ X}.

Let Pk denote the set of populations whose best individual
is sk (where k = 1, . . . , K). Provided that the parent population
is X ∈ Pk (where k > 0), the children population is Y and the
next generation population is Z ∈ Pl.
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Since the (μ+λ) EA adopts elitist selection and the fitness
function is unimodal, the pointwise drift satisfies

�(μ+λ)(X) =
k−1∑

l=0

∑

Z∈Pl

P(X, Z)
(

g(1+1)(sk)− g(1+1)(sl)
)
.

(29)

Given any m < k, the children population Y and next gen-
eration population enter in the union P0∪P1∪· · ·∪Pm if and
only if one or more parents in X is mutated into an child in
the set {s0, . . . , sm}. Thanks to global mutation and population
size λ ≥ 2, this probability is strictly larger than that of only
one parent sk being mutated into the set {s0, . . . , sm}

m∑

l=0

∑

Z∈Pl

P(X, Z) >

m∑

l=0

P(sk, sl).

Since the fitness function is unimodal, we have

g(1+1)(sk)− g(1+1)(s0) > g(1+1)(sk)− g(1+1)(s1)

> · · · > g(1+1)(sk)− g(1+1)(sk−1).

Using Lemma 1 (let al =∑
Z∈Pl

P(X, Z), bl = P(sk, sl) and
cl = g(1+1)(sk)− g(1+1)(sl)), we get

�(λ+λ)(X) =
k−1∑

l=0

∑

Z∈Pl

P(X, Z)
(

g(1+1)(sk)− g(1+1)(sl)
)

>

k−1∑

l=0

P(sk, sl)
(

g(1+1)(sk)− g(1+1)(sl)
)

= �(1+1)(sk) = 1.

Then we have �(λ+λ)(X) > 1. Since �0 ∈ Pnon, we have for
any t ≥ 0, the average drift �̄

(λ+λ)
t > 1. Applying Theorem 9,

we get PS(λ+ λ) > 1.
Here is an explanation of the proposition. For unimodal

functions, the higher the fitness of a point is, the closer to the
optimal set the point is. The probability of the (λ + λ) EA
(where λ ≥ 2) to generate a better individual is strictly larger
than that of the (1+ 1) EA. Thus the expected hitting time is
shortened.

B. Case Study 4: Unimodal Functions

It is an intuitive belief that using a population can not reduce
the expected running time of elitist EAs for maximizing uni-
modal functions. The proposition below asserts this is true for
unimodal functions on the time-fitness landscape.

Consider a (μ+ λ) elitist EA.
1) Mutation: Select λ individuals in �t and mutate them.

Then generate a children population consisting of λ

individuals.
2) Elitist Selection: First select one individual with the

highest fitness in �t ∪ �t; and then probabilistically
select μ− 1 individuals from �t ∪�t.

Proposition 4: Given the (1+1) elitist EA and a (μ+λ) EA
(where μ ≥ 2 or λ ≥ 2) for maximizing a unimodal function,
let �

(1+1)
0 = x and �

(μ+λ)
0 = (x, . . . , x) where x ∈ Pnon, then

PS(μ+ λ | x) ≤ λ and if λ ≥ 2, PS(μ+ λ | x) < λ.

Proof: It is sufficient to consider the case of λ > 1.
The analysis of the (μ + 1) EA is almost the same as that
of Proposition 2, except two places: 1) without the global
mutation condition, inequality (25) is changed from < to ≤
and 2) the conclusion is changed from PS(μ + 1) < 1 to
PS(μ+ 1) ≤ 1.

For the (1 + 1) EA, choose g(1+1)(x) to be its distance
function. According to Theorem 1, for any sk ∈ {s1, . . . , sK},
the pointwise drift satisfies �(1+1)(sk) = 1. Since selection is
elitist and the function is unimodal, we have

�(1+1)(sk) =
k−1∑

l=0

Pm(sk, sl)
(

g(1+1)(sk)− g(1+1)(sl)
)
= 1.

(30)

For the (μ+ λ) EA, where λ ≥ 2, let its distance function
d(μ+λ)(X) = min{g(1+1)(x) : x ∈ X}.

Let Pk denote the set of populations whose best individual is
sk (where k = 0, 1, . . . , K). Provided that the parent population
is X ∈ Pk (where k > 0), the children population is Y and the
next generation population is Z ∈ Pl.

Since the (μ+λ) EA adopts elitist selection and the fitness
function is unimodal, the pointwise drift satisfies

�(μ+λ)(X) =
k−1∑

l=0

∑

Z∈Pl

P(X, Z)
(

g(1+1)(sk)− g(1+1)(sl)
)

=
k−1∑

l=0

∑

Y∈Pl

Pm(X, Y)
(

g(1+1)(sk)− g(1+1)(sl)
)
.

(31)

Denote the children population Y by (s1(Y), . . . , sλ(Y)). Let
(s1(X), . . . , sλ(X)) be the parents from which Y are mutated.
Children Y ∈ Pl (where l < k) only if one or more parents
is muted into sl. The probability of mutating si(X) to sl is
Pm(si(X), sl). Since each parent is mutated independently, the
probability of one or more parents is muted into sl is not more
than the sum of each parents is mutated into sl. Then we have

∑

Y∈Pl

Pm(X, Y)
(

g(1+1)(sk)− g(1+1)(sl)
)

≤
λ∑

i=1

Pm(si(X), sl)
(

g(1+1)(sk)− g(1+1)(sl)
)
. (32)

The above inequality is strict if X = (sk, . . . , sk).
Since l < k ≤ i(X), we have

g(1+1)(sl) < g(1+1)(sk) ≤ g(1+1)(si(X))

and then
∑

Y∈Pl

Pm(X, Y)
(

g(1+1)(sk)− g(1+1)(sl)
)

≤
λ∑

i=1

Pm(si(X), sl)
(

g(1+1)(si(X))− g(1+1)(sl)
)
.
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TABLE III
EXPERIMENTAL RESULTS FOR EXAMPLE 3 AVERAGED OVER 1000 RUNS.

n = 200. THE EA STARTS AT x0 WITH |x0| = 100

Inserting the above inequality into equality (31), we get

�(μ+λ)(X)

≤
k−1∑

l=0

λ∑

i=1

Pm(si(X), sl)
(

g(1+1)(si(X))− g(1+1)(sl)
)

=
λ∑

i=1

k−1∑

l=0

Pm(si(X), sl)
(

g(1+1)(si(X))− g(1+1)(sl)
)
. (33)

Since sk is the best parent in X, we have for i = 1, . . . , λ,
the indexes satisfy i(X) ≥ k. Then

k−1∑

l=0

Pm(si(X), sl)
(

g(1+1)(si(X))− g(1+1)(sl)
)

≤
i(X)−1∑

l=0

Pm(si(X), sl)
(

g(1+1)(si(X))− g(1+1)(sl)
)
= 1.

The drift satisfies

�(μ+λ)(X) ≤
λ∑

i=1

1 = λ.

The above inequality is strict if X = (sk, . . . , sk).
Since �0 = (sk, . . . , sk) for some k ≥ 1, the average drift

�̄
(μ+λ)
0 < 1. When t ≥ 1, the average drift �̄

(μ+λ)
t ≤ 1.

Applying Theorem 8, we obtain PS(μ+ λ) < λ.
The explanation of the proposition is simple. For unimodal

functions, the higher the fitness of a point is, the closer to the
optimal set the point is. The probability of the (μ + λ) EA
to generate a better individual is not more than λ times that
of the (1 + 1) EA. Thus the expected hitting time cannot be
shortened by 1/λ.

Example 3: Consider the two-max function [32], where
x ∈ {0, 1}n

f (x) = max{|x|, n− |x|}. (34)

A (1+ λ) EA (where λ ≥ 1) with elitist selection and bitwise
mutation is used for maximizing the function.

1) Bitwise Mutation: Flip each bit with a probability 1/n.
Then generates λ children.

2) Elitist Selection: Select the best individual from �t∪�t.
Table III shows that using a population reduces the expected

hitting time, but increases the expected running time.
Let us apply Proposition 4 to a special instance: the (1+λ)

EA (using bitwise mutation and elitist selection) for maximiz-
ing the one-max function. According to Proposition 4, using
a population will increase the running time. The population
threshold is 2. This conclusion is more accurate that in [8].
The result in [8] asserts that the expected running time of the
(1 + λ) EA is in the same order of that of the (1 + 1) EA

Fig. 3. Two-paths-II time-fitness landscape. The x-axis represents the
expected hitting time of the (1+ 1) EA. The y-axis is the fitness function.

by a constant factor when λ is smaller than the cut-off point.
The constant could be = 1, > 1 or < 1. But the two results
are not contrary. Our result indicates that the constant factor
is strictly less than 1 when λ ≥ 2.

VI. SCENARIO 3: USING THE POPULATION

CAN REDUCE RUNNING TIME

A. Case Study 5: Two-Paths-II Functions

In the previous section, it has been proven that using a pop-
ulation cannot reduce the expected running time of an EA for
maximizing any unimodal function on the time-fitness land-
scape. But this intuitive belief is not true in terms of the
distance-based fitness landscape. It is demonstrated by the
following case study of two-paths-II functions.

Definition 7: Let S = {s0, s1, . . . , sK+L, sK+L+1}, where
L < K and f a fitness function such that

f (s0) > f (sK+1) > f (sK+2) > · · · > f (sK+L)

> f (s1) > f (s2) > · · · > f (sK) > f (sK+L+1). (35)

Given a (1 + 1) elitist EA to maximize f , f is called a
two-paths-II function to the (1 + 1) EA if there exist two
paths to the optimum: 1) path1(sK+L+1, sK, . . . , s1, s0) and
2) path2(sK+L+1, sK+L, . . . , sK+1, s0) such that:

1) for k = 1, . . . , K and k = K + 2, . . . , K + L, mutation
probabilities Pm(sk, sk−1) = 1;

2) for k = K + 1, mutation probability Pm(sk, s0) = 1;
3) for k = K + L+ 1, mutation probabilities P(sk, sK) = p

and Pm(sk, sK+L) = 1− p where 0 < p < 1;
4) for any other i, j, Pm(si, sj) = 0.

Fig. 3 visualizes the a two-paths-II time-fitness landscape.
Consider a (1+ λ) EA, where λ ≥ 2.
1) Mutation: Mutation probabilities are identical to those

in the (1+ 1) EA in the above definition.
2) Elitist Selection: Select the best individual from �t∪�t.
Under certain condition, using a population may reduce the

expected hitting time.
Proposition 5: Given the (1 + 1) EA and a (1 + λ) EA

(where λ ≥ 2) for maximizing a two-paths-II function, let
�

(1+1)
0 = sK+L+1 and �

(1+λ)
0 = sK+L+1, if the population

size satisfies λ < λ∗ where λ∗ is given by

λ∗ = 1+ (
p− λpλ

)K − L

L+ 1
(36)
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then PS(1+ λ | sK+L+1) > λ. The scalability threshold is not
less than λ∗.

Proof: For the (1 + λ) EA, define its distance function as
follows:

d(1+λ)(x) =
⎧
⎨

⎩

0, if x = s0

g(1+1)(sK+L+1), if x = sK+L+1

λg(1+1)(x), otherwise.
(37)

Consider the pointwise drift at sK+L+1. There are two
potential events.

1) The (1 + λ) EA moves from sK+L+1 to sK . This event
happens if and only if all mutated children are sK . The
probability for the event happening is pλ.

2) The (1+λ) EA moves from sK+L+1 to sK+L. This event
happens if and only if at least one mutated child is sK+L.
The probability for the event happening is 1− pλ.

Calculate the pointwise drift at sK+L+1 as follows:

�(1+λ)(sK+L+1)

= (
1− pλ

)(
g(1+1)(sK+L+1)− λg(1+1)(sK+L)

)

+ pλ
(

g(1+1)(sK+L+1)− λg(1+1)(sK)
)

= (
1− pλ

)
[1+ pK + (1− p)L− λL]

+ pλ[1+ pK + (1− p)L− λK]

= 1+ pK + (1− p)L− λL+ pλλL− pλλK

= 1+ (
p− pλλ

)
(K − L)+ L(1− λ)

> λ
(
use λ < λ∗ and (36)

)
. (38)

Calculate the pointwise drift at s ∈ {s1, . . . , sK+L}
�(1+λ)(s) =

∑

s′∈S

[
λg(1+1)(s)− λg(1+1)

(
s′
)]

= �(1+1)(s) = λ.

Since �0 = sK+L+1, the average drift �̄
(1+λ)
0 > λ. For any

t ≥ 1, �
(1+λ)
t has left the point sK+L+1, then average drift

�̄
(1+λ)
t = λ. According to Theorem 9, we get that PS(1+ λ |

sK+L+1) > λ.
It is easy to understand the proposition. There are two paths

to the optimum: short and long. Using a lager population, the
short path is more likely to be chosen than the long path. Thus
the expected hitting time is reduced.

Example 4: Consider an instance of two-paths-II functions.
Let x ∈ {0, 1}n and |x| denote its number of 1-valued bits

f (x) =
⎧
⎨

⎩

n, if |x| = 0 or |x| = n
−|x|, if |x| ≤ n− 2
|x|, otherwise.

(39)

The (1 + λ) EA is the same as that in Example 1 in
Section IV-A. Table IV shows that using a population reduces
the expected running time.

f is a unimodal function under Hamming distance but a
two-path-II function (multimodal) to the (1 + 1) EA on the
time-fitness landscape. When the (1 + 1) EA starts at |x| =
n − 2, there are two paths toward the optima |x| = 0, n. The
long path is |x| = n− 2→ n− 3→ · · · → 0. The short path
is |x| = n− 2→ n− 1→ n. This example shows that using
a population shortens the expected running time of an EA

TABLE IV
EXPERIMENTAL RESULTS FOR EXAMPLE 4 AVERAGED OVER 1000 RUNS.

n = 1000. THE EA STARTS AT x0 WITH |x0| = 998

Fig. 4. Deceptive-like time-fitness landscape. The x-axis is the expected
hitting time of the (1+ 1) EA. The y-axis is the fitness function.

on a unimodal function in terms of the distance-based fitness
landscape. It does not contradict Proposition 4, which holds
for any unimodal functions on the time-fitness functions.

B. Case Study 6: Deceptive-Like Functions

It is an intuitive belief that using a population may shorten
the runtime of EAs on deceptive functions. This was proven
for an elitist EA on a deceptive function under Hamming dis-
tance [7]. In this case study, the conclusion is generalized to
deceptive-like functions in any finite set. Deceptive functions
and deceptive-like functions are defined on the time-fitness
landscape [32].

Definition 8: Let S = {s0, s1, . . . , sK} and f a fitness func-
tion such that f (s0) > f (sK) > · · · > f (s1). Given a (1 + 1)

elitist EA to maximize f , f is called deceptive to the (1+ 1)

EA if g(1+1)(sK) > · · · > g(1+1)(s1).
According to [32], deceptive functions to a (1 + 1) elitist

EA are the hardest among all fitness functions with the same
optimum at s0. Furthermore, according to [32], for any fitness
function f (x), we can construct a (1+ 1) elitist EA to which
f is the hardest (deceptive).

Definition 9: Let S = {s0, s1, . . . , sK} and f a fitness
function such that

f (s0) > f (sK) > max{f (s1), . . . , f (sK−1)}. (40)

Given a (1+1) elitist EA to maximize f , f is called deceptive-
like to the (1 + 1) EA if g(1+1)(sK) > g(1+1)(sk) for any
k < K.

A deceptive-like time-fitness landscape is visualized in
Fig. 4. Deceptive functions belong to deceptive-like functions.

Given a fitness function f (x), consider an elitist (1+1) uses
global mutation for maximizing f (x).

1) Global Mutation: Mutation probability Pm(si, sj) > 0 for
any i, j and mutation probability Pm(si, s0) > Pm(sK, s0)

for any i < K.
2) Elitist Selection: Select the best from �t ∪�t.
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The fitness function f is deceptive-like to the (1 + 1)

EA because g(1+1)(sK) > g(1+1)(si) for any i < K. This
can be proven by pointwise drift analysis. Let the distance
function to be d(1+1)(s) = g(1+1)(sK) for s ∈ {s1, . . . , sK}
and d(1+1)(s) = 0 for s = s0. The pointwise drift satis-
fies �(1+1)(s) = 1 for s = sK and �(1+1)(si) > 1 for
si ∈ {s1, . . . , sK−1} due to Pm(si, s0) > Pm(sK, s0). Hence
g(1+1)(sK) > g(1+1)(si) (deceptive-like).

Consider a (λ+λ) EA (where λ ≥ 2) using global mutation
and elitist selection with fitness diversity for maximizing f (x).

1) Global Mutation: The same as that in the (1+ 1) EA.
2) Elitist Selection With Fitness Diversity:

a) if all individuals in �t ∪�t have the same fitness,
then choose λ individuals at random;

b) otherwise, first select one individual with the high-
est fitness from �t ∪ �t and then select one
individual with a lower higher fitness. Thereafter
select λ − 2 individuals from �t ∪ �t using any
selection scheme.

We will show that the running time of the (λ + λ) EA
(where λ ≥ 2) is shorter than that of the (1 + 1) EA. Before
the theorem and its proof, the following notation is introduced:

SK
def= {x ∈ S; f (x) < f (sK)} (41)

PK
def= {X ∈ P; f (x) < f (sK) for any x ∈ X} (42)

Pm(x,SK)
def=

∑

y∈SK

Pm(x, y) (43)

Pm(X,PK)
def=

∑

x∈X

Pm(x,SK). (44)

Proposition 6: Given the (1 + 1) elitist EA and a (λ + λ)

EA (where λ ≥ 2) for maximizing any deceptive-like function,
if the population size satisfies λ < λ∗ where λ∗ is given by

λ∗ = Pm(sK,SK) min0<i<K Pm(si, s0)

(Pm(sK,SK)+min0<i<k Pm(si, s0))Pm(sK, s0)
(45)

then PS(λ+ λ | sK) > λ. The scalability threshold is not less
than λ∗.

Proof: For the (λ+λ) EA, given a population X, let f (X) =
max{ f (x); x ∈ X} the maximal fitness of its individuals. Define
the distance as follows:

d(λ+λ)(X) =
⎧
⎨

⎩

d0 = 0, if f (X) = f (s0)

dK = g(1)(sK), if f (X) = f (sK)

dK = λ
min0<i<K Pm(si,s0)

, if f (X) < f (sK).

(46)

We calculate the pointwise drift at X = (sK, . . . , sK)

�(λ+λ)(sK, . . . , sK)

= P(X,Popt)(dK − d0)+ P
(
X,PK

)(
dK − dK

)

> P(X,Popt)
(
dK − dK

)+ P
(
X,PK

)(
dK − dK

)

= (
P(X,Popt)+ P

(
X,PK

))(
dK − dK

)

> Pm(sK,SK)
(
dK − dK

)

= Pm
(
sK,SK

)( 1

Pm(sK, s0)
− λ

min0<i<K Pm(si, s0)

)

> λ
[
use λ < λ∗ and (45)

]
. (47)

TABLE V
EXPERIMENTAL RESULTS FOR EXAMPLE 5 AVERAGED OVER 1000 RUNS.

n = 10. THE EA STARTS AT x0 WITH |x0| = 5

Calculate the pointwise drift at any X ∈ Pnon in which at least
one of its individuals is not sK

�(λ+λ)(X) = P(X,Popt)(dK − d0)

≥ λ maxx∈X Pm(x, s0)

min0<i<k Pm(si, s0)
≥ λ. (48)

Since �
(λ+λ)
0 = (sK, . . . , sK), from (47) we have the aver-

age drift �̄
(λ+λ)
0 > λ. For any t ≥ 1, we know, �̄

(λ+λ)
t ≥ λ.

According to Theorem 9, we have PS(λ+ λ | sK) > λ.
The proposition can be explained as follows. In the (1+ 1)

algorithm, elitist selection cannot accept an worse solution,
which is a bad strategy for deceptive-like functions. But in the
population-based EA, selection with the fitness diversity can
accept a worse solution. This helps the EA find the optimum
more quickly.

Example 5: Consider an instance of deceptive functions.
Let x ∈ {0, 1}n and |x| denote its number of 1-valued bits

f (x) =
{

n, if |x| = 0 or |x| = n
min{|x|, n− |x|}, otherwise.

(49)

There are two optima: |x| = 0, n. Consider a (λ+λ) EA using
elitist selection and bitwise mutation.

1) Bitwise Mutation: Flip each bit with probability 1/n.
Each parent generates one child.

2) Elitist Selection + Random Selection: Select one indi-
vidual with the highest fitness from �t ∪ �t and then
select λ− 1 individuals from �t ∪�t at random.

According to [32], f (x) is a deceptive function to the
(1 + 1) EA. Table V shows that using a population reduced
the expected running time.

VII. DISCUSSION (CASE STUDY 7)

It must be pointed out that population scalability depends on
the benchmark EA. Let us show this through a simple instance
of deceptive functions. Let x ∈ {0, 1}2 be a binary string with
length 2. The fitness function is given by

f (x) =
{

3, if |x| = 0
|x|, if |x| = 1, 2.

(50)

If the benchmark (1+1) EA is changed from elitist selection
to random selection, then using a population cannot shorten
the running time any more.

1) Bitwise Mutation: Flip each bit with probability 1/n.
2) Random Selection: Select one individual from �t ∪ �t

at random.
Let 0, 1, and 2 represent the points |x| = 0, 1, 2, respec-

tively. Transition probabilities of the (1 + 1) EA among
nonoptimal points are given in Table VI.
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TABLE VI
TRANSITION PROBABILITIES AMONG NONOPTIMAL POINTS

TABLE VII
TRANSITION PROBABILITIES AMONG NONOPTIMAL POINTS

According to Theorem 1, the expected hitting time of the
(1+ 1) EA satisfies a linear equation system

{ 3
8 g(1+1)(1)− 1

8 g(1+1)(2) = 1
− 1

4 g(1+1)(1)+ 2
4 g(1+1)(2) = 1.

(51)

Solving the equations, we get the expected hitting time as
follows:

g(1+1)(1) = g(1+1)(2) = 4. (52)

Starting from any nonoptimal point, the expected running time
of the (1+ 1) EA is 4.

Now we consider a simple (2+ 2) EA which runs the two
copies of the above (1+1) EA independently. Let (i, j) repre-
sent the population (x1, x2) such that |x1| = i, |x2| = j where
i, j = 0, 1, 2. Transition probabilities of the (2+2) EA among
nonoptimal points are given in Table VII.

According to Theorem 1, the expected hitting time of the
(2+ 2) EA satisfies a linear equation system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

39
64 g(2+2)(1, 1)− 5

64 g(2+2)(1, 2)

− 5
64 g(2+2)(2, 1)− 1

64 g(2+2)(2, 2) = 1

− 5
32 g(2+2)(1, 1)+ 22

32 g(2+2)(1, 2)

− 1
32 g(2+2)(2, 1)− 2

32 g(2+2)(2, 2) = 1

− 5
32 g(2+2)(1, 1)− 1

32 g(2+2)(1, 2)

+ 22
32 g(2+2)(2, 1)− 2

32 g(2+2)(2, 2) = 1

− 1
16 g(2+2)(1, 1)− 2

16 g(2+2)(1, 2)

− 2
16 g(2+2)(2, 1)+ 12

16 g(2+2)(2, 2) = 1.

(53)

Solving the equations, we get the expected hitting time as
follows:

g(2+2)(1, 1) = g(2+2)(1, 2) = g(2+2)(2, 1)

= g(2+2)(2, 2) = 16

7
. (54)

Staring from any nonoptimal point, the expected running
time of the (2 + 2) EA is 2 × 16/7 = 32/7 ≥ 4. Therefore
using a population does not shorten the expected running time

on the deceptive function if the EA uses random selection. The
reason is simple: the (1 + 1) EA with random selection can
accept a worse solution. This is a good strategy for deceptive
functions. Hence using a population does not help too much.

VIII. CONCLUSION

This paper proposes population scalability for studying how
population-size affects the computation time of population-
based EAs. Population scalability is the ratio of the expected
hitting time between a benchmark EA and an EA using a
larger population size. Average drift analysis is presented as a
tool of comparing the expected hitting time of two EAs and
estimating lower and upper bounds on population scalability.

Our results can be regarded as a rigorous analysis of several
intuitive beliefs.

1) “Using a population may reduce the expected hitting
time of an EA to find an optimal point.” This belief is
not always true. Two counter-examples are given, which
are a (1+λ) EA on two-paths-II functions and a (μ+1)

EA on unimodal functions.
2) “Using a population cannot shorten the expected running

time of an elitist EA on unimodal functions.” This belief
is always true for any (μ+λ) EAs with elitist selection
on unimodal functions on the time-fitness landscape, but
not always true in terms of the distance-based fitness
landscape.

3) “Using a population can reduce the expected running
time of an EA on deceptive functions.” This belief is
true under conditions. It is true for a (λ+ λ) EA if the
benchmark (1+1) EA uses elitist selection, but not true
if the benchmark EA uses random selection.

More generally, for any fitness function f , there exist “good”
(1+ 1) elitist EAs to which f is unimodal [32]. Thus using a
population is useless if a function is unimodal to the bench-
mark EA (or the benchmark EA is “good” to the function). In
contrast, for any fitness function f , there exist “bad” (1 + 1)

elitist EAs to which f is deceptive [32]. Thus using a popula-
tion may be useful if a function is deceptive to the benchmark
EA (or the benchmark EA is “bad” to the function).

There still exist many open questions. For example, how to
estimate the scalability threshold? How to analyze population
scalability of EAs with crossover? What are practical crite-
ria for judging population scalability? What is the optimal
population size that maximizes population scalability?
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