

University of Birmingham

Time protection
Ge, Qian; Yarom, Yuval ; Chothia, Tom; Heiser, Gernot

DOI:
10.1145/3302424.3303976

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Ge, Q, Yarom, Y, Chothia, T & Heiser, G 2019, Time protection: the missing OS abstraction. in EuroSys '19:
Proceedings of the Fourteenth EuroSys Conference 2019., 1, Association for Computing Machinery (ACM), pp.
1-17, 14th European Conference on Computer Systems (EuroSys 2019), Dresden, Germany, 25/03/19.
https://doi.org/10.1145/3302424.3303976

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1145/3302424.3303976
https://doi.org/10.1145/3302424.3303976
https://birmingham.elsevierpure.com/en/publications/523224c9-cf60-4f1f-b168-7984a96aac3f

Time Protection: The Missing OS Abstraction
Qian Ge

UNSW Australia and Data61 CSIRO

qian.ge@data61.csiro.au

Yuval Yarom

The University of Adelaide and Data61 CSIRO

yval@cs.adelaide.edu.au

Tom Chothia

University of Birmingham

T.P.Chothia@cs.bham.ac.uk

Gernot Heiser

UNSW Australia and Data61 CSIRO

gernot@unsw.edu.au

Abstract
Timing channels enable data leakage that threatens the se-

curity of computer systems, from cloud platforms to smart-

phones and browsers executing untrusted third-party code.

Preventing unauthorised information flow is a core duty of

the operating system, however, present OSes are unable to

prevent timing channels. We argue that OSes must provide

time protection, the temporal equivalent of the established

memory protection, for isolating security domains. We ex-

amine the requirements of time protection, present a design

and its implementation in the seL4 microkernel, and evaluate

efficacy and cost on x86 and Arm processors.

CCS Concepts • Security and privacy→ Trusted com-
puting; • Software and its engineering → Multiprocess-
ing / multiprogramming / multitasking;

Keywords timing channels, covert channels, temporal iso-

lation, time protection, microkernels, security, confidential-

ity, seL4

1 Introduction
One of the oldest problems in operating systems (OS) re-

search is how to confine programs so they do not leak infor-

mation [Lampson 1973]. To achieve confinement, the operat-

ing system needs to control all of the means of communica-

tion that the program can use. For that purpose, programs are

typically grouped into security domains, with the operating

system exerting control on cross-domain communication.

Programs can bypass OS protection by sending informa-

tion over media not intended for communication. Histori-

cally, such covert channels were explored in the context of

military systems [Department of Defence 1986]. Cloud com-

puting, smartphone apps and server-provided JavaScript

EuroSys ’19, March 25–28, 2019, Dresden, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published

in Fourteenth EuroSys Conference 2019 (EuroSys ’19), March 25–28, 2019,
Dresden, Germany, https://doi.org/10.1145/3302424.3303976.

mean that we now routinely share computing platforms with

untrusted, potentially malicious, third-party code.

OSes have traditionally enforced security throughmemory
protection, i.e. spatial isolation of security domains. Recent

advances include formal proof of spatial security enforce-

ment by the seL4 microkernel [Klein et al. 2014], including

proof of the absence of covert storage channels [Murray et al.

2013], i.e. channels based on storing information that can

be later loaded [Department of Defence 1986; Schaefer et al.

1977]. Spatial isolation is therefore a solved problem.

In contrast, timing channels, and in particular microar-
chitectural channels [Ge et al. 2018b], which exploit timing

variations due to shared use of caches and other hardware, re-

main a fundamental OS security challenge that has eluded a

comprehensive solution to date. Its importance is highlighted

by recent attacks, including the extraction of encryption keys

across cores through side channels [Irazoqui et al. 2015; Liu
et al. 2015], i.e. without the cooperation of the key owner.

In contrast, covert channels depend on insider help and

are traditionally considered a less significant threat. How-

ever, in the recent Spectre attack [Kocher et al. 2019], an

adversary uses a covert communication channel with a Tro-

jan constructed from speculatively executed gadgets to leak

information. This demonstrates that covert channels pose

a real security risk even where no side-channel attack is

known. Furthermore, a covert channel bears the risk of be-

ing exploitable as a side channel by an ingenious attacker.

We argue that it is time to take temporal isolation seri-

ously, and make the OS
1
responsible for time protection, the

prevention of temporal interference [Ge et al. 2018a], just

as memory protection prevents spatial interference. This re-

quires a design that eliminate, as far as possible, the sharing

of hardware resources that is the underlying cause of timing

channels. Ultimately we aim to obtain temporal isolation

guarantees comparable to the spatial isolation proofs of seL4,

but for now we focus on a mechanisms that are suitable for
a verifiable OS kernel, i.e. minimal, general and policy-free.

Specifically, we make the following contributions.

• We define time protection for preventing microarchi-

tectural timing channels, and specify the requirements

for its implementation (Section 3.2);

1
Weuse “OS” to refer to themost privileged software level that is responsible

for security enforcement, which could be a hypervisor.

1

https://doi.org/10.1145/3302424.3303976

• we introduce a policy-free kernel clone operation that

partitions a system almost perfectly, removing most

sharing between domains, and explore how accessing

the remaining shared state can be made sufficiently

deterministic to prevent leakage (Section 3.3);

• we present an implementation in seL4 (Section 4);

• we show that our implementation of time protection

is effective, transparently removing timing channels,

within limitations of present hardware (Section 5.3);

• we show that the overhead is low (Section 5.4).

2 Background
2.1 Covert channels and side channels
A covert channel is an information flow that uses a mecha-

nism not intended for information transfer [Lampson 1973].

By allowing communication between security domains that
should be isolated, covert channels may violate the system’s

security policy. Here a (security) domain is the granular-

ity of restrictions imposed by a system’s security policy;

it may consists of multiple OS protection domains (set of

access rights), which may further restrict access for software-

engineering/safety reasons.

There is a traditional distinction between storage and tim-
ing channels, where exploitation of the latter requires the

communicating domains to have a common notion of time

[Department of Defence 1986; Schaefer et al. 1977; Wray

1991]. In principle, it is possible to completely eliminate stor-

age channels, as was done in the information-flow proof of

seL4 [Murray et al. 2013].
2

Despite progress on proving upper bounds for the cache

side channels of cryptographic implementations [Doychev

et al. 2013; Köpf et al. 2012], proofs of elimination of timing

channels in a non-trivial system are beyond current formal

approaches; measurements are essential for their analysis.

In a narrow sense, a covert channel requires collusion be-

tween the domains, one acting as a sender and the other as

a receiver. Typical cases of senders are Trojans, i.e. trusted
code that operates maliciously, or untrusted code that is be-

ing confined [Lampson 1973]. Due to the collusion, a covert

channel represents a worst case for bandwidth of a channel.

In contrast, a side channel has an unwitting sender, called

the victim, which, through its normal operation, is leaking

information to an attacker acting as the receiver. An impor-

tant example is a victim executing in a virtual machine (VM)

on a public cloud, which is being attacked by a malicious

co-resident VM [İnci et al. 2016; Yarom and Falkner 2014].

The achievable bandwidth of a side channel attack is gen-

erally orders of magnitude lower than the covert channel

using the same mechanism. Bandwidth is obviously less of

2
Specifically, the proof shows that no machine state that is touched by

the kernel can be used as a storage channel, it does not exclude channels

through state of which the kernel is unaware.

Core Private Caches

Shared Cache

CorePrivate Caches

Dom0Dom1 Dom2

Figure 1. Competition for limited hardware resources result

in interference that can leak information intra-core (Dom0
to Dom1) or inter-core (Dom0 to Dom2).

an issue if the secret is a small but long-lived asset, such as

a web server’s SSL key.

2.2 Microarchitectural channels
Microarchitectural timing channels result from competition

for hardware resources that are functionally transparent to

software [Ge et al. 2018b]. The instruction-set architecture

(ISA), i.e. the hardware-software contract, abstracts these

resources away, as they are irrelevant for functional correct-

ness. However, the abstraction leaks, as it affects observable

execution speed, leading to timing channels.

These resources come in two categories, see Figure 1.

1. Microarchitectural state leverages temporal and

spatial locality improve average-case performance. It

includes data and instruction caches, TLBs, branch

predictors, instruction- and data-prefetcher state ma-

chines, and DRAM row buffers. Without hyperthread-

ing, core-local resources are time-shared, else they are

concurrently accessed like shared caches.

2. Stateless interconnects include busses and on-chip

networks. Time sharing cannot produce interference

on these, while concurrent access can be observed as

a reduction of available bandwidth.

Cache channels work by the sender (intentionally or inci-

dentally) modulating its footprint in the cache through its

execution, and the receiver probing this footprint by system-

atically touching cache lines and measuring memory latency

by observing its own execution speed. Low latency means

that a line is still in the cache from an earlier access, while

high latency means that the corresponding line has been

replaced by the sender competing for cache space.

Side-channel attacks are similar, except that the sender

does not actively cooperate, but accesses cache lines accord-

ing to its computational needs. Thus, the attacker must syn-

chronise its attack with the victim’s execution and eliminate

any noise with more advanced techniques. Side-channel at-

tacks have been demonstrated against the L1-D [Hu 1992]

and L1-I caches [Acıiçmez 2007], the TLB [Gras et al. 2018;

Hund et al. 2013] and the BP [Acıiçmez et al. 2007]. Cross-

core side-channel attacks through the last-level cache (LLC)

have also been demonstrated [Irazoqui et al. 2015; Liu et al.

2

2015; Maurice et al. 2017]. Side-channel attacks through hy-

perthreading are plentiful [Acıiçmez and Seifert 2007; Perci-

val 2005; Yarom et al. 2016].

On stateless channels, the sender encodes information

into its bandwidth consumption, and the receiver senses the

available bandwidth. Interconnects have been exploited as

covert channel to date [Hu 1991; Wu et al. 2012], no side-

channel attacks are known [Ge et al. 2018b]; as long as the

interconnect does not leak data or address information, they

are probably infeasible.
3

2.3 Countermeasures
Countermeasures must prevent interference resulting from

resource competition while processing secret information.

The OS can prevent interference on stateful resources
by flushing between accesses or by partitioning.

4
Flushing is

conceptually simple (but potentially difficult in practice, see

Section 4.3). Flushing can obviously not help with concurrent

access to a shared cache, it would also be very costly in the

case of large caches (LLC), as we demonstrate in Section 5.2.

Partitioning by the OS is only possible where the OS has

control over how domains access the shared infrastructure.

This is the case in physically-indexed caches (generally the

L2. . . LLC), as the OS controls the allocation of physical mem-

ory frames to domains, and thus the physical addresses. The

standard technique is page colouring, which makes use of the

fact that in large set-associative caches, the set-selector bits

in the address overlap with the page number. A particular

page can therefore only ever be resident in a specific section

of the cache, referred to as the “colour” of the page. The

OS can partition the physically-indexed cache by allocating

frames of disjoint colours to domains [Kessler and Hill 1992;

Liedtke et al. 1997; Lynch et al. 1992]. With a page size of P ,
a cache of size S and associativityw has S/wP colours.

On most hardware the OS cannot colour the small L1

caches, because they only have a single colour, but also be-

cause they are generally indexed by virtual address, which is

not under OS control. The same applies to the other on-core

state, such as the TLB and BP. Hence, if domains share a core,
these on-core caches must be flushed on a domain switch.

Some architectures provide hardware mechanisms for par-

titioning caches. For example, many Arm processors support

pinning whole sets of the L1 I- and D-caches [ARM Ltd. 2008].

Prior work has used this feature to provide a small amount

of safe, on-chip memory for storing encryption keys [Colp

et al. 2015]. Similarly, Intel recently introduced a feature

called cache allocation technology (CAT), which supports

3
A recently published bus side-channel attack [Wang and Suh 2012] was

only demonstrated in a simulator. More importantly, it relies on the cache

being small, making it inapplicable to modern processors.

4
In principle, it is also possible to prevent timing channels by denying

attackers access to real time, but in practice this is infeasible except in

extremely constrained scenarios.

way-based partitioning of the LLC, and which also can be

used to provide secure memory [Liu et al. 2016].

Although such securememory areas can be used to protect

secrets from side channels, they need to be actively (and cor-

rectly) used by the application holding the secret. However,

enforcement of a system’s security policy must not depend

on correct application behaviour. Hence time protection, like

memory protection, must be a mandatory (black-box) OS

security enforcement mechanism. In particular, only manda-

tory enforcement can support confinement.

For bandwidth-limited interconnects, channel pre-
vention requires partitioning the bandwith, by time-

multiplexing the interconnect or by using some hardware

partitioning mechanism. No support for bandwidth partition-

ing exists on contemporary mainstream hardware.
5
Time-

multiplex the interconnect by the OS explicitly managing

cache content [Yun et al. 2013] comes at the cost of severely

degraded interconnect utilisation.

2.4 seL4
seL4 is a third-generation OS microkernel that is designed

from the ground up for use in security- and safety-critical sys-

tems. Its unique assurance includes formal, machine-checked

proofs that the implementation (at the level of the executable

binary) is functionally correct against a formal model, and

that the formal model enforces integrity and confidentiality

(ignoring timing channels) [Klein et al. 2014].

Like other security-oriented systems [Bomberger et al.

1992; Shapiro et al. 1999], seL4 uses capabilities [Dennis and

Van Horn 1966] for access control: any access must be autho-

rised by an appropriate capability. seL4 takes a somewhat

extreme view of policy-mechanism separation [Levin et al.

1975], by delegating all memory management to user level.

After booting up, the kernel never allocates memory; it has

no heap and uses a strictly bounded stack. Any memory that

is free after the kernel boots is handed to the initial usermode

process as “Untyped” (meaning unused) memory.

Memory needed by the kernel for object metadata, includ-

ing page tables, thread control blocks (TCBs) and capability

storage, must be supplied by the usermode process which

creates the need for it. For example, if a process wants to cre-

ate a new thread, besides providing memory for that thread’s

stack, also it must hand to the kernel memory for storing

the TCB. This is done by “re-typing” some Untyped mem-

ory into the TCB kernel object type. While userland now

holds a capability to a kernel object, it cannot access its data

directly. Instead, the capability is the authentication token

for performing system calls on the object (e.g. manipulating

a thread’s scheduling parameters) or destroying the object

(and thereby recovering the original Untyped memory).

5
Intel recently introduced memory bandwidth allocation (MBA) technology,

which imposes approximate limits on the memory bandwidth available to a

core [Intel Corporation 2016]. While a step towards bandwidth partitioning,

the approximate enforcement is insufficient for preventing covert channels.

3

 Domain0 Domain1

Kernel
TCBs CapsPTs TCBs CapsPTs

Figure 2. seL4’s memory management model extends parti-

tioning of user memory to kernel metadata.

This model of memory management has profound con-

sequences, it is an enabler of the proofs about seL4’s isola-

tion enforcement. For example, the initial process might do

nothing but partition free memory into two pools, initiate a

process in each pool, giving it complete control over its pool

but no access to anything else, and then commit suicide. This

system will then remain strictly (and provably) partitioned

for the rest of its life, with no (overt) means of communica-

tion between the partitions. Furthermore, as kernel metadata

is stored in memory provided to the kernel by userland, it is

as partitioned as userland (see Figure 2).

3 Attacks and Defences
3.1 Threat scenarios
We aim to develop general time-protection mechanisms suit-

able for a wide range of use cases. However, we note the lack

of hardware support for preventing interconnect channels

(see Section 2.3). Recalling that these can only be exploited

as covert channels between from concurrently executing do-

mains, we have to restrict ourselves to threat scenarios which

exclude these kinds of channels. Once suitable hardware sup-

port becomes available, time protection can be generalised.

Even with this restriction we can provide security to many

important use cases. We pick two threat scenarios which

represent important use cases.

3.1.1 Confinement
The confinement scenario [Lampson 1973] uses mandatory

security enforcement to stop a Trojan from leaking secrets.

The Trojan may be malicious or compromised code in a

library, third-party app, server-supplied JavaScript, or low-

assurance code in a military-style cross-domain device, or
it could be constructed from gadgets in a Spectre attack. A

confined component would run in a security domain of its

own, connected to the rest of the system by explicit (e.g. IPC)

input and output channels.

To avoid the interconnect channel, we have to assume that

the system either runs on a single core (at least while the

sensitive code is executing), or co-schedules domains across

the cores, such that at any time only one domain executes.

3.1.2 Cloud
A public cloud hosts VMs belonging to mutually-distrusting

clients executing concurrently on the same processor. As

the VMs are able to communicate with the outside world,

covert channels are impossible to prevent, so the intercon-

nect channel is of no relevance. Instead we aim to prevent

side channels, where an attacking VM is trying to infer se-

crets held by a victim VM.

Hyperthreading is fundamentally based on improving

throughput by sharing resources between execution con-

texts; partitioning those resources would result in separate

cores. Timing channels between hyperthreads are thus inher-

ent, and we assume that hyperthreading is either disabled or

that all hyperthreads of a core belong to the same VM. This is

consistent with advice from hypervisor providers [Marshall

et al. 2010; Zhang et al. 2012]. We do allow time-multiplexing

a core between domains.

Characteristic of the cloud scenario is that it is very

performance-sensitive. The business model of the cloud is

fundamentally based on maximising resource utilisation,

which rules out restrictions such as not sharing processors

between VMs. This also means that solutions that lead to sig-

nificant overall performance degradation are not acceptable.

3.2 Time protection
We propose time protection to address these threats.

Definition: Time protection
A collection of OSmechanismwhich jointly prevent in-

terference between security domains that would make

execution speed in one domain dependent on the ac-

tivities of another.

Time protection must partition concurrently shared re-

sources and flush or partition time-multiplexed resources

during domain switches. As discussed in Section 2.3, flushing

the virtually indexed on-core state (L1, TLB, BP) is unavoid-

able where a core is time-multiplexed between domains.

Requirement 1: Flush on-core state
When time-sharing a core, the OS must flush on-core

microarchitectural state on domain switch, unless the

hardware supports partitioning such state.

Other core-private state, such as the (physically addressed)

L2 in Intel processors, could be flushed or partitioned. Hard-

ware resources shared between cores, in particular the LLC,

must be partitioned by the OS (e.g. using page colouring).

Flushing cannot prevent interference through concurrent

accesses, as they happen in our Cloud scenario. Flushing the

LLC would also introduce high overhead (see Section 5.2).

Page colouring rules out sharing of physical frames be-

tween domains, whether explicitly or transparently via page

deduplication, and thus may increase the aggregate mem-

ory footprint of the system. However, this is unavoidable, as

even (read-only) sharing of code has been shown to produce

4

exploitable side channels [Gullasch et al. 2011; Yarom and

Falkner 2014]. We are not aware of any public cloud provider

that supports cross-VM deduplication and some hypervi-

sor providers explicitly discourage the practice [VMware

Knowledge Base 2014] due to the risks it presents.

This leaves the kernel itself. Similar to shared libraries, the

kernel’s code and data can also be used as a timing channel,

we will demonstrate this in Section 5.3.1.

Requirement 2: Partition the kernel
Each domain must have its private copy of kernel text,

stack and (as much as possible) global data.

As discussed in Section 2.4, partitioning most kernel data

is straightforward in seL4: all dynamically allocated kernel

memory is provided by userland. Hence, colouring user mem-

orywill colour all dynamic kernel data structures. This leaves

an (in seL4 small) amount of global kernel data uncoloured.

Requirement 3: Deterministic data sharing
Access to remaining shared kernel data must be deter-

ministic enough to prevent information leakage.

The latency of flushing on-core caches can also be used

as a channel, as we will show in Section 5.3.4. The reason is

that flushing the L1-D cache forces a write-back of all dirty

lines, which means that the latency depends on the amount

of dirty data, and thus on the execution history:

Requirement 4: Flush deterministically
Cache flushing mut be padded to its worst-case latency.

Interrupts could also be used for a covert channel, as we

will demonstrate in Section 5.3.5. These are irrelevant to

the cloud scenario, as there is no evidence that interrupts

could be used as side channels, they are likely infeasible as

an interrupt carries little data. Hence interrupt channels are

only a concern intra-core.

Requirement 5: Partition interrupts
When sharing a core, the kernel must disable or parti-

tion any interrupts other than the preemption timer.

Strategies for satisfying most of these requirements are

well understood. We will now describe an approach that

satisfies Requirement 2, Requirement 5 and simplifies Re-

quirement 3 as a side effect. Remember from Section 1 that

we are looking for mechanisms that are simple and policy-

free, to make them suitable for a verifiable kernel.

3.3 Partitioning the OS: Cloning the kernel
Requirement 2 demands per-domain copies of the kernel. It

would certainly be possible to structure a system at boot-

image configuration time, such that each domain is given

a separate kernel text segment, as in some NUMA sys-

tems [Concurrent Real Time 2012]. The domains would still

share global kernel data, which then requires careful han-

dling as per Requirement 3. The latter can be simplified

by reducing the amount of shared global kernel data to a

minimum, and replicate as much of it as possible between

kernel instances, resulting in something resembling a multi-

kernel [Baumann et al. 2009] on a single core, although more

extreme in that kernel text is also separate.

This approach would imply completely static partitioning,

where the configuration of domains, and thus the system’s

security policy, is baked into the boot image. As changes of

policy would require changes to the kernel itself, this reduces

the degree of assurance (or increases its cost). Furthermore,

such a static approach would not suit the Cloud scenario:

while the domain of a terminated VM could be recycled for

a newly created one, the total number of VM slots would be

fixed, forcing the system to over-provision domains just in

case more might be needed.

We therefore favour an approach where the kernel is igno-
rant of the specific security policy, only one kernel configu-

ration (which should eventually be completely verified) is

ever used, the security policy is defined by the initial user

process (as is the case with the present seL4 kernel), and

where domains can be added or removed on demand.

We can achieve this by introducing a policy-free kernel
clonemechanism. Its high-level description is creating a copy

of a kernel image in user-supplied memory, including a stack

and replicas of almost all global kernel data. The initial user

process, serving as resource and security manager, can use

kernel clone to set up an almost perfectly partitioned system.

Specifically, the initial process separates all free memory

into coloured pools, one per domain, clones a kernel for

each partition into memory from the domain’s pool, starts a

child process in each pool, and associates the child with the

corresponding kernel image.

The existing mechanisms of seL4 are sufficient to guar-

antee that the system will remain coloured for its lifetime,

e.g. if init commits suicide. Cloning can be undone as long

as a process with authority over a kernel image remains

runnable. Re-partitioning is possible by moving memory

colours between partitions or revoking a complete kernel

image. Partitioning can be nested: a partition can sub-divide

with new kernel clones, as long as it has sufficient Untyped
memory and more than one page colour left.

4 Implementation in seL4
4.1 Kernel clone overview
In seL4, all access is controlled by capabilities. To control

cloning, we introduce a new object type, Kernel_Image,
which represents a kernel. A holder of a clone capability

to a Kernel_Image object, with access to sufficient Untyped
memory, can clone the kernel. A Kernel_Image can be de-

stroyed like any other object, and revoking a Kernel_Image
capability destroys all kernels cloned from it.

We introduce another object type, Kernel_Memory, which
represents physical memory that can be mapped to a kernel

5

image, analogous to the existing Frame type, which repre-

sents memory that can be mapped into a user address space.

At boot time, the kernel creates a Kernel_Image master

capability, which represents the present (and only) kernel and

includes the clone right. It hands this capability, together

with the size of the image, to the initial user process. That

thread can then partition the system into security domains,

by first partitioning its Untypedmemory by colour. For each

domain it clones a new kernel from the initial one, using

some of the domain’s memory pool, sets up an initial address

space and thread in each of them, associates the threads with

the respective kernels, and makes them runnable. The initial

process can prevent other threads from cloning kernels by

handing them only derived Kernel_Image capabilities with
the clone right stripped.

Cloning consists of three steps. (1) The user process re-

types some Untyped into an (uninitialised) Kernel_Image
and Kernel_Memory of sufficient size, (2) it allocates an

address space identifier (ASID) to the uninitialised Ker-
nel_Image, (3) it invokes Kernel_Clone on the new Ker-
nel_Image, passing an (existing) Kernel_Image capability

with clone right and a Kernel_Memory capability as param-

eters, resulting in an initialised Kernel_Image.
Cloning copies the source kernel’s code, read-only data

(incl. interrupt vector table etc.) and stack. It also creates a

new idle thread and a new kernel address space; the seL4

kernel has an address space that contains the kernel objects

resulting from retype operations. This means that the Ker-
nel_Image is represented as the root of the kernel’s address

space, plus an ASID. Hence, any cloned Kernel_Image can
independently handle any system calls, receive interrupts

(Section 4.2) and system timer ticks, and run an idle thread

when no user thread is runnable on a core. We add the capa-

bility of the kernel responsible for handling its system call

to each thread’s TCB.

Two kernels share only the minimum static data required

for handing over the processor. On seL4, this is (numbers

indicate size per core on x64, total of about 9.5 KiB):

1. the scheduler’s array of head pointers to per-priority

ready queues (4 KiB), as well as the bitmap used to find

the highest-priority thread in constant time (32 B)

2. the current scheduling decision (8 B)

3. the tables of IRQ state interrupt handlers (2 × 1.1 KiB)
4. the interrupt currently being handled, if any (8 B)

5. the first-level hardware ASID table (1.1 KiB)

6. the IO port control table (2 KiB, x86 only)

7. the pointers for the current thread, its capability store

(Cspace), the current kernel, idle thread, and the thread

currently owning the floating point unit (40 B)

8. the kernel lock for SMP (8 B)

9. the barrier used for inter-processor interrupts (8 B).

We perform an audit of the shared data to ensure it cannot

be used as a cross-core side channel. Specifically, we deter-

mine for all such data the circumstances (interrupt handling,

context switch) under which the kernel will access it. We

then establish that none of the cache lines involved contain

or are accessed through private user information (such as

address-space layout).

4.2 Partitioning interrupts
To support Requirement 5, we assign interrupt sources to a

Kernel_Image. Interrupts (other than the kernel’s preemp-

tion timer) are controlled by IRQ_Handler capabilities; the
Kernel_SetInt system call allows associating an IRQ with

a kernel. At any time, only the preemption timer and in-

terrupts associated with the current Kernel_Image can be

unmasked, this prevents kernels from triggering interrupts

across partition boundaries.

Partitioning is policy, and the kernel will not force all

IRQs to be partitioned. Associating an IRQ with multiple

domains is valid but will leak; the kernel will only ensure

that partitioned IRQs cannot leak.

4.3 Domain-switch actions
The running kernel is mostly unaware of domains; domain

switches happen implicitly on a preemption interrupt. As

the kernel is mapped at a fixed address in the virtual address

space, the kernel (code and static data) switch happens im-

plicitly when switching the page-directory pointer. Thus, the

only explicit action needed for completing the kernel switch

is switching the stack (after copying the present stack to the

new one). The kernel detects the need for a stack switch by

comparing the Kernel_Image reference in the destination

thread’s TCB with itself. In addition, the stack switch also

implies actions for satisfying Requirements 1, 3, 4 and 5.

We flush all on-core microarchitectural state (Require-

ment 1) after switching stacks. The multicore version of

seL4 presently uses a big lock for performance and verifiabil-

ity [Peters et al. 2015]; we release the lock before flushing.

To reset on-core state on Arm, we flush the L1 caches

(DCCISW and ICIALLU), TLBs (TLBIALL), and BP (BPIALL).
On x86 we flush the TLBs (invpcid) and use the new indirect
branch control (IBC) feature [Intel 2018b] for flushing the BP.
Flushing the L1-D and -I caches presents a challenge on x86.

While it has an instruction for flushing the complete cache

hierarchy, wbinvd, it has no instruction for selectively flush-

ing L1 caches. We therefore implement a “manual” flush: The

kernel performing a load operation on one word cache line

of a L1-D-sized buffer. It flushes the L1-I cache by following

a sequence of jumps through a cache-sized buffer, which also

indirectly flushes the branch target buffer (BTB).
6

6
This “manual” flush is dependent on assumptions on the hardware’s (un-

documented) line replacement policy, making it a brittle and potentially

incomplete mechanism. Intel recently added support for flushing the L1-D

6

For addressing Requirement 4, an authorised thread (e.g.

the cloner) may configure a switching latency. The kernel

defers returning to user mode until the configured time is

elapsed since the preemption interrupt. For policy-freedom

we make this latency a user-controlled kernel-image at-

tribute, as a safe value requires a worst-case execution time

analysis, and the need for padding should be defined by the

security policy. For example, with a hierarchical security

policy such as Bell-LaPadula, flushing may not be needed

when switching to a higher classification level. The padding

latency is taken from the kernel active prior to the switch.

Satisfying Requirement 3 is much simplified by cloning,

as the kernels share almost no data (Section 4.1). We achieve

determinism by carefully prefetching all shared data before

returning to userland, by touching each cache line. This will

force the required data into the L1 cache, and ensure deter-

ministic kernel exit. It is done just prior to the padding of the

domain-switch latency, as the cost of loading these lines will

depend their residency in lower-level caches. Prefetching is

not needed for instructions, as kernel code is coloured.

To satisfy Requirement 5, we mask all interrupts before

switching the kernel stack, and after switching unmask the

ones associated with the new kernel. On x86, interrupts

are controlled by a hierarchical interrupt routing structure,

all the bottom-layer interrupts are eventually routed to the

interrupt controllers on CPU cores. Because the kernel exe-

cutes with interrupts disabled, there exists a race condition,

where an interrupt is still accepted by the CPU just after the

bottom-level IRQ source has been masked off. The kernel re-

solves this by probing any possible pending interrupts after

masking, acknowledging them at the hardware level. Arm

systems have a much simpler, single-level interrupt control

mechanism, which avoids this race.

Timer-interrupt handling may be delayed due to another

interrupt or system call occurring just before the preemption

timer. We prevent this from delaying the domain switch by

making the padding time long enough to allow for the worst-

case handling time of such a system call or interrupt. A

more sophisticated implementation would, if preemption is

immediate, defer handling of the system call or interrupt

until the next time slice of the same domain.

The steps performed by the kernel when handling a pre-

emption tick are (bold steps are kernel-switch only):

1. acquire the kernel lock

2. process the timer tick normally

3. mask interrupts
4. switch the kernel stack
5. switch thread context (and implicitly the kernel image)

6. release the kernel lock

7. unmask interrupts of the new kernel
8. flush on-core microarchitectural state

cache [Intel 2018a]. However, we cannot use this feature, as a microcode

update is yet to be available for our machine, and there is still no L1-I flush.

9. pre-fetch shared kernel data
10. poll the cycle counter for the configured latency
11. reprogram the timer interrupt

12. restore the user stack pointer and return.

4.4 Kernel destruction
Destroying a kernel in a multicore system creates a race

condition, as the kernel that is being destroyed may be active

on other cores. For safe destruction, we first suspend all

threads belonging to the target kernel. We support this with

a per-kernel bitmap that indicates the cores on which it is

presently running, it is updated during kernel switch.

During Kernel_Image destruction, the kernel first inval-
idates the target kernel capability (turning the kernel into

a “zombie” object). It then triggers a system_stall event,

which sends IPIs to all cores where the zombie is presently

running; this is analogous to TLB shoot-down. The cores

then schedule the idle thread belonging to the default Ker-
nel_Image (created at boot time). Similarly, the kernel sends

a TLB_invalidate IPI to all the cores that the target kernel

had been running on. Lastly, the initial core completes the

destruction and cleanup of the zombie.

Destroying active Kernel_Memory also invalidates the

kernel, resulting in the same sequence of actions. Destroying

either object invalidates the kernel, allowing the remaining

object to be destroyed without complications.

The existence of an always runnable idle thread is a core

invariant of seL4; we must maintain this in the face of dy-

namic kernel creation and destruction. We ensure the initial

kernel image (and idle thread) remain, by not providing the

initial kernel’s Kernel_Memory capability to userland. This

guarantees that there is still a kernel with an idle thread, even

if userland destroys the last Kernel_Image. Such a system

will have no user-level threads, and will do nothing more

than acknowledging timer ticks.

A more sophisticated solution might allow reusing the

initial kernel’s memory, where the intention is to keep the

system partitioned for its lifetime. This is hardly worthwhile,

as the amount of dead memory is tiny: on x86 it is 216 KiB

on a single core or 300KiB on a 4-core machine, including

the buffers for flushing the L1 caches. Corresponding Arm

sizes are 120 KiB and 168KiB.

5 Evaluation
We evaluate our approach in terms of its ability to close

timing channels, as well as its effect on system performance.

5.1 Methodology
We quantify leakage using mutual information (MI) [Shan-

non 1948] as a measure of the size of a channel. Wemodel the

channel as a pipe into which the sender places inputs, drawn
from some input set I (the secret values), and the receiver

7

obtains outputs from some set O (the attacker’s time mea-

surements). In the case of a cache attack, the input could be

the number of cache sets the sender accesses and the output

is the time it takes the receiver to access a previously-cached

buffer. MI indicates the average number of bits of informa-

tion that a computationally unbounded receiver can learn

from each input by observing the output.

We model the time measurements as a probability density

function, meaning that we calculate the MI between discrete

inputs and continuous outputs. If we treated the output time

measurements as purely discrete then we would be treating

all values as unordered and equivalent, e.g. a collection of

unique particularly high values would not be treated dif-

ferently from a collection of unique uniformly distributed

values, therefore we might miss a leak. Furthermore, for a

uniform input distribution, if continuous MI is zero then it

implies that other similar measures, such as discrete capac-

ity [Shannon 1948], are also zero. As it is an average function,

rather than a maximum, MI is also easier to reliably estimate,

making it an effective metric to see if a leak exists or not.

We send a large number of inputs and collect the corre-

sponding outputs. From this we use kernel density estima-

tion [Silverman 1986] to estimate the probability density

function of outputs for each input. We then use the rectan-

gle method (see e.g. [Hughes-Hallet et al. 2005] p. 340) to

estimate the MI between a uniform distribution on inputs

and the observed outputs, which we write as M.

Sampling introduces noise, which will result in an appar-

ent non-zero MI even when no channel exists. Sampled data

can never prove that a leak does not exist, so instead we ask

if the data collected contains any evidence of an information

leak. Our present tool has a resolution of about 1 millibit, so

cannot give conclusive evidence ifM < 1mb, but such chan-

nels can be considered negligible anyway. If the estimated

leakage is higher than this we use the following test [Chothia

and Guha 2011; Chothia et al. 2013] to distinguish noise in

the sampling process from a significant leak.

Table 1. Hardware platforms.

System Haswell (x86) Sabre (Arm v7)

Microarchitecture Haswell Cortex A9

Processor/SoC Core i7-4770 i.MX 6Q

Cores × threads 4 × 2 4 × 1

Clock 3.4 GHz 0.8 GHz

Cache line size 64 B 32 B

L1-D/L1-I cache 32 KiB, 8-way 32KiB, 4-way

L2 cache 256 KiB, 8-way 1MiB, 16-way

L3 cache 8MiB, 16-way N/A

I-TLB 64, 8-way 32, 1-way

D-TLB 64, 4-way 32, 1-way

L2-TLB 1024, 8-way 128, 2-way

RAM 16GiB 1GiB

We simulate the measurement noise of a zero-leakage

channel by shuffling the outputs in our dataset to randomly

chosen inputs. This produces a dataset with the same range

of values, but the random assignment ensures that there is

no relation between the inputs and outputs (i.e., zero leak-

age). We calculate the MI from this new dataset and repeat

100 times, giving us 100 estimations from channels that are

guaranteed to have zero leakage. From this we calculate the

mean and standard deviation of these results, and then cal-

culate the exact 95% confidence interval for an estimate to

be compatible with zero leakage, which we write as M0.

If the estimate of MI from the original dataset is outside

the 95% confidence interval, i.e.M >M0, the observations

are inconsistent with the MI being zero, and so there is a

leak (the strict inequality is important here, because for very

uniform data with no leakageM may equalM0). Otherwise

we conclude that the dataset does not contain evidence of

an information leak.

Unlike some prior work [Liu et al. 2015; Maurice et al.

2017], our aim is not to construct high capacity channels.

Instead, we aim to demonstrate the existence or absence of

a channel, so we usually choose unsophisticated encodings.

5.2 Hardware platforms
We conduct our experiments on representatives of the x86

and Arm architectures; Table 1 gives the details. Our Arm

platform is somewhat dated, but we have not yet ported

our time protection implementation to the Arm v8 architec-

ture, which is used by the more recent cores. Furthermore,

our earlier work demonstrated that recent (out-of-order)

Arm cores contain microarchitectural state that cannot be

scrubbed by architected means, and thus contain uncloseable

high-bandwith channels [Ge et al. 2018a].

We evaluate leakage in three scenarios: raw refers to the

unmitigated channel while protected refers to our imple-

mentation of time protection, using two coloured domains

with cloned kernels, each is allocated 50% of available colours

unless stated otherwise.

For intra-core channels we additionally evaluate full
flush, which performs a maximal architecture-supported

reset of microarchitectural state. On Arm, this adds flushing

the L2 cache to the flush operations used for time protec-

tion (as described in Section 4.3), and we also disable the BP

and prefetcher for minimising uncontrollable microarchitec-

ture state. On x86 the full flush scenario omits the “manual”

L1 cache flush and instead flushes the whole cache hierar-

chy (wbinvd), and disables the data prefetcher by updating

MSR 0x1A4 [Viswanathan 2014].

As a base line we measure the worst-case direct and indi-

rect costs of flushing the (uncolourable) L1-I/D caches vs. the

complete cache hierarchy. The direct cost is the combined

latency of the flush instructions when all D-cache lines are

dirty (or the cost of the “manual flush” on x86). We measure

8

Table 2. Worst-case cost of cache flushes (µs). The direct

cost of the x86 L1 flush (bold) would be about 1 µs with a

hardware-supported L1 I-cache flush.

Cache x86 Arm
dir ind total dir ind total

L1 only 26 1 27 20 25 45

Full flush 270 250 520 380 770 1, 150

the indirect cost as the one-off slowdown experienced by an

application whose working set is the size of the cache.

Table 2 shows results. The surprisingly high L1-flush cost

on x86 is a result of our “manual” flush: the L1-D flush is

<0.5 µs, the rest is for the L1-I, where each of the chained

jumps (Section 4.3) is mis-predicted. Actual flush instructions

should reduce the overall L1 flush cost to well below 1µs.
To put these figures into context, consider that cache

flushes would only be required on a timer tick, which is

typically in the order of 10–100ms. Furthermore, the indi-

rect cost of an L1 flush is irrelevant in practice: It would

be highly unusual for a process to find any hot data in the

L1 after another domain has been executing for a full time

slice. We see from these results that flushing the L1 can be

expected to add well below 1% overhead, while flushing the

whole cache hierarchy will add substantial overheads.

5.3 Timing channel mitigation efficacy
To cover the attack scenarios listed in Section 3.1, we demon-

strate a covert timing channel with a shared kernel image

(Section 5.3.1), intra-core (Section 5.3.2) and inter-core (Sec-

tion 5.3.3) timing channel benchmarks that exploit conflicts

on all levels of caches, and a timing channel based on domain

switching latency (Section 5.3.4).

5.3.1 Timing channel via a shared kernel image
As discussed in Section 2.4, partitioning user space automat-

ically partitions dynamic kernel data (and will defeat e.g.

page-table side-channel attacks [van Schaik et al. 2018]). We

now demonstrate that it is insufficient for mitigating covert

channels.

We implement an LLC covert channel between coloured

user-space processes. The sender sends information by trig-

gering system calls, while the receiver, sharing the same core

with a time slice of 1ms, monitors the cache misses on the

cache set that a kernel uses for serving the system calls.

The receiver firstly builds a probe buffer with the prime&

probe technique [Liu et al. 2015; Osvik et al. 2006; Percival

2005]: it compares the cache misses on the probed cache

sets before and after executing the system call, then marks

a cache set as an attack set if the number of cache misses

increase after the system returns.

The sender encodes a random sequence of symbols from

the set I = 0, 1, 2, 3 by using three system calls: Signal for 0,

 300

 400

 500

 600

 700

 0 1 2 3

L
L

C
 m

is
s
e

s
â�

�

datafile using 1:2:3

0.000010

0.000100

0.001000

0.010000

0.100000

 2220

 2240

 2260

 2280

 2300

 0 1 2 3

L
L

C
 m

is
s
e

s
â�

�

seL4 system callâ��

datafile using 1:2:3

0.000010

0.000100

0.001000

0.010000

0.100000

Figure 3. Kernel timing-channel matrix on x86, showing the

conditional probability of output symbols (LLCmisses) given

an input symbol (system call). The top graph shows coloured

userland only, where MI observed from a sample size of

255,790 is 0.79 bits, which we write as M = 0.79 b, n =
255, 790. The bottom graph is with full time protection,M =

0.6mb,M0 = 0.1mb, n = 255, 040 (1mb = 10−3 bits).

TCB_SetPriority for 1, Poll for 2, and idling for 3. Figure 3

(top) shows the resulting channel matrix, i.e. the conditional
probability of observing an output symbol given a particular

input symbol, shown as a heat map. A channel is indicated by

output symbols (cache misses) being correlated with input

symbols (system calls), i.e. variations of probability (colour)

along horizontal lines. Signal and TCB_SetPriority lead

to 500–700 misses, while Poll and idle result in 200–600

misses, a clear channel. The MI ofM=0.79 bit per iteration

(2ms) means the cannel can transmit 395 b/s.

With cloned kernels the channel disappears (bottom of

Figure 3). The remaining channel is measured as M = 0.6
millibits (mb), which is below the resolution of our tool and

negligible. We implement a similar channel on the Arm,

observing a non-trivial MI M = 20 mb, which reduces to

M = 0.0mb with time protection.

5.3.2 Intra-core timing channels
We investigate the full set of channels exploitable by pro-

cesses time-sharing a core, targeting the L1-I, L1-D and L2

caches, the TLB, the BTB, and the branch history buffer

(BHB). We use a prime&probe attack, where the receiver

measures the timing on probing a defined number of cache

sets or entries.

We use theMastik [Yarom 2017] implementation of the L1-
D cache channel, the output symbol is the time to perform

the attack on every cache set. The L2 channel is the same,

with a probing set large enough to cover that cache. We

build the L1-I channel by having the sender probe with jump

instructions that map to corresponding cache sets [Acıiçmez

2007; Acıiçmez et al. 2010]. For the TLB channel, the sender

probes the TLB entries by reading an integer from a number

9

Table 3. Mutual information capacity M (in mb) of unmiti-

gated (raw) intra-core timing channels, mitigated with full

cache flush (full flush) and time protection (protected).M0 is

the 95% confidence bound for a zero channel. Bold values rep-

resent a definite channel (M >M0), others are consistent

with no channel or below the 1mb tool resolution.

Platform Cache Raw Full flush Protected
M M M0 M M0

x86 L1-D 4,000 0.5 0.5 0.6 0.6

L1-I 300 0.7 0.8 0.8 0.5

TLB 2,300 0.5 0.5 16.8 23.9

BTB 1,500 0.8 0.8 0.4 0.4

BHB 1,000 0.5 0.0 0.0 0.0

L2 2,700 2.3 2.6 50.5 3.7
Arm L1-D 2,000 1 1 30.2 39.7

L1-I 2,500 1.3 1.3 4.9 5.2

TLB 600 0.5 0.5 1.9 2.2

BTB 7.5 4.1 4.4 62.2 73.5

BHB 1,000 0 0.5 0.2 54.4

of consecutive pages. We use chained branch instructions as

the probing buffer for the BTB channel, the sender probing

3584–3712 branch instructions on Haswell, 0–512 on Sabre.

Our BHB channel is the same as the residual state-based

covert channel [Evtyushkin et al. 2016], where the sender

sends information by either taking or skiping a conditional

jump instruction. The receiver measures the latency on a

similar conditional jump instruction, sensing any speculative

execution caused by the sender’s history.

Table 3 summarises results for the three scenarios defined

in Section 5.2. The raw scenario shows a large channel in

each case, except for the Arm BTB. On the Sabre we find

that all channels are effectively mitigated by the full flush as

well as the protected scenario.
On Haswell, the picture is the same, except for a residual

L2 channel. While the full flush closes it, our implementation

of time protection (which colours the L2) leaves a sizeable

channel of 50mb. Further investigation shows that the chan-

nel is decreased to M = 6.4 mb (M0 = 4.1 mb) if we disable

the agressive data prefetcher – obviously this state machine

is not reset by the mechanisms we have at our disposal for

implementing time protection (manual L1-I and L1-D flush

plus IBC). The remaining small channel likely results from

the instruction prefetcher, which cannot be disabled.

This result is strong evidence for our previously-argued

need of a better hardware-software contract for controlling

any hidden microarchitecture state [Ge et al. 2018a].

5.3.3 Cross-core LLC channel
Recall that for cross-core attacks, our threat scenario only

considers side channels. The only medium for these on both

our evaluation platforms is the LLC. We evaluate mitigation

 112

 114

 116

 118

 120

 0 50 100 150 200 250

C
a

c
h

e
 s

e
t

n
u

m
b

e
r

Time slot number

Figure 4. Unmitigated concurrent LLC side-channel attack

on x86. The pattern at set 119 shows the victim’s cache

footprint detected by the spy.

for LLC-based cross-core side channels by reproducing the

attack of Liu et al. [2015] on GnuPG version 1.4.13. The attack

targets the square-and-multiply implementation of modular

exponentiation used as part of the ElGamal decryption.

We use two processes, executing concurrently on sepa-

rate cores on the Haswell. The victim repeatedly decrypts

a file, whereas the spy uses the Mastik implementation of

the LLC prime&probe attack to capture the victim’s cache

activity, searching for patterns that correspond to the use of

the square function. The cache activity learned by the spy

is shown in Figure 4. On cache set number 119, we see a

sequence of dots separated by intervals of varying lengths.

Each of these dots is an invocation of the square function

and the secret key is encoded in the length of the intervals

between the dots, with long intervals encoding ones and

short intervals zeros. We find that time protection closes the

channel (in this case by colouring the LLC), the spy can no

longer detect any cache activity of the victim.

5.3.4 Cache-flush channel
To demonstrate the cache-flush channel we create a receiver

that observes its progress by monitoring a cycle counter,

waiting for a large jump in the counter value, indicating

preemption. Online time measures the uninterrupted period,

while offline time is the length of the jump.

The sender, running on the same core, varies the number

of cache sets it accesses in each time slice, manipulating the

cost of the kernel’s L1 cache flushes, and thus the receiver’s

online or offline time.

 1000

 2000

 3000

 4000

 0 200 400 600 800 1000

C
yc

le
s-

3
2
2
2
0
0
0

cache sets

datafile using 1:($2-3222000):3

 0.001

 0.01

Figure 5. Unmitigated cache-flush channel, showing

receiver-observed offline time vs. the sender’s cache foot-

print on Arm. M = 1.4 b, n = 1828

10

Table 4. Channel resulting from cache-flush latency (mb)

without and with time protection.

Platform Timing No pad Protected
M M M0

x86 Online 8.4 0.5 0.5

pad = 58.8 µs Offline 8.3 0.6 0.6

Arm Online 1,400 16.3 24.6

pad = 62.5 µs Offline 1,400 210 237.2

 8
 10
 12
 14
 16
 18
 20
 22
 24

 11 12 13 14 15 16 17 18 19

M
 c

yc
le

s

Timer value (ms)

datafile using 1:($2/1000000):3

 0.001

 0.01

 0.1

Figure 6. Unmitigated interrupt channel, showing receiver-

observed online time vs. the timer interrupt configured by

the Trojan, M = 902mb, n = 10, 860. Bechmarked on the

Haswell platform.

Figure 5 shows that the sender effectively modulates the

offline time. Table 4 shows that the channel exists on both

architectures, but is effectively closed with time padding.

5.3.5 Interrupt channel
We evaluate the interrupt partitioning with a timing channel

based on a timer interrupt. The Trojan and spy execute on the

same core, with a 10ms system tick. For sending information,

the Trojan programs the timer to fire after 13–17ms and

then sleeps for the rest of its time slice; this ensures that the

timer fires approximately 3–7ms into the spy’s time slice.

Figure 6 shows that the spy, which is identical to the one

of Section 5.3.4, experiences two on-line periods per time

slice, before and after the interrupt, resulting in a strong

channel of 0.9 b per time slice. IRQ partitioning results in an

uninterrupted time slice for the spy, and a closed channel

(M = 0.5mb,M0 = 0.7mb, n = 11, 029).

5.4 Performance
5.4.1 IPC microbenchmarks
We evaluate the performance impact of time protection by

measuring the cost of the most important (and highly opti-

mised) microkernel operation, cross-address-space message-

passing IPC. Table 5 summarises the results,
7
where Colour

ready refers to a kernel supporting time protection with-

out using it, intra-colour measures IPC that does not cross

domains (kernels), while inter-colour does. The last is an arti-

ficial case that does not use a fixed time slice or time padding

(which would defer IPC delivery to the partition switch). We

7
Note that we are not using the mainline kernel, the cycle counts here are

not comparable to what can be found on the seL4 web site.

Table 5. IPC microbenchmark performance and slowdown.

x86 Arm
Version Cycles Slowd. Cycles Slowd.
original 381 - 344 -

colour-ready 386 1% 391 14%

intra-colour 380 0% 395 15%

inter-colour 378 -1% 389 13%

use this to examine the baseline cost of our mechanisms.

Standard deviations from 30 runs are less than 1%.

We find that time protection adds negligible overhead on

x86. On Arm, in contrast, there is a significant baseline cost

for supporting the kernel clone mechanism. This is a result

of the fact that the baseline kernel uses global mappings

to map the kernel’s virtual address space. With multiple

kernels, this is no longer possible. As the L2 TLB of the

Cortex A9 processor, on which the Sabre is based, is only

2-way associative, these additional kernel mappings result in

a significant increase of conflict misses on the cross-address-

space IPC. There is no further overhead from using cloning.

Note that Arm v8 cores have 4-way associativity, so we

expect this overhead to be significantly reduced on the more

recent architecture version.

5.4.2 Domain switch cost
In Table 2 we measured the worst-case cache-flush costs. We

expect those to dominate the cost added to domain switches

by time protection. We test this hypothesis by measuring the

domain-switch latency (without padding) for a number of

our attack workloads; specifically the time taken to switch

from the receiver of a prime&probe attack to an idle domain.

We report the mean for 320 runs, all standard deviations are

less than 1% (Arm) or 3% (x86). An exception is the LLC test,

where original seL4 times have a bimodal distribution and

we report median values (standard deviation: 25% for Arm,

18% for x86).

Table 6 shows the results for our three defence scenarios.

We observe first that the workload dependence of the latency

evident in the raw system has mostly vanished from the de-

fended systems, even without padding. These benchmarks

Table 6. Absolute cost (µs) with no padding of switching

away from a domain running various receivers from Sec-

tion 5.3.2.

Platf. Mode Idle L1-D L1-I L2 L3
x86 Raw 0.18 0.19 0.22 0.23 0.5

Full flush 271 271 271 271 271

Protected 30 30 30 30 30

Arm Raw 0.7 0.8 1.2 1.6 N/A

Full flush 414 414 414 414 N/A

Protected 27 27 27 31 N/A

11

establish a lower bound on the safe padding time. We sec-

ondly notice that, as expected, the full flush latencies match

the flush costs of Table 2. With time protection, the switch

latency is slightly higher than the direct L1-flush cost of

Table 2, confirming our hypothesis that this is the dominant

cost, and also supporting the comment in Section 5.2 that

indirect flush cost are of little relevance for L1 caches.

Most importantly, the results show that our implementa-

tion of time protection imposes significantly less overhead

than the full flush, despite being as effective in removing

timing channels (except for the issues resulting from the lack

of targeted cache flushes discussed in Section 5.3.2). Looking

at these numbers in the context of a 10ms time slice, we can

see that the relative overhead of a full flush would be about

3% in x86 and 4% on the Arm, while for our implementation

of time protection it is only about 0.3% on both processors.

5.4.3 Kernel cloning and destruction cost
Table 7 shows the cost of cloning and destroying kernel

images. We can see that the clone cost is a fraction of that

of creating a process in Linux on the same hardware, while

destroying a kernel is 1–2 orders of magnitude faster still.

5.4.4 The cost of cache colouring
Cache partitioning (through colouring) as we use it for imple-

menting time protection replaces the dynamic partitioning

done by hardware by a static (although OS-changeable) par-

titioning. This can be expected to lead to somewhat less

optimal use of the cache and thus a performance cost, a well-

understood tradeoff. However, static partitioning also leads

to more predictable performance, which was the original

motivation for it [Kessler and Hill 1992; Liedtke et al. 1997;

Lynch et al. 1992]. More recently, cache colouring has also

been proposed as a way for improving performance [Han

et al. 2018; Noll et al. 2018].

Nevertheless, using it as part of mandatory security en-

forcement will in average lead to some performance degra-

dation, particularly if the cache is shared between an appli-

cation with a large and one with a small footprint. Here we

will try to get an idea for the size of this effect, by running a

single benchmark with a reduced (to 75% or 50%) cache size.

Our seL4 kernel with time protection is a research proto-

type, which lacks a Posix-like environment that is expected

by most benchmarks, such as SPEC. As an easily portable

benchmark suite we use Splash-2 [Woo et al. 1995]. These

are obviously quite dated, but for our purposes all we need

Table 7. Cost of cloning (µs) vs. Linux process creation.

seL4 Linux
Arch clone destroy fork+exec
x86 79 0.6 257

Arm 608 67 4,300

-1%
0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

S
lo

w
d

o
w

n

-1%
0%
1%
2%
3%
4%
5%
6%
7%

ba
rn

es

ch
ol
es

ky fft
fm

m lu

oc
ea

n

ra
di
os

ity
ra

di
x

ra
yt
ra

ce

w
at

er
ns

qu
ar

ed

w
at

er
sp

at
ia
l

M
EAN

S
lo

w
d

o
w

n

75% colours base
50% colours base

100% colours clone
75% colours clone
50% colours clone

Figure 7. Slowdowns of Splash-2 benchmarks against base-

line kernel without partitioning for x86 (top) and Arm and

geometric mean. Benchmarks are run as the only process

on the system. The “base” cases use the standard kernel

with reduced cache, the “cloned” cases run the benchmark

on a cloned kernel with the “100% colours” case using an

unpartitioned cache like the baseline.

is something that exercises the LLC. We set the running pa-

rameters to consume 220MiB of heap and 1MiB of stack. We

omit the volrend program due to its Linux dependencies.

Figure 7 shows the slowdown resulting from cache colour-

ing and kernel cloning. We report the mean of 10 repeated

single-threaded runs (standard deviations are below 3%), as

well as the geometric mean across the suite. The benchmark-

ing thread is the only user thread in the system.

On the Arm, cache colouring introduces less than 1% slow-

down for benchmarks, except raytrace, which shows a 6.5%

slowdown when executing with 50% of the cache, as this

benchmark has a large cache working set. However, given

a 75% cache share, the slowdown drops to 2.5%. On top of

this, running on a cloned kernel adds almost no performance

penalty, except on waterspatial, where it is still below 0.5%.

On Haswell, we observe slightly larger performance over-

heads, as we partition based on colours of the relatively small

(256 KiB) L2 cache (which implicitly colours the LLC). The

alternative would be to only colour the LLC and flush the L2,

at the expense of increased domain-switching cost. With no

targeted L2 flush supported by the architecture, this seems

not worthwhile. Still, the majority of the Splash-2 tests only

slow down by less than 2%. Increasing cache share to 75%

limits the overhead to below 3.5%. As for Arm, kernel cloning

adds close to zero overhead.

12

Table 8. Performance impact on Splash-2 of time protection

with 50% colours, including the increased context-switch

latency in a time-shared setup, with and without padding.

On x86, overhead is highest (Max) on ocean and lowest (Min)

on raytrace, on Arm Max is Raytrace, Min is Radix.

x86 Arm
Pad Max Min Mean Max Min Mean
no 10.96% 0.26% 2.76% 6.73% -2.88% 0.75%

yes 11.06% 0.86% 3.38% 7.11% -2.55% 1.09%

5.4.5 The impact of domain switches
The above evaluation of partitioning and cloned kernel

images does not show the effect of the increased context-

switching cost resulting fromflushing on-core state. To evalu-

ate we rerun the Splash-2 benchmarks, now time-sharing the

processor with an idle domain. This measures the effective

reduction of CPU bandwidth from the increased context-

switch latency.

Table 8 shows the result for both architectures. Specifi-

cally we show the benchmarks with the highest and lowest

overhead as well as the geometric mean across the suite.

Without padding, the additional context-switch cost is mini-

mal, indicated by the mean being only slightly higher than in

Figure 7. Padding adds very little on top of that, 0.5% on x86

and 0.3% on Arm. This is consistent with our expectations,

see the discussion of Table 2 in Section 5.2.

6 Discussion
6.1 Strengths and limitations of time protection
The evaluation shows that our implementation of time pro-

tection in seL4 is generally highly effective, and low-cost.

In particular, there is negligible cost of running on a cloned

kernel (except on our Arm v7 processor with its low TLB

associativity), and so are memory overheads, of the order of

100KiB per kernel image and core. Kernel image creation

and destruction is fully dynamic and cheap, compared to the

cost of creating Linux processes (leave alone whole VMs).

Also, time protection consists of a suite of mechanisms

that remove interference on different classes of resources; the

threat model determines which are needed. E.g. in a Cloud

scenario, where timing channels but not covert channels are

an issue, the most expensive operation, padding of domain-

switches to their worst-case latency, may not be needed.

Just as with a multikernel, the separate kernel images do

not prevent sharing of user-level state, if allowed by the

security policy. E.g. shared memory can be set up with a

dedicated colour; the resulting channel would need to be

prevented by ensuring deterministic user-level access.

Re-allocating memory between security domains is possi-

ble in principle, and could be supported by ballooning [Wald-

spurger 2002], but the granularity would have to be that

of a full cache colour, making it fairly expensive. This is a

inevitable consequence of lack of hardware support for more

fine-grained cache partitioning; if better support becomes

available, time protection can make use of it.

Time protection is obviously at themercy of hardware, and

not all hardware provides sufficient support for full temporal

isolation. We have seen this with the x86 L2 channel in

Table 3, which we could not close. We traced this to the

prefetcher, which retains state we cannot flush without a

(prohibitively expensive) flush of the full cache hierarchy.

Prior to Intel adding the IBC feature in a recent microcode

update, the situationwasmuchworse [Ge et al. 2018a], which

indicates that Intel could easily do more. Our earlier work

also shows that recent Arm processors have similar problems,

but as the Arm ISA is not microcoded, it may be impossible

to fix those security holes on existing processors.

The results reinforce the need for a new, security-oriented

hardare-software contract. We have specified the require-

ment on such a contract in detail [Ge et al. 2018a], but it can

be summarised as requiring that:

• the OS must be able to partition or flush any shared

hardware resource

• concurrently-accessed resources must be partitioned

• virtually-addressed state must be flushed.

The resource forwhich contemporary hardwaremost obvi-

ously fails to satisfy this contract is the interconnect (busses),

which cannot be partitioned – this is the reason why we had

to omit cross-core timing channels from our threat model.

While we have argued that these are not relevant in some

important scenarios (see Section 3.1.2), if would clearly be de-

sirable to apply time protection more generally. For example

requiring single-core execution when confining JavaScript

code in a browser is very restrictive. Alas, we are powerless

without appropriate hardware support.

The number of available colours is a potential bottleneck,

especially in a Cloud scenario. Note that in this case only the

LLC needs to be coloured, which has more colours than the

private L2 (32 vs. 8 colours on our Haswell). Furthermore,

the hashing scheme used on the distributed shared LLC on

recent Intel processors increases the number of colours over

that resulting from cache associativity alone [Yarom et al.

2015]. But there is potential for further hardware support.

6.2 Time protection in other systems
There is no reason time protection cannot be implemented in

other systems, although seL4’s design-for-isolation approach

simplifies many things, in particular partitioning kernel data.

Systems like Linux have a kernel heap and far more static

global data, all of which must be partitioned or deterministic

access enforced. While this is probably challenging to do,

there is no fundamental reason why it could not be done.

Cloning a large kernel, such as Linux, will also be more

expensive, yet another argument in favor of a microkernel

13

design. A (small-ish, although still large compared to seL4)

hypervisor such as Xen is probably an easier target.

7 Related Work
Deterministic systems eliminate timing channels by provid-

ing only virtual time; Determinator [Aviram et al. 2010] is

an example aimed at clouds. Ford [2012] extends this model

with scheduled IO. Stopwatch [Li et al. 2013] virtualises time

by running three replicas of a system, then only announces

externally-visible timing events at the median of the times

determined by the replicas. The system is effective but at a

heavy performance penalty.

Bershad et al. [1994]; Kessler and Hill [1992] proposed

page colouring for performance isolation. Liedtke et al.

[1997] proposed the same for improved real-time predictabil-

ity, while Shi et al. [2011] proposed dynamic page colouring

for mitigating attacks against cryptographic algorithms in

the hypervisor. StealthMem [Kim et al. 2012] uses colouring

to provide some safe storage with controlled cache residency.

CATalyst [Liu et al. 2016] uses Intel’s CAT technology for

LLC partitioning for a similar purpose.

Percival [2005] proposed hardware-supported partitioning

of the L1 cache, while Wang and Lee [2007] suggested hard-

ware mechanisms for locking cache lines, called a partition-

locked cache (PLcache). Ge et al. [2018a] investigate short-

comings in architectural support for preventing timing chan-

nels and propose an extended hardware-software contract.

Spectre, Meltdown and Foreshadow (L1TF) [Kocher et al.

2019; Lipp et al. 2018; Van Bulck et al. 2018;Weisse et al. 2018]

exploit covert channels to exfiltrate information from specu-

latively executed instructions. Among the countermeasures

for these attacks, Intel introduced instructions for flushing

the branch predictor [Intel 2018b] and the L1-D cache [Intel

2018a]; we use these in our implementation. Other counter-

measures for these attacks aremostly orthogonal to our work.

Our design is effective at preventing cross-security-domain

Spectre attacks, the other attacks can only be prevented with

(forthcoming) improvements to the hardware.

The idea of using multiple kernel images on a single sys-

tem has been proposed in the past for supporting multi-core

platforms. Corey [Boyd-Wickizer et al. 2008] enhances many-

core scalability by letting the application control the degree

of sharing of kernel data structures. Helios [Nightingale et al.

2009] uses satellite kernels with a common API for seam-

lessly supporting heterogenous computing elements. Multi-

kernels [Baumann et al. 2009] run per-core, shared-nothing

kernel images. Barrellfish/DS [Zellweger et al. 2014] sepa-

rates OS kernel images from physical CPU cores, to support

hot-plugging and energy management.

8 Conclusions
We proposed, implemented and evaluated time protection,
a mandatory, black-box kernel mechanism for preventing

microarchitectural timing channels. It employs a combina-

tion of partitioning and flushing of shared hardware. We

eliminate channels through a shared kernel image through a

policy-free kernel clone mechanism that allows almost com-

plete partitioning of the kernel. It allows constructing a sys-

tem that runs on each core a separate kernel for each security

domain, and also supports partitioning of interrupts, to com-

pletely prevent any cross-domain temporal interference.

Our evaluation shows that the mechanisms are effective

in closing all examined timing channels, while imposing

small to negligible overhead. However, we also observe

that present hardware has significant shortcomings in its

support for preventing interference. This finding strongly

supports our earlier claim that the ISA is an insufficient

hardware-software contract for providing true security, and

that we need an improved, security-oriented contract [Ge

et al. 2018a]. Ideally this contract will also support partition-

ing interconnect channels (see Section 2.3), allowing time

protection to prevent inter-core covert channels (see Sec-

tion 3.1).

Despite those hardware-inflicted limitations, we claim

that the concept of time protection general and overdue.

Implementations will be able to adapt as hardware improves,

and provide better security to a growing class of use cases

Time protection comprises a suite of kernel mechanisms.

Proper integration into the seL4 API is future work, espe-

cially combining it with the recently added temporal in-

tegrity mechanisms [Lyons et al. 2018]. Our ultimate aim is

a verified seL4 with time protection. We have some ideas on

how to achieve this [Heiser et al. 2019] but these are rather

speculative at this point.

Acknowledgments and Availability
This research was supported in part by Intel Corporation,

by a Google Faculty Award, a Google PhD Fellowship and

by the Australian Department of Defence’s Next Generation

Technology Fund.

The raw datasets as well as the toolchain for calculating

M are available for download, see https://ts.data61.csiro.au/
projects/TS/timingchannels/ for details.

References
Onur Acıiçmez. 2007. Yet another microarchitectural attack: exploiting

I-cache. In ACM Computer Security Architecture Workshop (CSAW). ACM,

Fairfax, VA, US, 11–18.

Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. 2010. New Results

on Instruction Cache Attacks. InWorkshop on Cryptographic Hardware
and Embedded Systems. Springer, Santa Barbara, CA, US, 110–124.

Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. 2007. New Branch

Prediction Vulnerabilities in OpenSSL and Necessary Software Coun-

termeasures. In 11th IMA International Conference on Cryptography and
Coding. Springer, Cirencester, UK, 185–203.

Onur Acıiçmez and Jean-Pierre Seifert. 2007. Cheap Hardware Parallelism

Implies Cheap Security. In Fourth International Workshop on Fault Diag-
nosis and Tolerance in Cryptography. IEEE, Vienna, AT, 80–91.

14

https://ts.data61.csiro.au/projects/TS/timingchannels/
https://ts.data61.csiro.au/projects/TS/timingchannels/

ARM Ltd. 2008. ARM Architecture Reference Manual, ARM v7-A and ARM
v7-R. ARM Ltd. ARM DDI 0406B.

Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. 2010.

Determinating timing channels in compute clouds. In ACM Workshop on
Cloud Computing Security. IEEE, Chicago, IL, US, 103–108.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Re-

becca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and

Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture for

Scalable Multicore Systems. In ACM Symposium on Operating Systems
Principles. ACM, Big Sky, MT, US, 29–44.

Brian N. Bershad, D. Lee, Theodore H. Romer, and J. Bradley Chen. 1994.

Avoiding Conflict Misses Dynamically in Large Direct-Mapped Caches.

In Proceedings of the 6th International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, San Jose, CA,

US, 158–170.

Alan C. Bomberger, A. Peri Frantz, William S. Frantz, Ann C. Hardy, Norman

Hardy, Charles R. Landau, and Jonathan S. Shapiro. 1992. The KeyKOS

Nanokernel Architecture. In Proceedings of the USENIX Workshop on
Microkernels and other Kernel Architectures. USENIX Association, Seattle,

WA, US, 95–112.

Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans

Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua

Dai, Yang Zhang, and Zheng Zhang. 2008. Corey: an operating system

for many cores. In Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation. USENIX, San Diego, CA, US, 43–57.

Tom Chothia and Apratim Guha. 2011. A Statistical Test for Information

Leaks Using Continuous Mutual Information. In IEEE Computer Security
Foundations Symposium. IEEE, Cernay-la-Ville, FR, 177–190.

Tom Chothia, Yusuke Kawamoto, and Chris Novakovic. 2013. A Tool for

Estimating Information Leakage. In International Conference on Computer
Aided Verification. ACM, Saint Petersburg, RU, 690–695.

Patrick J. Colp, Jiawen Zhang, James Gleeson, Sahil Suneja, Eyal de Lara,

Himanshu Raj, Stefan Saroiu, and Alec Wolman. 2015. Protecting Data

on Smartphones and Tablets from Memory Attacks. In International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, Istambul, TK, 177–189.

Concurrent Real Time 2012. An Overview of Kernel Text Page Replication in
RedHawk Linux 6.3. Concurrent Real Time.

Jack B. Dennis and Earl C. Van Horn. 1966. Programming Semantics for

Multiprogrammed Computations. Commun. ACM 9 (1966), 143–155.

Department of Defence 1986. Trusted Computer System Evaluation Criteria.
Department of Defence. DoD 5200.28-STD.

Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan

Reineke. 2013. CacheAudit: A Tool for the Static Analysis of Cache Side

Channels. In USENIX Security Symposium. USENIX, Washington, DC,

US, 431–446.

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Un-

derstanding and Mitigating Covert Channels Through Branch Predictors.

ACM Transactions on Architecture and Code Optimization 13, 1 (April

2016), 10.

Bryan Ford. 2012. Plugging side-channel leaks with timing information

flow control. In Proceedings of the 4th USENIX Workschop on Hot Topics
in Cloud Computing. USENIX, Boston, MA, USA, 1–5.

Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018b. A Survey of

Microarchitectural Timing Attacks and Countermeasures on Contem-

porary Hardware. Journal of Cryptographic Engineering 8 (April 2018),

1–27.

Qian Ge, Yuval Yarom, and Gernot Heiser. 2018a. No Security Without Time

Protection: We Need a New Hardware-Software Contract. In Asia-Pacific
Workshop on Systems (APSys). ACM SIGOPS, Korea, Article 1, 9 pages.

Ben Gras, Kaveh Razavi, Herbert Bos, and Christiano Giuffrida. 2018. Trans-

lation Leak-aside Buffer: Defeating Cache Side-channel Protections with

TLB Attacks. In Proceedings of the 27th USENIX Security Symposium.

USENIX, Baltimore, MD, US, 955–972.

David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games –

Bringing Access-Based Cache Attacks on AES to Practice. In Proceedings
of the IEEE Symposium on Security and Privacy. IEEE, Oakland, CA, US,
490–505.

Myeonggyun Han, Seongdae Yu, and Woongki Baek. 2018. Secure and

Dynamic Core and Cache Partitioning for Safe and Efficient Server Con-

solidation. In International Symposium on Cluster Computing and the
Grid. IEEE, Washington, DC, US, 311–320.

Gernot Heiser, Toby Murray, and Gerwin Klein. 2019. Can We Prove

Time Protection? https://arxiv.org/pdf/1901.08338.pdf. arXiv preprint
arXiv:1901.08338 (Jan. 2019), 6.

Wei-Ming Hu. 1991. Reducing timing channels with fuzzy time. In Proceed-
ings of the 1991 IEEE Computer Society Symposium on Research in Security
and Privacy. IEEE Computer Society, Oakland, CA, US, 8–20.

Wei-Ming Hu. 1992. Lattice scheduling and covert channels. In Proceedings
of the IEEE Symposium on Security and Privacy. IEEE, Oakland, CA, US,
52–61.

Deborah Hughes-Hallet, Andrew M. Gleason, Guadalupe I. Lonzano, et al.

2005. Calculus: Single and Multivariable (4 ed.). Wiley, New York, NY,

US.

Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing

Side Channel Attacks Against Kernel Space ASLR. In IEEE Symposium
on Security and Privacy. IEEE, San Francisco, CA, 191–205.

Mehmet Sinan İnci, Berk Gülmezoğlu, Gorka Irazoqui, Thomas Eisenbarth,

and Berk Sunar. 2016. Cache Attacks Enable Bulk Key Recovery on the

Cloud. InWorkshop on Cryptographic Hardware and Embedded Systems.
Springer, Santa Barbara, CA, US, 368–390.

Intel. 2018a. Deep Dive: Intel Analysis of L1 Terminal Fault.

https://software.intel.com/security-software-guidance/insights/deep-
dive-intel-analysis-l1-terminal-fault

Intel. 2018b. Speculative Execution Side Channel Mitigations.

https://software.intel.com/sites/default/files/managed/c5/63/336996-
Speculative-Execution-Side-Channel-Mitigations.pdf

Intel Corporation 2016. Intel 64 and IA-32 Architecture Software Developer’s
Manual Volume 2: Instruction Set Reference, A-Z. Intel Corporation.

http://www.intel.com.au/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-instruction-set-
reference-manual-325383.pdf.

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A Shared

Cache Attack that Works Across Cores and Defies VM Sandboxing – and

its Application to AES. In IEEE Symposium on Security and Privacy. IEEE,
San Jose, CA, US, 591–604.

R. E. Kessler and Mark D. Hill. 1992. Page placement algorithms for large

real-indexed caches. ACM Transactions on Computer Systems 10 (1992),
338–359.

Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. StealthMem:

system-level protection against cache-based side channel attacks in the

cloud. In Proceedings of the 21st USENIX Security Symposium. USENIX,

Bellevue, WA, US, 189–204.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas

Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Comprehensive For-

mal Verification of an OS Microkernel. ACM Transactions on Computer
Systems 32, 1 (Feb. 2014), 2:1–2:70.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Haburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,

Michael Schwartz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting

Speculative Execution. In IEEE Symposium on Security and Privacy. IEEE,
San Francisco, 19–37.

Boris Köpf, Laurent Mauborgne, and Martín Ochoa. 2012. Automatic Quan-

tification of Cache Side-Channels. In Proceedings of the 24th International
Conference on Computer Aided Verification. Springer, Berkeley, CA, US,
564–580.

Butler W. Lampson. 1973. A Note on the Confinement Problem. Commun.
ACM 16 (1973), 613–615.

15

https://software.intel.com/security-software-guidance/ insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/ insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/sites/default/files/managed/c5/ 63/ 336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/ 63/ 336996-Speculative-Execution-Side-Channel-Mitigations.pdf
http://www.intel.com.au/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com.au/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com.au/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

Roy Levin, Ellis S. Cohen, WilliamM. Corwin, Fred J. Pollack, andWilliam A.

Wulf. 1975. Policy/Mechanism Separation in HYDRA. In ACM Sympo-
sium on Operating Systems Principles. ACM, Austin, TX, US, 132–140.

Peng Li, Debin Gao, and Michael K Reiter. 2013. Mitigating access-driven

timing channels in clouds using StopWatch. In Proceedings of the 43rd
International Conference on Dependable Systems and Networks (DSN).
IEEE, Budapest, HU, 1–12.

Jochen Liedtke, Hermann Härtig, and Michael Hohmuth. 1997. OS-

controlled cache predictability for real-time systems. In IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE,
Montreal, CA, 213–223.

Moritz Lipp, Michael Schwartz, Daniel Gruss, Thomas Prescher, Werner

Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel

Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading Ker-

nel Memory from User Space. In USENIX Security Symposium. USENIX,

Baltimore, MD, USA, –.

Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot

Heiser, and Ruby B Lee. 2016. CATalyst: Defeating Last-Level Cache

Side Channel Attacks in Cloud Computing. In IEEE Symposium on High-
Performance Computer Architecture. IEEE, Barcelona, Spain, 406–418.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015.

Last-Level Cache Side-Channel Attacks are Practical. In IEEE Symposium
on Security and Privacy. IEEE, San Jose, CA, US, 605–622.

William L. Lynch, Brian K. Bray, and M. J. Flynn. 1992. The effect of page

allocation on caches. In ACM/IEE International Symposium on Microar-
chitecture. IEEE, Portland, OR, US, 222–225.

Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot Heiser. 2018.

Scheduling-Context Capabilities: A Principled, Light-Weight OS Mecha-

nism for Managing Time. In EuroSys Conference. ACM, Porto, Portugal,

Article 26, 16 pages.

Andrew Marshall, Michael Howard, Grant Bugher, and Brian Harden.

2010. Security best practices for developing Windows Azure appli-

cations. https://docs.microsoft.com/en-us/azure/security/security-best-
practices-and-patterns

Clémentine Maurice, Manuel Weber, Michael Schwartz, Lukas Giner, Daniel

Gruss, Carlo Alberto Boano, Kay Römer, and StefanMangard. 2017. Hello

from the Other Side: SSH over Robust Cache Covert Channels in the

Cloud. In Network and Distributed System Security Symposium (NDSS).
USENIX, San Diego, CA, US, 15.

Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy

Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. 2013.

seL4: from General Purpose to a Proof of Information Flow Enforcement.

In IEEE Symposium on Security and Privacy. IEEE, San Francisco, CA,

415–429.

Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and

Galen Hunt. 2009. Helios: Heterogeneous Multiprocessing with Satellite

Kernels. In ACM Symposium on Operating Systems Principles. ACM, Big

Sky, MT, US, 221–234.

Stefan Noll, Jens Teubner, Norman May, and Alexander Böhm. 2018. Accel-

erating Concurrent Workloads with CPU Cache Partitioning. In Interna-
tional Conference on Data Engineering. IEEE, Paris, FR, 437–448.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and

Countermeasures: The Case of AES. In Proceedings of the 2006 Crytogra-
phers’ track at the RSA Conference on Topics in Cryptology. Springer, San
Jose, CA, US, 1–20.

Colin Percival. 2005. Cache Missing for Fun and Profit. In BSDCan 2005.
Ottawa, CA, 13. http://css.csail.mit.edu/6.858/2014/readings/ht-cache.
pdf

Sean Peters, Adrian Danis, Kevin Elphinstone, and Gernot Heiser. 2015. For

a Microkernel, a Big Lock Is Fine. In Asia-Pacific Workshop on Systems
(APSys). ACM, Tokyo, JP, Article 3, 7 pages.

Marvin Schaefer, Barry Gold, Richard Linde, and John Scheid. 1977. Program

Confinement in KVM/370. In Proceedings of the Annual ACM Conference.

ACM, Atlanta, GA, US, 404–410.

Claude E. Shannon. 1948. A Mathematical Theory of Communication.

The Bell System Technical Journal 27 (1948), 379–423. Reprinted in

SIGMOBILE Mobile Computing and Communications Review, 5(1):3–55,

2001.

Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. 1999. EROS:

A Fast Capability System. In ACM Symposium on Operating Systems
Principles. ACM, Charleston, SC, USA, 170–185.

Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. 2011. Limiting cache-

based side-channel in multi-tenant cloud using dynamic page coloring. In

International Conference on Dependable Systems and Networks Workshops
(DSN-W). IEEE, HK, 194–199.

Bernard W. Silverman. 1986. Density estimation for statistics and data anal-
ysis. Chapman & Hall, London, UK.

Jo Van Bulck, Marina Minkin, Ofir Weiss, Daniel Genkin, Baris Kasikci,

Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and

Raoul Stracks. 2018. Foreshadow: Extracting the Keys to the Intel SGX

Kingdom with Transient Out-of-Order Execution. In USENIX Security
Symposium. USENIX, Baltimore, 991–1008.

Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.

2018. Malicious Management Unit: Why Stopping Cache Attacks in

Software is Harder Than You Think. In Proceedings of the 27th USENIX
Security Symposium. USENIX, Baltimore, MD, US, 937–954.

Vish Viswanathan. 2014. Disclosure of H/W Prefetcher Control on some

Intel Processors. https://software.intel.com/en-us/articles/disclosure-
of-hw-prefetcher-control-on-some-intel-processors

VMware Knowledge Base. 2014. Security Considerations and Disallowing

inter-Virtual Machine Transparent Page Sharing. VMware Knowledge

Base 2080735 http://kb.vmware.com/selfservice/microsites/search.do?
language=en_US&cmd=displayKC&externalId=2080735.

Carl A. Waldspurger. 2002. Memory Resource Management in VMware

ESX Server. In Proceedings of the 5th USENIX Symposium on Operating
Systems Design and Implementation. USENIX, Boston, MA, US, 181–194.

Yao Wang and G Edward Suh. 2012. Efficient timing channel protection

for on-chip networks. In Proceedings of the 6th ACM/IEEE International
Symposium on Networks on Chip. IEEE, Lyngby, Denmark, 142–151.

ZhenghongWang and Ruby B. Lee. 2007. New Cache Designs for Thwarting

Software Cache-based Side Channel Attacks. In Proceedings of the 34th
International Symposium on Computer Architecture. ACM, San Diego, CA,

US, 494–505.

Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci,

Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch,

and Yuval Yarom. 2018. Foreshadow-NG: Breaking the Virtual Mem-

ory Abstraction with Transient Out-of-Order Execution. https://
foreshadowattack.eu/foreshadow-NG.pdf.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh,

and Anoop Gupta. 1995. The SPLASH-2 Programs: Characterization and

Methodological Considerations. In Proceedings of the 22nd International
Symposium on Computer Architecture. ACM, S. Margherita Ligure, IT,

24–36.

John C. Wray. 1991. An analysis of covert timing channels. In Proceedings
of the 1991 IEEE Computer Society Symposium on Research in Security and
Privacy. IEEE, Oakland, CA, US, 2–7.

Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the Hyper-

space: High-speed Covert Channel Attacks in the Cloud. In Proceedings
of the 21st USENIX Security Symposium. USENIX, Bellevue, WA, US, 159–

173.

Yuval Yarom. 2017. Mastik: A Micro-Architectural Side-Channel Toolkit.

http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf.
Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: a High Resolution,

Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the 23rd
USENIX Security Symposium. USENIX, San Diego, CA, US, 719–732.

Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser. 2015.

Mapping the Intel Last-Level Cache. http://eprint.iacr.org/.

16

https://docs.microsoft.com/en-us/azure/security/ security-best-practices-and-patterns
https://docs.microsoft.com/en-us/azure/security/ security-best-practices-and-patterns
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
https://software.intel.com/en-us/articles/ disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/ disclosure-of-hw-prefetcher-control-on-some-intel-processors
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2080735
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2080735
https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2016. CacheBleed: A

Timing Attack on OpenSSL Constant Time RSA. In Conference on Cryp-
tographic Hardware and Embedded Systems 2016 (CHES 2016). Springer,
Santa Barbara, CA, US, 346–367.

Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha.

2013. MemGuard: Memory Bandwidth Reservation System for Effi-

cient Performance Isolation in Multi-core Platforms. In IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE,
Philadelphia, PA, US, 55–64.

Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe.

2014. Decoupling Cores, Kernels, and Operating Systems. In USENIX
Symposium on Operating Systems Design and Implementation. USENIX,
Broomfield, CO, US, 17–31.

Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012.

Cross-VM side channels and their use to extract private keys. In Pro-
ceedings of the 19th ACM Conference on Computer and Communications
Security. ACM, Raleigh, NC, US, 305–316.

17

	Abstract
	1 Introduction
	2 Background
	2.1 Covert channels and side channels
	2.2 Microarchitectural channels
	2.3 Countermeasures
	2.4 seL4

	3 Attacks and Defences
	3.1 Threat scenarios
	3.2 Time protection
	3.3 Partitioning the OS: Cloning the kernel

	4 Implementation in seL4
	4.1 Kernel clone overview
	4.2 Partitioning interrupts
	4.3 Domain-switch actions
	4.4 Kernel destruction

	5 Evaluation
	5.1 Methodology
	5.2 Hardware platforms
	5.3 Timing channel mitigation efficacy
	5.4 Performance

	6 Discussion
	6.1 Strengths and limitations of time protection
	6.2 Time protection in other systems

	7 Related Work
	8 Conclusions
	References

