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Review Article 

Nanoparticle impacts in innovative electrochemistry 

Laura K. Allerston 

1 and Neil V. Rees 

2 , ∗

Recent developments in the use of nanoimpacts as an 
investigative electrochemical technique are discussed. 
Highlights include literature on the imaging of nanoimpacts 
themselves and developments in the application of 
nanoimpacts such as, surface analysis of single particles 
including surface coverage and sizing. Also included are 
factors to consider which may affect the outcome of 
nanoimpact experiments. 
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Introduction 

The nanoimpact method provides analysis of single par-
ticles by detecting transient current peaks which are pro-
duced when solution-borne nanoparticles come into con-
tact with an electrode which is held at a suitable electri-
cal potential to either: (i) cause direct oxidation/reduction
of the nanoparticle, or (ii) cause the oxidation/reduction
of an electroactive solution species at the surface of the
nanoparticle. The initial observation of the nanoimpact
phenomenon was made by Micka in the 1950s [1] , and
revived by Heyrovsky et al. in 1995 [2–5] , and again by
Bard and Xiao in 2007 [6] . Following this, extensive re-
search has been conducted in the rapidly expanding field.
This review will discuss recent advances in the technique
since 2015, and the interested reader is directed to several
reviews covering the pre-2015 period [7–9] . 
www.sciencedirect.com 
Imaging 

Electrochemical interfaces are challenging to study at the
nanoscale although imaging of these surfaces can pro-
vide significant insight into their nature. AFM has re-
cently been used to confirm the number of Pt nanopar-
ticles (NPs) observed experimentally on an Au micro-
electrode and the number of collisions that resulted in
their adsorption [10 

•] . These NPs were then investigated
using hydrazine oxidation via electrocatalytic amplifica-
tion: the AFM results combined with TEM and dynamic
light scattering (DLS) showed that each individual ad-
sorbed particle on the ultramicroelectrode (UME) was
electrochemically active [10 

•] . The success of collisions
should be viewed in the light of evidence that Ag NPs
have been used to show that particles can collide more
than once, causing multiple peaks in a chronoamperogram
[11–13 

••] . Fluorescence imaging has also been utilised to
capture impacts using a nanocell, where a Pt NP was de-
posited at the tip of a quartz bipolar nanoelectrode [14 

•] .
The nanocell provides a small area for Ag NPs to col-
lide with the Pt NPs and be oxidised, allowing the pro-
cess to be analysed in a 1D space with single particle
fluorescence microscopy [14 

•] . Optical imaging has also
been used to monitor agglomeration of Ag NPs in solu-
tion [15] . Brasiliense et al. [15] combined holographic mi-
croscopy with impacts to investigate NP agglomeration
and their resulting current impact response. Figure 1 b be-
low shows how optical imaging allows the agglomeration
of the nanoparticles to be seen which cannot easily be de-
tected electrochemically. When the agglomerate reached
the UME it was only partially oxidised (confirmed both
by the charge and optical images) which suggests that
agglomerates may not behave electrochemically as larger
particles [15] . 

Soft particles (enzymes and DNA) 
Biosensing could also be an important application for
nanoimpacts; having already been used as a technique for
DNA analysis [16,17] . Early nanoimpact work reported
that DNA immobilised on Pt NPs detected far fewer im-
pacts than expected [17] , but by adding an enzyme to the
solution, a small part of the DNA is removed, resulting in
more charge peaks, of around half of the expected maxi-
mum peak current (see Figure 2 [18 

•] ). 

Chan et al. [19] used impacts to characterise novel indi-
vidual silicon nanoparticle–enzyme hybrids which can be
used in areas such as the synthesis of new biocatalysts
and drugs. Their experiment used a chronoamperometric
measurement at a potential where oxygen is produced by
a hybrid and compared this to unmodified SiNPs. When
Current Opinion in Electrochemistry 2018, 10 :31–36 
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Figure 1 

(a) AFM image of UME after NP impacts [10 •] . Reprinted with 
permission from Ref. [10 •] . Copyright (2017) American Chemical 
Society. (b) Correlated EC and optical signals for Ag NP agglomeration 
formation followed by oxidation when adsorbed onto the UME [15] . 
Reprinted with permission from Ref. [15] . Copyright (2016) American 
Chemical Society. (c) Fluorescence images of a single NP at different 
times interacting with Pt electrode in the nanocell [14 •] . Reprinted with 
permission from Ref. [14 •] . Copyright (2017) American Chemical 
Society. 

i
i
h  

p  

h
d  

a
s

N
s
t
e
o
w
e  

m
s
f
d
r  

t  

d

N
P  

i

Figure 2 

Scheme illustrating how electrocatalytic amplification occurs both with 
and without the studied enzyme. Adapted from Ref. [18 •] . Published by 
the Royal Society of Chemistry. 
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n close proximity to the electrode, the hydrogen perox- 
de was decomposed back to oxygen by the SiNP/catalase 

ybrid. As oxygen production of a single hybrid is directly
roportional to the amplitude of the peak, the coverage of
ybrids over the electrode could be calculated. However 
ue to irreversible adsorption of the hybrids to the glass
round the microelectrode used, the frequency of current 
pikes was less than theoretically calculated [19] . 

anoimpacts have been reported to be able to explore 

ingle enzyme catalytic activity, which has the potential 
o better understand enzyme mechanisms [20,21] . Shleev 

t al. [22] used nanoimpacts resulting from reduction of 
xygen by the enzyme laccase, chosen for its relatively 

ell understood structure and because it allows direct 
lectron transfer between its active site and a gold ultra-
icroelectrode. This direct electron transfer can be mea- 

ured via nanoimpacts to monitor the current produced 

rom a single enzyme redox reaction, the current pro- 
uced is amplified because of the enzymes high turnover 
ate (k cat ) [23] . Han et al. [20] used modified nanoelec-
rodes to achieve a staircase current response from the re-
uction of hydroperoxide with horseradish peroxidase. 

ovel applications 

russian blue, known for its stable and reversible K 

+ -
nsertion electrochemistry, was studied at both the single 
urrent Opinion in Electrochemistry 2018, 10 :31–36 
anoparticle, and the ensemble level. Impacts were used 

t the single NP level to allow analysis unaffected by ad-
itives and binders [24] . At this level only K 

+ de-insertion
ccurred which was related to the electrostatic charge be-
ween the particle and the electrode surface. These re-
ults demonstrated how nanoimpacts can be of use to test
he intrinsic electrochemical behaviour without the in- 
uence of additives and binders. Single fusion events at
olarized liquid–liquid interfaces have also been studied,
hese events are common in biology [25] . Four different
cenarios which can occur upon fusion at an interface be-
ween two immiscible electrolyte solutions (ITIES) and 

anoimpacts were used to detect an ionic probe which
s released upon collision with the interface as well as
www.sciencedirect.com 
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Figure 3 

Depiction of Pt NPs collision detected at the ITLES through catalytic 
ORR [26] © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

PHQ adsorption isotherm for GNPs in solution annotated with the PHQ 

orientation of each concentration. Reproduced from Ref. [30] with 
permission from the PCCP Owner Societies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

determination of their ionic content and sizing of the par-
ticles [25] . The ITIES has also been used to study Pt NP
impacts [26] . For the first time metal impacts at a ITIES
have been detected by the catalytic ORR of Pt NPs in wa-
ter when they meet the interface of 1,2-dichloroethane
as shown in Figure 3 [26] . The resulting current spikes
showed rolling/bounding of the NPs indicating deactiva-
tion followed by reactivation without overall catalytic ac-
tivity loss of the NPs [26] . Other interfaces have also been
analysed, such as water droplets in oil [27] . The droplets
were tagged with potassium ferrocyanide to allow oxida-
tion of the droplets, peaks created by the oxidation of
the ferrocyanide allowed the mean radius of the water
droplets to be found [27] . 

Graphene nanoplatelets (GNPs) have improved stability
over graphene, and so were used by Wu et al. [28] to be
tagged with individual ferrocene derivatives: nanoimpacts
were then used to analyse the coverage of the ferrocene
on the GNP. Chen et al. [29] extended the use of GNP
impacts by measuring the kinetics of the adsorption and
desorption of catechol from the GNPs. The GNPs were
tagged with catechol allowing analysis of its oxidation and
the surface coverage to be found. The kinetics of the
adsorption were found via electrochemical and spectro-
scopic methods but the desorption process was assessed
by analysing nanoimpacts with two different amounts of
catechol at different potentials from 0.2 to 1.2 V. The av-
erage charge per spike decreased with time, as this is
www.sciencedirect.com 
proportional to the adsorbed catechol, the rate constant
was found. Further research investigated the adsorption
of phenyl hydroquinone (PHQ) on GNPs finding three
different orientations of PHQ [30] . The orientation of the
PHQ was found from analysing the peaks to find the sur-
face coverage. With increasing concentration it was found
to move from flat to edgewise and then edgewise to end-
wise orientation, this can be seen in Figure 4 [30] below.
At higher concentrations of PHQ the excess modifier re-
quired causes too high a background current for spikes to
be detected. Adsorption has also been quantified on single
insulating particles. Catechol, anthraquinone, p-chloranil
and the ferrocene moiety of poly(vinylferrocene) were ad-
sorbed on alumina and the surface coverages and charge
diffusion coefficients were found for each. The technique
employed both modelling and experimental methods to
deduce the monolayer adsorption of these species onto
single particles [31] . 

Nanoparticle porosity has recently been explored using
nanoimpacts by tagging Pt NPs on carbon electrodes with
4-nitrobenzenethiol (NTP) [32] . NTP is reduced and the
charge of each averaged, to give the number of NTPs,
from this the Pt active surface can be found. This was
related to two different models, (fully solid and porous
NPs) which allows the porosity to be revealed [32] . Jiao
et al. [33 

•] looked at the direct oxidation of Pt nanoclus-
ters when in contact with the microelectrode, assessing
the amount of Pt NPs seeing the electrolyte in the cluster
by analysing the nanoimpacts at different potentials and
combining these results with XPS. The results showed
good correlation and both studies suggest a porous Pt
Current Opinion in Electrochemistry 2018, 10 :31–36 
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P cluster [32,33 

•] . The current detected on a collector
lectrode can arise from the surface oxidation of an at-
ached Au NP [34] . The surface oxidation occurs quickly
μs) and was used as an alternative method to size NPs
nd additionally study the surface oxidation of the no- 
le metal, which can greatly affect electrocatalytic activ- 

ty. Resistance measurements of single carbon nanotube 

CNT) electrode contacts have been measured via the 

anoimpact of a single CNT bridging the gap between 

wo microbands of a gold electrode. By applying a poten-
ial difference between the two microbands, a current is 
nduced across the CNT, this change in current can be

easured allowing the resistance of the CNT gold contact 
o be measured. This work could be useful within fuel cell
esearch as CNTs are often considered for catalyst sup- 
orts [35] . This was later expanded upon by adding in the
lectroactive species, acetaminophen [36] . By analysing 

anoimpacts with and without the acetaminophen, the 

roup were able to reveal the increase in current am-
litude, showing improved contacts between the CNTs 
nd the microbands of the electrode. This suggested im- 
roved junction properties, in theory due to redox shut- 
ling [36] . 

he nanoimpact technique can also be used to investi- 
ate electrochemical experiments themselves to ensure 

ptimisation. The use of different capping agents in the 

reparation of nanoparticles, which is important as drop 

asting is known to cause agglomeration of the capping 

gents, change kinetics, and affect the outcome of exper- 
ments [37,38] . Tanner et al. [37] compared citrate and

NA as capping agents for silver nanoparticles and how 

his affects the oxidation of Ag at different potentials.
NA capped Ag NPs oxidised at a higher potential than

itrate capped Ag NPs. The higher potential corresponds 
ith the oxidation of guanine and adenine in the DNA,

uggesting the Ag cannot be oxidised before the DNA.
his showed DNA does not allow enough electron trans- 
ort to allow Ag to be oxidised and so either, once oxidised
he DNA starts conducting enough to allow the oxidation 

f Ag or it is desorbed [37] . Cluster formation can also be
n issue in nanoparticle solution due to either aggrega- 
ion or agglomeration. This is often studied by dynamic 
ight scattering (DLS) though this requires dilution of the 

anoparticle solution which can produce distorted results.
y using a dye which is reduced when in contact with
n electrode to modify rutile (TiO 2 ) particles and com-
aring chronoamperometric signals the size of the clus- 
ers can be found. The results of this showed much larger
roups of clusters than was detected by DLS indicating 

hat nanoimpact measurements are a useful tool for size 

istribution in nanoparticle solution [39] . 

onsiderations 

lthough the technique has proven fruitful in the experi- 
ents above, there are still difficulties and factors should 

e taken into account when considering the method 
urrent Opinion in Electrochemistry 2018, 10 :31–36 
or applications. Foremost is that background currents 
ust be low and electronic bandwidth electronics high 

nough to gain a valuable signal to noise ratio. How-
ver electrolyte composition and concentration can influ- 
nce nanoimpact experiments: for example Krause et al.
40] found that the response at some potentials can be de-
endent on the electrolyte conductivity and in the case of
g nanoparticles on the concentration of chloride ions. It
as also shown that the chloride ion concentration dras-

ically affects the current spike shape, which can be ex-
lained by the diffusive mass transport of Cl − to the
anoparticle which then limits the oxidation rate of the
ilver nanoparticles. Colloidal stability within the elec- 
rolyte can affect the NP collisions, this has been investi-
ated using Hg UME with Pt NPs [41] . It has shown that
ggregation of NPs is increased with the ionic strength
f the phosphate buffered hydrazine electrolyte. By en-
uring a lower ionic strength of the electrolyte the ag-
regation of the particles was less of an issue. Highlight-
ng the importance of ensuring the NPs will not be af-
ected by the electrolyte before beginning collision ex-
eriments [41] . It was further shown that there is the po-
ential for gases which may be evolved from hydrazine
hat could destabilise the citrate layer of the Pt NPs al-
owing aggregation of the NPs [42] . Hg UMEs can be
sed to reduce the issue in some experiments of signal
o noise ratio [43] . Nanoparticle impacts have also now
een reported in non-aqueous media, an advantage of this

s the lower viscosity of organic liquids such as toluene
nd dichloromethane which reduces the time of first ar-
ival allowing faster detection [44] . This paper success-
ully showed Au impacts on a Pt microelectrode in non-
queous media, these impacts indicated rapid, reversible 

gglomeration which caused repeated collisions. Another 
onsideration is that particles can get stuck to the glass
round the UME which can lead to lower signals than ex-
ected [19] . A helpful guide to nanoimpact experiments
as been produced which highlights considerations to be 

ade before beginning and what to expect from results
45 

••] . 

onclusions 

he work in this paper highlights the advancements in
anoimpact techniques in recent years providing informa- 
ion of nanoscale processes in a diverse range of materials.
hough the area still has space for advancement, for ex-

mple with improvements in DNA analysis, nanoimpacts 
s a promising technique and research into new applica-
ions involving single particles is expected as well as fur-
her insights into the structure reactivity relationship. 
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