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Abstract

We compare major factor models and find that the Stambaugh and Yuan (2016) four-factor

model is the overall winner in the time-series domain. The Hou, Xue, and Zhang (2015)

q-factor model takes second place and the Fama and French (2015) five-factor model and

the Barillas and Shanken (2018) six-factor model jointly take third place. But the pairwise

cross-sectional R2 and the multiple model comparison tests show that the Hou, Xue, and

Zhang (2015) q-factor model, the Fama and French (2015) five-factor and four-factor models,

and the Barillas and Shanken (2018) six-factor model take equal first place in the horse race.
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I. Introduction

Starting with the classic capital asset pricing model of Sharpe (1964) and Lintner (1965), the

finance literature has been in search for a model that explains the cross-section of expected

returns on assets. This had led to the development of a wide variety of factor pricing models in

recent years. Although all of these models are merely approximations of reality (Barillas and

Shanken, 2018; Gospodinov, Kan, and Robotti, 2013; Kan and Robotti, 2009; Kan, Robotti,

and Shanken, 2013), it is important from an academic and practitioner perspective to know

which model provides the best overall description of asset returns. For example, there is ample

evidence, both empirical and anecdotal, that portfolio managers most often use the capital

asset pricing model and a variety of multifactor models to compute expectations of returns

(see, among others, Ang, 2014; Brealey, Myers, and Allen, 2016; Fischer and Wermers, 2012;

Gitman and Mercurio, 1982; Graham and Harvey, 2001; Grinold and Kahn, 1995; Jagannathan

and Meier, 2002). In this connection, Fama and French (2016) compare the performance of the

recently proposed five-factor model of Fama and French (2015) and models that use subsets

of its factors. Along this line of research, Hou, Xue, and Zhang (2017a) and Stambaugh and

Yuan (2016) also investigate the performance of several prominent asset pricing models. All of

these papers examine the relative performance of factor pricing models in time-series regressions

using various test asset portfolios, but without the use of any formal statistical procedure that

takes into account the sampling and model misspecification uncertainty. However, Barillas

and Shanken (2017), Harvey and Liu (2017), Kan and Robotti (2009), and Kan, Robotti, and

Shanken (2013), among others, emphasize that the practice of identifying the best model(s)

simply by comparing point estimates of pricing performance metrics can be misleading.

In this paper, we go beyond the vast majority of empirical studies by statistically comparing

the performance of a much larger array of both classic and new-generation asset pricing models

in explaining several prominent return anomalies. Our array comprises the capital asset pricing

model of Sharpe (1964) and Lintner (1965), the Fama and French (1993) three-factor model, the

Fama and French (1993) and Carhart (1997) four-factor model, the Fama and French (1993)

and Pástor and Stambaugh (2003) four-factor model, the Asness and Frazzini (2013) three-

factor model, the Hou, Xue, and Zhang (2015) q-factor model, the Fama and French (2015)

five-factor model, the four-factor model of Fama and French (2015) that drops the “high minus

low” value factor, the Stambaugh and Yuan (2016) four-factor model, and the Barillas and

Shanken (2018) six-factor model. Although recent research (see Harvey, Liu, and Zhu, 2016;

McLean and Pontiff, 2016) documents hundreds of potential traded and nontraded factors that

explain the cross-section of stock returns, we limit ourselves to these traded factor models for
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two reasons. First, these models have survived as the prominent if not the best models over the

years. Importantly, most of our chosen models are frequently used for risk-adjustment purposes

in the empirical asset pricing literature (see, for example, Bali, Cakici, and Whitelaw, 2011; Bali,

Engle, and Murray, 2016; Gu, 2016; Hirshleifer, Hsu, and Li, 2017; Kuehn, Simutin, and Wang,

2017). Second, focusing only on return factor models allows us to explore their performance in

both the time-series and the cross-sectional domains. Moreover, given the plethora of models,

investigating the ten prominent factor models keeps the model comparison exercise at a reliably

manageable level. Hence, our empirical examination of the relative model performance can be

viewed as a search for the best of the best factor pricing models.

As in many recent papers (see, among others, Fama and French, 2015, 2016, 2017; Hou,

Karolyi, and Kho, 2011; Hou, Xue, and Zhang, 2015, 2017a; Stambaugh and Yuan, 2016), we

begin by applying our chosen factor models to the data and informally comparing them using

a comprehensive set of pricing performance metrics estimated in the time-series domain. We

then employ the pairwise test for equality of cross-sectional regression R2s introduced by Kan,

Robotti, and Shanken (2013). A key advantage of the sample cross-sectional R2 test is that

the testing procedure takes into account the impact of potential model misspecification and

therefore ensures robust and valid statistical inference regarding relative performance. This

also enables us to see how different are our informal findings on relative model performance

in the time-series domain from those of the cross-sectional statistical evidence. However, the

pairwise model comparison may not always determine unambiguously the best factor model

when multiple models are involved in the horse race (Barillas, Kan, Robotti, and Shanken,

2017; Gospodinov, Kan, and Robotti, 2013; Kan, Robotti, and Shanken, 2013). To address this

concern, we also conduct a multiple model comparison, following Kan, Robotti, and Shanken

(2013), which identifies whether a “benchmark” asset pricing model significantly outperforms a

set of alternative models in terms of the cross-sectional regression R2.

To investigate the strengths and weaknesses of competing factor pricing models, choosing

among test assets based on numerous predictive signals (see, for example, Green, Hand, and

Zhang, 2014) is a challenge. In this regard, we follow prior empirical studies (see, among

others, Fama and French, 1997, 2008, 2016; Feng, Giglio, and Xiu, 2017; Kan, Robotti, and

Shanken, 2013; Kozak, Nagel, and Santosh, 2017; Stambaugh and Yuan, 2016), especially the

suggestion of Lewellen, Nagel, and Shanken (2010), while keeping our analyses parsimonious.

We choose subsets of test assets representative of major anomaly categories, such as investment,

profitability, intangibles, and trading frictions, documented in the literature (see Green, Hand,

and Zhang, 2014; Hou, Xue, and Zhang, 2015, 2017a,b, and references therein). Specifically,
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the sets of test assets used in this paper are the value-weighted monthly excess returns on:

the 25 size-STR (short-term reversal) portfolios, the 25 size-CI (abnormal capital investment)

portfolios, the 25 size-DR (distress risk) portfolios, the 25 size-β (market beta) portfolios, the 35

size-NI (net share issues) portfolios, the 25 size-MAX (lottery demand) portfolios, the 25 size-

RVar (residual variance) portfolios, the 25 size-AC (accruals) portfolios, the 30 IND (industry)

portfolios, and the 8 D10´1 (high minus low decile) portfolios. These test asset portfolios

capture a vast cross-section of return anomalies; at the same time, a majority of them are readily

available in the public domain, as described in the next section. More importantly, many of our

test asset portfolios pose a greater challenge to existing asset pricing models (see, for example,

Fama and French, 2016). Different from Hou, Xue, and Zhang (2017a) and Stambaugh and

Yuan (2016), our rationale for using the eight sets of independent two-way sorted portfolios is

that they allow us to see how well the competing factor models accommodate anomaly returns

across size groups. In fact, asset pricing models have systematic problems explaining average

returns on small stocks (see Fama and French, 1993, 1996, 2015, 2016, 2017).

Our time-series analyses using point estimates of an exhaustive set of pricing performance

measures demonstrate that the Stambaugh and Yuan (2016) four-factor model is the overall

winner among all the asset pricing models in explaining anomalies. For example, the model

outperforms, though informally, the competing models by producing the smallest point estimates

for the average absolute alpha and a variant of the alpha dispersion metric in half of the sets of

test asset portfolios. Considering the metric measuring the dispersion (second moment) of the

alphas due to sampling error, we see that the Stambaugh and Yuan (2016) four-factor model

delivers the largest point estimate in four out of the ten sets of test portfolios. Moreover, the

model generates the least number of statistically significant alphas for six portfolio sets. The

Hou, Xue, and Zhang (2015) q-factor model does a reasonably good job in accommodating

anomaly returns and takes second place in the horse race. For example, the q-factor model

produces insignificant alphas for all 25 of the size-DR portfolios. The model also offers the

largest point estimate for the dispersion (second moment) of the alphas, due to sampling error,

in three sets of test asset portfolios. Among the remaining competing models, the Fama and

French (2015) five-factor model and the Barillas and Shanken (2018) six-factor model perform

about equally well and take equal third place. Both of them deliver the largest point estimate

for the average time-series regression R2 in five out of the ten sets of portfolios. Looking at the

42 small size portfolios across the eight anomaly variables, we find that all of our asset pricing

models have difficulties explaining their returns – an observation consistent with prior studies.

When the model comparison exercises are carried out based on pairwise tests of equality
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of sample cross-sectional R2s and multiple model comparison tests, a different but statistically

valid picture emerges. Overall, we find that the Hou, Xue, and Zhang (2015) q-factor model,

the Fama and French (2015) five-factor model, the four-factor model of Fama and French (2015)

that drops the value factor, and the Barillas and Shanken (2018) six-factor model, all perform

about equally well, and so jointly take first place in the horse race. More importantly, these

asset pricing models are never statistically dominated at the 5% level in any of our multiple

model comparison analyses. The Stambaugh and Yuan (2016) four-factor model, which is the

top performer in the time-series analyses, now takes the next place. Different from most studies

in the time-series domain (see, for example, Fama and French, 1996, 2016; Hou, Xue, and

Zhang, 2015, 2017a), we also find that the capital asset pricing model of Sharpe (1964) and

Lintner (1965) performs reasonably well. All of these findings remain robust irrespective of

cross-sectional regression methodologies and normal and sequential tests for nonnested models.

Taken together, our statistical evidence from the cross-sectional analyses reinforces the ar-

gument of Barillas and Shanken (2017), Harvey and Liu (2017), and Kan and Robotti (2009)

that the common practice of identifying the superior model(s) by informally comparing pricing

performance metrics can lead to erroneous conclusions. Importantly, the empirical results in

this paper also contribute to the growing literature on assessing the performance of asset pricing

models and have valuable implications for practical applications, including capital budgeting,

equity valuation, quantitative investment management, and fund performance evaluation. For

example, the Fama and French (1993) and Carhart (1997) four-factor model is the current

workhorse model in evaluating mutual fund performance (see, among others, Ang, 2014; Fama

and French, 2010; Fischer and Wermers, 2012). Given our cross-sectional statistical evidence

on the superior performance of the Hou, Xue, and Zhang (2015) q-factor model, the Fama and

French (2015) five-factor and four-factor models, and the Barillas and Shanken (2018) six-factor

model, all of them can be applied in this area.

Our paper differs from several recent papers that compare model performance, as we employ

misspecification robust statistical tests on a much larger array of factor pricing models in the

cross-sectional domain. Some of these papers include Fama and French (2016), Hou, Xue, and

Zhang (2017a), and Stambaugh and Yuan (2016). For instance, Fama and French (2016) show

that the five-factor model of Fama and French (2015) accommodates several return anomalies

not explained by the Fama and French (1993) three-factor model. But the authors compare the

performance of the Fama and French (2015) five-factor model only with that of models that use

subsets of those same five factors. Stambaugh and Yuan (2016) compare the performance of

their version of the four-factor model with that of only three other models, namely the Fama and
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French (1993) three-factor model, the Fama and French (2015) five-factor model, and the Hou,

Xue, and Zhang (2015) q-factor model. Using one-way (univariate) sorted anomaly portfolios

in the time-series regressions, the authors show that their four-factor model, also known as

the mispricing factor model, performs the best. Likewise, Hou, Xue, and Zhang (2017a) show

that the q-factor model of Hou, Xue, and Zhang (2015) outperforms the Fama and French

(2015) five-factor model in explaining a wide array of asset pricing anomalies. However, their

list of models in the horse race excludes the newly proposed four-factor model of Stambaugh

and Yuan (2016). More recently, Barillas and Shanken (2018) develop a Bayesian framework

for comparing return factor models in terms of their posterior probabilities. But it requires

formulating priors on the pricing errors and therefore empirical results can be sensitive. In this

context, the pairwise cross-sectional R2 equality test of Kan, Robotti, and Shanken (2013) that

we use in this paper is much simpler to implement where both traded and nontraded factor

pricing models can be evaluated and allows for fairly reliable statistical inferences to be drawn.

Finally, Barillas, Kan, Robotti, and Shanken (2017) compare eight asset pricing models based

on their maximum squared Sharpe ratios. But our model comparison analyses utilizing return

anomalies also show the strengths and weaknesses of the ten prominent asset pricing models.

The remainder of the paper is organized as follows. Section II describes the factor pricing

models, the sets of return anomaly portfolios that are used as test assets, and the metrics for

comparing model performance in explaining these anomalies. Section III discusses the results

from the time-series regressions, while Section IV summarizes the results from the cross-sectional

regressions. Finally, Section V concludes the paper. A separate Internet Appendix contains

further details on test assets, robustness tests, and additional results.

II. Factor models and anomaly portfolios

A. Competing models

We examine the ability of ten different factor pricing models to explain the average excess

returns of portfolios sorted on several well-known anomaly variables. These models are: (1)

the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), which includes

only a market factor; (2) the Fama and French (1993) three-factor (FF3) model, which extends

the CAPM by including empirically motivated size and value factors; (3) the Fama and French

(1993) and Carhart (1997) four-factor (FFC) model, which adds a momentum factor to the

FF3 model; (4) the Fama and French (1993) and Pástor and Stambaugh (2003) four-factor

(FFPS) model, which combines a traded liquidity factor with those of the FF3 model; (5) the
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Asness and Frazzini (2013) three-factor (FFAF) model, which adds a more “timely” version of

the value factor to the market and size factors of the FF3 model; (6) the Hou, Xue, and Zhang

(2015) q-factor (HXZ) model, comprising market, size, investment, and profitability factors;

(7) the Fama and French (2015) five-factor (FF5) model, consisting of market, size, value,

profitability, and investment factors; (8) the four-factor (FF4) model, which drops the value

factor of the FF5 model; (9) the Stambaugh and Yuan (2016) four-factor (SY4) model, which

comprises market, size, and two mispricing factors; and (10) the Barillas and Shanken (2018)

six-factor (BS6) model, comprising the market, size, and momentum factors of the FF5 model,

the profitability and investment factors of the HXZ model, and the value factor of the FFAF

model. The time-series regression specifications of these factor models are as follows:

rei,t “ αi,CAPM ` βi,MKTMKTt ` εi,t, (1)

rei,t “ αi,FF3 ` βi,MKTMKTt ` βi,SMB˚SMB˚t ` βi,HMLHMLt ` εi,t, (2)

rei,t “ αi,FFC ` βi,MKTMKTt ` βi,SMB˚SMB˚t ` βi,HMLHMLt ` βi,UMDUMDt ` εi,t, (3)

rei,t “ αi,FFPS ` βi,MKTMKTt ` βi,SMB˚SMB˚t ` βi,HMLHMLt ` βi,LIQLIQt ` εi,t, (4)

rei,t “ αi,FFAF ` βi,MKTMKTt ` βi,SMB˚SMB˚t ` βi,HMLmHMLmt ` εi,t, (5)

rei,t “ αi,HXZ ` βi,MKTMKTt ` βi,MErME,t ` βi,I/ArI/A,t ` βi,ROErROE,t ` εi,t, (6)

rei,t “ αi,FF5 ` βi,MKTMKTt ` βi,SMBSMBt ` βi,HMLHMLt ` βi,RMWRMWt

` βi,CMACMAt ` εi,t, (7)

rei,t “ αi,FF4 ` βi,MKTMKTt ` βi,SMBSMBt ` βi,RMWRMWt ` βi,CMACMAt ` εi,t, (8)

rei,t “ αi,SY4 ` βi,MKTMKTt ` βi,SMBM
SMBM,t ` βi,MGMTMGMTt ` βi,PERFPERFt

` εi,t, (9)

rei,t “ αi,BS6 ` βi,MKTMKTt ` βi,SMBSMBt ` βi,I/ArI/A,t ` βi,ROErROE,t ` βi,HMLmHMLmt

` βi,UMDUMDt ` εi,t, (10)

where rei,t “ ri,t ´ rf,t is the period t return on asset i in excess of the risk-free rate; MKTt,

SMB˚t (small minus big), and HMLt (high minus low) are, respectively, the market, size, and

value factors of Fama and French (1993); LIQt is the traded liquidity factor of Pástor and

Stambaugh (2003); HMLmt is the value factor of Asness and Frazzini (2013); rME,t, rI/A,t, and

rROE,t are, respectively, the size, investment, and profitability factors of Hou, Xue, and Zhang

(2015); SMBt, RMWt (robust minus weak), CMAt (conservative minus aggressive), and UMDt

(up minus down) are, respectively, the size, profitability, investment, and momentum factors

of Fama and French (2015, 2016); and SMBM,t, MGMTt, and PERFt are the size and two
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mispricing factors of Stambaugh and Yuan (2016), respectively.

Before proceeding to the factor model regression analyses in the subsequent sections, we

now briefly describe the factors of interest. Fama and French (1993) construct the market

factor, MKT, as the return on the value-weighted portfolio of all US-based common stocks in

the Center for Research in Security Prices database minus the one-month Treasury bill rate

from Ibbotson Associates. The SMB˚ and HML factors come from independent 2 ˆ 3 sorts

of stocks on size (i.e., equity market capitalization) and book-to-market equity ratio (B/M).

The intersections of the two size and three B/M groups produce six value-weighted portfolios.

The original size factor, SMB˚, is the average of the returns on the three small stock portfolios

minus the average of the returns on the three big stock portfolios. The value factor, HML, is

the average of the returns on the two high B/M portfolios minus the average of the returns on

the two low B/M portfolios. Adopting a seemingly small modification to the HML value factor

of the FF3 model, Asness and Frazzini (2013) construct a more “timely” version of the value

factor, denoted HMLm, based on B/M rankings that use the most recent monthly stock price

in the denominator.

Pástor and Stambaugh (2003) sort stocks into deciles of liquidity risk exposure estimate and

construct their liquidity factor, LIQ, as the difference in value-weighted returns between the top

and bottom decile portfolios. The excess return factors constructed by Hou, Xue, and Zhang

(2015) use independent 2 ˆ 3 ˆ 3 sorts of stocks on size, investment measured by investment-

to-assets ratio (I/A), and profitability measured by return on equity (ROE). The intersections

of the two size, three I/A, and three ROE groups produce 18 value-weighted portfolios. The

size factor, rME, is the average of the nine small stock portfolio returns minus the average of

the nine big stock portfolio returns. The investment factor, rI/A, is the average of the six low

I/A portfolio returns minus the average of the six high I/A portfolio returns. Similarly, the

profitability factor, rROE, is the average of the returns on the six high ROE portfolios minus

the average of the returns on the six low ROE portfolios. A feature of these excess return

factors that distinguishes them from those of other asset pricing model factors is that they are

constructed using stocks of nonfinancial firms with a nonnegative B/M only.

Departing from the original size factor SMB˚ of the FF3 model, Fama and French (2015,

2016) construct their size factor SMB as the average of the value-weighted returns on the nine

small stock portfolios of the three independent 2 ˆ 3 sorts minus the average of the value-

weighted returns on the nine big stock portfolios. The profitability, investment, and momentum

factors are, respectively, from independent 2ˆ3 sorts of stocks on size and operating profitability

(OP), independent 2ˆ 3 sorts of stocks on size and investment (Inv) measured by asset growth,
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and independent 2ˆ 3 sorts of stocks on size and momentum, denoted MOM (measured as the

cumulative average return over the past 12 months, skipping the most recent month’s return). In

each case, the intersections of the sorts produce six value-weighted portfolios. The profitability

factor RMW is then the average of the returns on the two high OP portfolios minus the average

of the returns on the two low OP portfolios. Likewise, CMA is the average of the two low

Inv portfolio returns minus the average of the two high Inv portfolio returns. The momentum

factor, UMD, is the average of the two up (i.e., high value of MOM) portfolio returns minus the

average of the two down (i.e., low value of MOM) portfolio returns. Fama and French (2015,

2016) show that their value factor, HML, is redundant in explaining the cross-section of average

US stock returns. We, therefore, include the FF4 model, on the grounds of parsimony.1 It is

worth highlighting that although the FF4 model includes return factors that are designed to

capture risk premiums similar to those of factors in the HXZ model, the factor constructions

are very different in these models. For example, the profitability factor rROE is from monthly

sorts on ROE, whereas RMW is from annual sorts on OP.

Stambaugh and Yuan (2016) introduce two mispricing factors from a set of 11 prominent

return anomalies documented in the literature (see, for example, Stambaugh, Yu, and Yuan,

2015). The first mispricing factor, denoted MGMT, makes use of information from a cluster

of anomaly variables, including NI, composite equity issues, AC, net operating assets, asset

growth, and I/A. The second mispricing factor, PERF, comes from another cluster of anomalies,

comprising financial distress, O-score bankruptcy probability, momentum, gross profitability,

and return on assets. Specifically, the authors construct two composite mispricing measures, P1

and P2, on a monthly basis for each stock by averaging its rankings with respect to the anomaly

measures within each of the aforementioned clusters. Their next step entails the formation of

six value-weighted portfolios from independent 2ˆ3 sorts of stocks on market capitalization and

a composite mispricing measure P1. The authors repeat the two-way sorting except the second

sort is on the composite mispricing measure P2. The mispricing factor MGMT, related to firm

management, is then the average of the two low P1 (underpriced) portfolio returns minus the

average of the two high P1 (overpriced) portfolio returns. The other mispricing factor, PERF,

which is related more to firm performance, is the average of the returns on the two low P2

portfolios minus the average of the returns on the two high P2 portfolios. In addition to these

factors, Stambaugh and Yuan (2016) construct their version of the size factor, denoted SMBM ,

using stocks that are least likely to be mispriced. Notably, the size factor SMBM in a given

1 Xing (2008) introduces an investment growth factor and shows that the pricing factor contains information
similar to that of the HML factor. Recently, Hou, Xue, and Zhang (2015) claim that the value factor HML is a
noisy version of their investment factor rI/A.
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month consists of stocks that are not used in forming either of the mispricing factors. As a

result, the construction of SMBM differs significantly from that of the SMB˚ and SMB factors.

We source data on the risk-free rate, and the MKT, SMB˚, SMB, HML, UMD, RMW, and

CMA factors from the Internet Data Library maintained by Kenneth R. French.2 The data

on the rME, rI/A, and rROE factors are obtained from Lu Zhang’s website,3 while the data on

the LIQ factor are from Ľuboš Pástor’s website.4 We collect data on the size factor SMBM

and the two mispricing factors, MGMT and PERF, from Yu Yuan’s website.5 The data on

the alternative version of the value factor, HMLm, are sourced from the AQR Data Library.6

Finally, our sample period spans January 1968 to December 2016. To conserve space, we provide

factor correlations in Table IA1 of the Internet Appendix.

B. Anomaly portfolios

To identify the strengths and weaknesses of our asset pricing models, we make use of several

prominent return anomalies targeted in prior studies (see Bali, Cakici, and Whitelaw, 2011;

Fama and French, 1997, 2016, 2017; Feng, Giglio, and Xiu, 2017; Hou, Xue, and Zhang, 2017a;

Kozak, Nagel, and Santosh, 2017; Linnainmaa and Roberts, 2016). The list comprises STR

(see Lehmann, 1990; Jegadeesh, 1990), CI (see Titman, Wei, and Xie, 2004), DR (see Bharath

and Shumway, 2008; Campbell, Hilscher, and Szilagyi, 2008), market β (see Black, Jensen,

and Scholes, 1972; Fama and MacBeth, 1973; Frazzini and Pedersen, 2014), NI (see Ikenberry,

Lakonishok, and Vermaelen, 1995; Loughran and Ritter, 1995), MAX (see Bali, Cakici, and

Whitelaw, 2011), RVar (see Ang, Hodrick, Xing, and Zhang, 2006; Fu, 2009), and AC (see

Sloan, 1996). Our test assets are from independent two-way sorts of NYSE-, AMEX-, and

NASDAQ-listed ordinary common stocks on size and each of the return anomaly variables from

the above list.7 Specifically, the sets of test assets used in the empirical analyses include the

value-weighted monthly excess returns on the 25 size-STR portfolios, the 25 size-CI portfolios,

the 25 size-DR portfolios, the 25 size-β portfolios, the 35 size-NI portfolios, the 25 size-MAX

portfolios, the 25 size-RVar portfolios, and the 25 size-AC portfolios. As a further assessment

of our factor pricing models, we make use of the value-weighted monthly excess returns on the

30 IND (see Fama and French, 1997) portfolios and the 8 D10´1 portfolios associated with

one-way sorts on STR, CI, DR, market β, NI, MAX, RVar, and AC.8 The inclusion of all these

2 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
3 See https://sites.google.com/site/theqfactormodel/?pli=1.
4 See http://faculty.chicagobooth.edu/lubos.pastor/research/.
5 See http://www.saif.sjtu.edu.cn/facultylist/yyuan/.
6 See https://www.aqr.com/library/data-sets/the-devil-in-hmls-details-factors-monthly.
7 We thank an anonymous referee for suggesting some of the test asset portfolios used in the empirical analyses.
8 To conserve space, we omit definitions of the anomaly variables and details of the portfolio construction in

this paper. These are available in Fama and French (2008, 2016) and in the Internet Appendix.
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return anomaly portfolios is also in line with the advice of Lewellen, Nagel, and Shanken (2010)

to improve the power of asset pricing tests by considering portfolios, in the test assets, that are

sorted on market β, industry, or other firm-level characteristics.

The majority of our test assets are two-way independent sorted portfolios. The rationale is

that they allow us to examine both the variation in anomaly returns and the explanatory power

of the different factor pricing models across size groups. In fact, anomaly patterns are much

stronger for small (microcap) stocks and all the workhorse asset pricing models in the literature

have systematic problems in explaining their average excess returns (Fama, 1998; Fama and

French, 2012, 2015, 2016, 2017). Moreover, our rationale for using the value-weighted portfolio

excess returns follows from Fama (1998), who argues that value-weighting more accurately

captures the total wealth effects experienced by investors. We source data on STR, market β,

NI, RVar, AC, and IND portfolio returns once again from Kenneth R. French’s website. The

data sources of the remaining anomaly portfolio returns are provided in the Internet Appendix.

C. Model performance measures

Our assessment of the performance of each return factor model in the time-series regressions

is based on a battery of metrics commonly used in the empirical asset pricing literature (see

Fama and French, 1993, 2015, 2016, 2017; Hou, Xue, and Zhang, 2015, 2017a; Stambaugh and

Yuan, 2016). The first metric is the F -statistic of the Gibbons, Ross, and Shanken (1989) test,

henceforth denoted GRS statistic. The null hypothesis states that the cross-section of alphas

(i.e., all intercepts in time-series regressions of test assets on a return factor model) are jointly

indistinguishable from zero. Although popular in the literature, the Gibbons, Ross, and Shanken

(1989) test is not without shortcomings. For example, the power of the test decreases with the

number of assets. The second metric used to evaluate competing factor models is the average

absolute value of the alphas, denoted A|αi|. In the time-series factor regression, alpha is viewed

as a measure of model mispricing or a test asset’s deviation from the model. Our third metric,

A|αi|{A|ri|, is the ratio of the average absolute value of the alphas to the average absolute value

of ri. We compute ri as the average excess return on an anomaly portfolio i minus the value-

weighted average excess return on the market portfolio. The fourth metric that we employ is

Aα2
i {Ar

2
i , which is the ratio of the average squared alpha to the average squared value of ri.

Both A|αi|{A|ri| and Aα2
i {Ar

2
i measure the dispersion of the alphas produced by a given asset

pricing model relative to the dispersion of average excess returns on test assets. Consequently,

low values of these ratios indicate better performance of the model. Our fifth metric for model

performance evaluation is As2pαiq{Aα
2
i , which is the ratio of the average variance estimate of
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the sampling errors of the estimated alphas to Aα2
i . More precisely, As2pαiq{Aα

2
i shows the

proportion of the dispersion (second moment) of the alpha estimates that is due to sampling

error rather than to dispersion of the true alphas. By construction, a higher value of the ratio

suggests better model performance. Another metric that we estimate is ApR2q, which is the

average value of the time-series regression R2 adjusted for degrees of freedom.

We next compute two additional metrics as in Barillas and Shanken (2017) and Fama and

French (2017). These are the maximum squared Sharpe ratio, denoted Sh2pαq, for the alphas

of test assets relative to a given factor model and the maximum squared Sharpe ratio of a

model’s factor(s), denoted Sh2pfq. The economic mispricing metric, Sh2pαq, is also known as

the Sharpe ratio improvement metric. In fact, Gibbons, Ross, and Shanken (1989) show that

Sh2pαq “ Sh2pf, req ´ Sh2pfq “ α1Σ´1α, (11)

where re is the set of test asset (excess) returns, f is the excess return factor(s) of a given model,

α is the cross-section of alphas, Σ is the time-series regression residual (invertible) covariance

matrix, and Sh2pf, req is the maximum squared Sharpe ratio of the ex post tangency portfolio

formed by combining the test assets with the factor(s).9 A lower value of Sh2pαq implies

a lower squared Sharpe ratio improvement from exploiting mispricing (nonzero alphas) by a

given factor model, that is, better model performance. Fama and French (2017) note that the

sample estimates of Sh2pfq are biased upward. Specifically, the bias is likely to be larger in

smaller samples and for models with more traded factors. Hence, we also compute a bias-free

version of the maximum squared Sharpe ratio of the factor(s), denoted Sh2Bpfq, as the average

of Sh2pfq from 100,000 full-sample bootstrap simulation runs. Harvey and Liu (2017), however,

argue that a factor model might still do a poor job in explaining the cross-section of average

returns even if it generates a large point estimate of Sh2pfq.

Consistent with many recent papers in the empirical asset pricing literature (see, among

others, Fama and French, 1996, 2015, 2016; Hou, Xue, and Zhang, 2015, 2017a; Stambaugh and

Yuan, 2016; and references therein), we first compare the performance of different factor models

informally, by simply eyeballing the point estimates of the above metrics. Barillas and Shanken

(2017), however, show that identifying the superior model (or, equivalently, ranking models)

based on such an informal, but common, procedure can be misleading. In this regard, Harvey

and Liu (2017) also caution that when two competing factor models both generate nonzero

alphas, the use of the GRS statistic to heuristically determine the relative performance of the

9 Although a negative relation between Sh2
pαq and Sh2

pfq is expected, the relation may not be perfect across
different sets of test assets (Fama and French, 2017).
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two models is inappropriate. Furthermore, in the excluded factor time-series regressions, the use

of the Gibbons, Ross, and Shanken (1989) test is not suitable to make a valid statistical inference

about comparison for nonnested models (Barillas and Shanken, 2017; Barillas, Kan, Robotti,

and Shanken, 2017; Fama and French, 2017). Taking these important issues into account, we

then examine whether a competing factor model is significantly better than another candidate

model. To do so, we adopt the pairwise test for equality of cross-sectional regression R2s

introduced by Kan, Robotti, and Shanken (2013). The cross-sectional R2 test, described in

the following section, overcomes many of the issues with model comparisons that arise in the

traditional alpha-based framework. In addition, this testing procedure accounts for the impact

of potential model misspecification and therefore allows for robust and valid statistical inference.

However, the pairwise model comparison is open to the criticism that the process of searching

over alternative models can lead to an overstatement of statistical significance (Barillas, Kan,

Robotti, and Shanken, 2017; Kan, Robotti, and Shanken, 2013). To address this issue, we also

adopt the multiple model comparison test, which determines whether a given factor pricing

model outperforms a set of alternative models in terms of the cross-sectional regression R2.

D. Tests for comparing cross-sectional R2s

1. Pairwise tests of equality of cross-sectional R2s

In this section, we briefly discuss the Kan, Robotti, and Shanken (2013) test of model

comparison based on the second-pass cross-sectional regressionR2s of two asset pricing models.10

Let ρ2A and ρ2B be the cross-sectional R2s of two competing models A and B, respectively. When

models are nested, then statistically verifying whether they have the same explanatory power

involves a test of H0: ρ2A “ ρ2B. But the test of H0: ρ2A “ ρ2B is fairly complicated for

models that are nonnested. This is due to three possible asymptotic distributions for pρ2A ´ pρ2B

under the null hypothesis. First, it is possible that the pricing factors that are not common to

the two nonnested models are irrelevant for explaining the cross-sectional variation in average

(excess) returns. In this case, the models will have the same pricing errors and the same overall

goodness of fit in the population. Second, the two models may produce different pricing errors

but still have identical cross-sectional R2s. Finally, it is also possible that the two nonnested

models are both correctly specified (i.e., ρ2A “ ρ2B “ 1), although their factors differ. Given the

aforementioned three distinct possibilities, the test of H0: ρ
2
A “ ρ2B for nonnested models entails

10 The cross-sectional regression specification for a given factor model is

µe
r “ Cλ,

where µe
r is the mean of re, C “ r1N , covrr

e, f 1ss, λ “ pC 1WCq´1C 1Wµe
r, W is the weighting matrix, and N is

the number of test assets. For more details, see Kan, Robotti, and Shanken (2013).
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a complicated sequential procedure (described in the Internet Appendix). An alternative to the

sequential testing procedure is simply to perform the normal test of H0: 0 ă ρ2A “ ρ2B ă 1.

This approach implicitly rules out the possibility that the additional factors in each model

are completely irrelevant for explaining the variation in average returns. More importantly, it

assumes that both models are misspecified, since asset pricing models are merely approximations

of the true data generating process (Kan, Robotti, and Shanken, 2013).

We, in this paper, perform both the sequential test and the normal test when comparing

nonnested models. But for brevity, we report only the results based on the normal test. The

results based on the sequential test are provided in the Internet Appendix Tables IA12 through

IA21, which are qualitatively similar to those reported in this paper. Moreover, we compute

both the ordinary least squares (OLS) and generalized least squares (GLS) cross-sectional re-

gression R2s. The use of the OLS R2 is more relevant if the focus is on explaining the average

(excess) returns of test assets, while the use of the GLS R2 is more relevant from an investment

perspective (Kandel and Stambaugh, 1995; Kan, Robotti, and Shanken, 2013; Lewellen, Nagel,

and Shanken, 2010).

2. Multiple model comparison

We follow Kan, Robotti, and Shanken (2013) to conduct the multiple model comparison

test. Let δ ” pδ2, . . . , δpq, where δi ” ρ21´ ρ
2
i for model i “ 2, . . . , p. We test the null hypothesis

that the benchmark factor model 1, performs at least as well as the competing factor models 2

to p, that is, H0: δ ě 0u with u “ p´ 1. The alternative hypothesis is that some model has a

higher population cross-sectional R2 than the benchmark factor model 1. The multiple model

comparison test is based on the sample counterpart of δ, δ̂ ” pδ̂2, . . . , δ̂pq, where δ̂i ” ρ̂21 ´ ρ̂2i .

We assume that 0 ă ρ2i ă 1 for all model i, so that δ̂ has an asymptotically normal distribution

with mean δ and covariance matrix Σδ̂. The test statistic is then constructed by solving the

following quadratic programing problem:

min
δ
pδ̂ ´ δq1Σ̂´1

δ̂
pδ̂ ´ δq s.t. δ ě 0u, (12)

where Σ̂δ̂ is a consistent estimator of Σδ̂. The likelihood ratio test of the null hypothesis is

LR “ T pδ̂ ´ δ̃q1Σ̂´1
δ̂
pδ̂ ´ δ̃q, (13)

where δ̃ is the optimal solution to the problem given by equation (12). To conduct statistical

inferences, we obtain asymptotically valid p-values following a numerically efficient procedure
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outlined in Kan, Robotti, and Shanken (2013).

For the multiple nonnested model comparison, we first remove those alternative factor pric-

ing models i that are nested by the benchmark model. If any of the remaining alternatives is

nested by another alternative factor model, we remove the “smaller” model. Finally, we also re-

move any alternative models that nest the benchmark factor model. But to conduct the nested

multiple model comparison, we cannot use the likelihood ratio test, since δ̂ is not asymptotically

normally distributed. In this case, we form a single expanded model, which includes all of the

factors contained in the models nesting the benchmark model. Hence, the null hypothesis that

the benchmark model has the same OLS (GLS) cross-sectional regression R2 as these alterna-

tive models can be tested using the approach for pairwise nested model comparison in Section

II.D.1.

III. Time-series results

Table 1 presents the factor model performance in the time-series (absolute) tests on the

different sets of anomaly portfolios. To save space, we provide average monthly excess returns

and alphas for portfolios, relative to each of the models, and the associated Newey and West

(1987) adjusted t-statistics in Tables IA2 through IA11 of the Internet Appendix.11 Throughout

this section, our discussion focuses on the best-performing asset pricing model.

A. Size-STR (short-term reversal) portfolios

Starting with the 25 size-STR portfolios in Panel A of Table 1, we find that all the models are

comfortably rejected by the Gibbons, Ross, and Shanken (1989) test at conventional significance

levels. The p-values corresponding to the GRS statistics for models round to zero to at least

three decimal places. But the BS6 model outperforms, though not statistically, all other factor

models, as it generates the smallest point estimate of the GRS statistic. The next best asset

pricing model turns out to be the HXZ model, followed by the FF5 model. The point estimate

of the GRS statistic generated by the FF4 model is marginally higher than those of the HXZ

and FF5 models. The SY4 model appears to be the worst-performing model, followed by the

FFPS model, in terms of the magnitude of the GRS statistic. The average absolute value of

0.144% per month for alphas in the FFAF model is the smallest among all the factor pricing

models. The value of 0.599 for the ratio A|αi|{A|ri| produced by the FFAF model is also the

smallest among all the competing models. A point estimate of 0.599 for A|αi|{A|ri| implies that

11 Standard in the literature, we consider an alpha to be statistically significant if the corresponding t-statistic
is at least 2.
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the dispersion of alphas is about 60% as large as the dispersion of average excess returns on

our anomaly portfolios. The BS6 model appears to be the top performer when looking at the

point estimate of 0.531 for the ratio Aα2
i {Ar

2
i , which is the smallest among all the competing

factor models. In terms of the magnitude of ApR2q, the BS6 model once again turns out to be

the best-performing asset pricing model, followed by the FFC model, while the CAPM is the

worst performer, followed jointly by the FF3, FFPS, and HXZ models.

We notice that almost all of our models outperform the CAPM by generating lower point

estimates for A|αi| and A|αi|{A|ri| metrics. But the point estimate of the ratio As2pαiq{Aα
2
i for

the CAPM tells a different story. For example, about 24% of the dispersion (second moment)

of the alpha estimates for the CAPM is due to sampling error, whereas it is only about 10%

for the SY4 model. Notably, about 18% of the second moment of the alpha estimates for the

BS6 model is due to sampling error and the remaining 82% is due to dispersion in the true

alphas. But the six factors of the model generate the largest point estimates of 0.237 and 0.147,

respectively, for Sh2pfq and Sh2Bpfq. The SY4 model factors also perform well, generating a

large Sh2pfq of 0.233. When it comes to Sh2pαq, the FF4 model produces the smallest point

estimate of 0.685. A common finding with the Sh2pfq metric is that, after adjusting for upward

bias, the point estimates of Sh2Bpfq drop by as much as 52% (see, for example, the SY4 model).

In Table IA2 of the Internet Appendix, all models generate a statistically significant alpha

for the microcap extreme STR portfolio. This result shows that microcap extreme STR stocks

are a huge problem for our asset pricing models. In the smallest size quintile, all but the FFC,

HXZ, SY4, and BS6 models generate a statistically significant alpha for only one portfolio,

which is the lowest number across all models. We also notice that the BS6 model outperforms

other models in explaining average excess returns, by generating only five significant alphas. In

contrast, both the FFC and the SY4 models generate 11 significant alphas for portfolios, which

is the highest number across all the factor models. To sum up, the point estimates of more than

half of our performance metrics favor the BS6 model as the best asset pricing model.

B. Size-CI (abnormal capital investment) portfolios

We now focus on the 25 size-CI portfolios in Panel B of Table 1. The Gibbons, Ross, and

Shanken (1989) test easily rejects all the asset pricing models. But the rejection is the weakest

for the FF4 model, which generates a GRS statistic of 1.981 (p-value = 0.003). In contrast,

the FFC model produces the largest GRS statistic of 3.011 (p-value = 0.000). We find that the

average absolute alpha produced by the FFPS model is only 0.079% per month, the smallest

among all the competing factor models. The CAPM generates the largest point estimate for
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A|αi|, which is 0.183% per month. When looking at the two dispersion measures of alphas,

A|αi|{A|ri| and Aα2
i {Ar

2
i , we find that the FFPS and FF3 models generate the smallest values,

of 0.323 and 0.121, respectively. The FF3 model also produces the largest point estimate of the

ratio As2pαiq{Aα
2
i , which is 0.660. This indicates that two-thirds of the second moment of the

alpha estimates for the model is due to sampling error and only one-third is due to dispersion

in the true alphas. We further notice that the BS6 model produces the largest point estimate

for ApR2q, which is about 90%. But in terms of the magnitude of Sh2pαq, the FF4 model is the

best performer, generating the smallest value for the metric among all the asset pricing models.

When examining the alphas in the Internet Appendix Table IA3, we see that the BS6 model

generates a statistically significant alpha for only two portfolios. Out of 25 portfolios, three have

significant alphas in the FFAF, while four portfolios have them in the FF3, FFPS, HXZ, FF5,

FF4, and SY4 models. In contrast, the FFC model generates 14 significant alphas, which is

the highest number among all the factor pricing models. Moreover, all but the CAPM and the

FFC model have a statistically significant alpha for one out of five portfolios in the smallest size

quintile. In summary, all of our results suggest that, despite rejection on the Gibbons, Ross,

and Shanken (1989) test, the FF3, FFPS, and FF4 models are the three best factor pricing

models accommodating the average excess returns on size and CI sorted portfolios.

C. Size-DR (distress risk) portfolios

The results for the 25 size-DR portfolios in Panel C indicate that all but the CAPM and

the HXZ model are rejected by the Gibbons, Ross, and Shanken (1989) test at the 5% level of

significance. The CAPM generates the smallest GRS statistic of 0.953 (p-value = 0.530). The

model also generates the largest value, 0.973, for the ratio As2pαiq{Aα
2
i . But the HXZ model

shows the best performance by producing the smallest value of 0.082% per month for A|αi|,

the smallest values of 0.452 and 0.257, respectively, for the alpha dispersion metrics A|αi|{A|ri|

and Aα2
i {Ar

2
i , and the smallest value of 0.484 for Sh2pαq. The model also generates the second

smallest GRS statistic of 1.518. The BS6 model, which is the best model in explaining size and

STR sorted portfolios, now shows a superior performance only in terms of producing the largest

point estimate for ApR2q. Both the FF5 and the SY4 models show reasonably good performance

when judged by their A|αi|, A|αi|{A|ri|, Aα
2
i {Ar

2
i , and ApR2q estimates. Coincidentally, the

point estimates of Sh2pαq produced by the FF5 and FF4 models are the same, 0.493.

Our results in Table IA4 of the Internet Appendix show that only the CAPM and the

HXZ model generate statistically insignificant alphas across the 25 size-DR portfolios. Among

the remaining factor pricing models being compared, most of them have problems explaining
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average returns on the highest distress quintile portfolios. The exceptions are the FFC and SY4

models. We also see that the FFPS model performs the worst in terms of generating the least

number of significant alphas for portfolios. In particular, the model produces eight alphas that

are statistically distinguishable from zero. Taken together, all of the above results suggest that

the HXZ model provides the best description of average size-DR portfolio excess returns.

D. Size-β (market beta) portfolios

We observe in Table 1 that the rejections of our factor pricing models by the Gibbons, Ross,

and Shanken (1989) test are weakest for the 25 size-β portfolios. In fact, the null hypothesis of

zero alphas cannot be rejected for the FFC and SY4 models at conventional levels of significance

(Panel D). The SY4 model generates a smaller GRS statistic than the FFC model. The average

absolute value of alphas is 0.063% per month for the SY4 model, which is smaller than those of

other asset pricing models. The SY4 model also produces the smallest values of 0.319, 0.103, and

0.424 for pricing performance metrics A|αi|{A|ri|, Aα
2
i {Ar

2
i , and Sh2pαq, respectively. When

judged by the point estimates of the GRS statistic, A|αi|, A|αi|{A|ri|, Aα
2
i {Ar

2
i , and ApR2q,

the CAPM turns out to be the worst performer among all the factor models.

Looking at the alphas, reported in the Internet Appendix Table IA5, we find that the SY4

model outperforms all other factor pricing models. All alphas for the 25 size-β portfolios relative

to the model are statistically indistinguishable from zero. Although the FFC model comfortably

passes the Gibbons, Ross, and Shanken (1989) test, the model generates three portfolio alphas

that are statistically significant. Notably, 13 out of 25 portfolios have a significant alpha relative

to the FFAF model. In contrast, the HXZ, FF5, and FF4 models generate only two significant

alphas each. To summarize, our results indicate that the SY4 model is the best performer in

capturing the average excess returns on the 25 size-β portfolios.

E. Size-NI (net share issues) portfolios

The Gibbons, Ross, and Shanken (1989) test on the 35 size-NI portfolios, shown in Panel

E of Table 1, rejects all the asset pricing models at conventional levels of significance. Said

differently, all of our models are incomplete descriptions of average excess returns on these

anomaly portfolios. But the SY4 model produces the smallest GRS statistic of 2.780 (p-value

= 0.000), followed by 3.133 (p-value = 0.000) for the HXZ model. Despite rejections, both

these models appear to perform well based on a majority of metrics. The average absolute

alphas from the two models are 0.109% and 0.104% per month. The FF5 and FF4 models also

produce small values of A|αi|, both 0.110% per month. The dispersion of the alpha estimates
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for the HXZ model is about 43% as large as the dispersion of average excess returns on size-NI

portfolios, whereas it is about 45% for the FF5, FF4, and SY4 models. The HXZ model has

an edge over the SY4 model when judged by its Aα2
i {Ar

2
i ratio of 0.223. The corresponding

point estimate is 0.251 for the SY4 model. Both the HXZ and the SY4 models show superior

performance to the FF5, FF4, and other factor models, by producing larger values, of 0.503

and 0.496, for the ratio As2pαiq{Aα
2
i . But the values of ApR2q for the FF5 and FF4 models are

marginally higher than those for the HXZ and SY4 models. When it comes to Sh2pαq, the SY4

model outperforms all the competing asset pricing models by generating the smallest value of

1.180 for the metric. The HXZ model lines up as the next best performer, with a value of 1.268.

The results reported in the Internet Appendix Table IA6 show that the SY4 model outper-

forms other candidate factor models by producing only three significant alphas. Moreover, only

one out of these three significant alphas is located in the smallest size quintile. The HXZ model

is the next best performer, as it generates five alphas that are statistically distinguishable from

zero. Conversely, both in the CAPM and the FFAF model, 15 out of 35 anomaly portfolios

have statistically significant alphas. All these results show that the SY4 and HXZ models are

the top two performers in the tests on the 35 size-NI portfolios, though the former model has a

marginal edge over the latter when judged by the number of significant alphas.

F. Size-MAX (lottery demand) portfolios

In Panel F of Table 1, we see that the Gibbons, Ross, and Shanken (1989) test on the 25

size-MAX portfolios strongly rejects all of our competing models. Although rejected by the

test, the SY4 model stands out as the best, based on a majority of the performance metrics.

For example, the average absolute alpha relative to the model is 0.141% per month, which is

smaller than that for any other factor pricing model. The SY4 model also produces the smallest

value, of 0.507, and the second smallest value, of 0.275, respectively, for the ratios A|αi|{A|ri|

and Aα2
i {Ar

2
i . About 27% of the dispersion (second moment) of the alpha estimates for the

model can be attributed to sampling error. Judged by the same As2pαiq{Aα
2
i ratio, the BS6

model turns out to be the next best model, with a value of 0.235. On that metric, As2pαiq{Aα
2
i ,

the FFAF model emerges as the worst-performing asset pricing model, with a value of 0.060.

We see that the FF5 and BS6 models deliver high and nearly identical values of ApR2q. When

examining the value of Sh2pαq, it can be observed that the HXZ model generates the smallest

value of 0.867. The corresponding value for the SY4 model is slightly higher at 0.888.

Examining the portfolio alphas, reported in the Internet Appendix Table IA7, we find that

all of our models have difficulty explaining average excess returns on microcap portfolios. The
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HXZ model produces a statistically significant alpha for four portfolios and two of them are

located in the microcap quintile. Out of 25 portfolios, six have significant alphas in the SY4

model, while eight portfolios have them in the FF5, FF4, and BS6 models. The FFAF model

is ranked at the bottom. The model produces a statistically significant alpha for 15 portfolios.

Overall, these results suggest that the SY4 model has a superior ability to accommodate, though

not completely, the average excess returns on the 25 size-MAX portfolios.

G. Size-RVar (residual variance) portfolios

The results in Panel G of Table 1, for the 25 size-RVar portfolios, show that the Gibbons,

Ross, and Shanken (1989) test strongly rejects all the asset pricing models. Notably, we find

that the GRS statistics for models are large in general – an observation similar to that reported

in Fama and French (2016). The SY4 model generates the smallest average absolute alpha, of

0.116% per month, and the smallest point estimate, of 0.373, for the ratio A|αi|{A|ri|. Con-

versely, the HXZ model produces the smallest value, of 0.213, for the ratio Aα2
i {Ar

2
i and the

largest value, of 0.273, for the ratio As2pαiq{Aα
2
i . We also notice that the FF5 model ranks

first among the factor pricing models when judged by the point estimate of ApR2q.

The anomaly portfolio alphas, reported in the Internet Appendix Table IA8, show that the

HXZ model produces a statistically significant alpha for four portfolios and only two of them

are located in the smallest size quintile. The SY4 model also produces four significant alphas,

but three of them are located in the smallest size quintile. We see an improvement for the

FF4 model over its performance in the 25 size-MAX portfolios. Specifically, the model now

produces four significant alphas and only one of them is located in the microcap quintile. The

FF5 and BS6 models also show similar improvements in performance based on this criterion.

The CAPM, however, ranks last among our factor pricing models. Out of 25 portfolios, 17 have

significant alphas relative to the model. It is worth noting that across the ten sets of anomaly

portfolios, this is the highest number of statistically significant alphas generated by any model.

In summary, both the HXZ and the SY4 models are the two best, but still imperfect, models

explaining the average excess returns on the 25 size-RVar portfolios.

H. Size-AC (accruals) portfolios

We find in Panel H of Table 1 that the Gibbons, Ross, and Shanken (1989) test easily rejects

all the models considered for the 25 size-AC portfolios. Although the competing models are

incomplete descriptions of average excess returns on these portfolios, the SY4 model delivers the

best performance on more than half of the metrics. For example, it produces the smallest GRS
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statistic, of 2.818, the smallest average absolute alpha, of 0.095% per month, and the smallest

point estimate, of 0.530, for the alpha dispersion metric A|αi|{A|ri|. Among the other factor

models, there is a noteworthy improvement in performance for the CAPM when we consider

As2pαiq{Aα
2
i , which is 0.485. The corresponding point estimate of the metric is 0.495 for the

SY4 model, which is the largest value across all the asset pricing models tested on AC anomaly

portfolios. We also find that the CAPM delivers the smallest value, of 0.725, for Sh2pαq.

Out of 25 accruals anomaly portfolios, reported in the Internet Appendix Table IA9, only

three have statistically significant alphas relative to the SY4 model. The CAPM produces four

significant alphas and none of them are located in the smallest size quintile. The performance

of the FF3, FF5, and FF4 models do not bode well since each of these models produces ten

alphas that are statistically distinguishable from zero. This finding is in line with the evidence

provided by Fama and French (2016). We also notice that for a majority of our asset pricing

models, the main problem is to explain the average excess returns of the biggest size stocks and

the stocks in the highest AC quintile.

I. IND (industry) portfolios

Turning now to the 30 IND portfolios, the results for which are shown in Panel I of Table 1,

we find that the Gibbons, Ross, and Shanken (1989) test rejects almost all of the factor models

at conventional significance levels. The sole exception is the CAPM, which produces a GRS

statistic of 1.311 (p-value = 0.127). Moreover, informally comparing the competing models

based on the point estimates of our performance metrics reveals that the CAPM is the top

contender in the horse race. Overall, the SY4 model takes second place, while the BS6 model

ranks last among our candidate factor models. Specifically, the average absolute alpha is 0.150%

per month for the CAPM, which is lower than the value of 0.180% per month for the SY4 model.

Likewise, the point estimates of the ratios A|αi|{A|ri| and Aα2
i {Ar

2
i are, respectively, 1.173 and

1.630 for the CAPM, which are much smaller than those of 1.401 and 1.774 for the SY4 model.

But on the basis of ApR2q and the ratio As2pαiq{Aα
2
i , the SY4 model shows a marginal edge over

the CAPM. Notably, the CAPM performs marginally better than the SY4 model when judged

on the point estimate of Sh2pαq. On the same criterion, the FF5 model performs the best, as

it generates the smallest point estimate of 0.622. The model also produces the largest value for

ApR2q, which is consistent with Stambaugh and Yuan (2016), who informally compare factor

models, such as the CAPM, FF3, HXZ, FF5, and SY4 models, using the 30 IND portfolios.

Table IA10 in the Internet Appendix shows that the CAPM and the SY4 model are the

top performers. Both these models produce alphas for four portfolios that are statistically

20



distinguishable from zero. In contrast, the BS6 model produces as many as 11 significant alphas.

The number of significant alphas is ten relative to both the FF5 and the FF4 models, while

seven relative to the FFC, FFAF, and HXZ models. The superior performance of the CAPM in

producing the least number of significant alphas for industry portfolios is also consistent with

the evidence by Fama and French (1997), who compare the model with the FF3 model.

J. D10´1 (high minus low decile) portfolios

We next consider the set of D10´1 portfolios corresponding to eight anomalies (i.e., STR,

CI, DR, market β, NI, MAX, RVar, and AC) and examine the abilities of our competing asset

pricing models to explain the average excess returns on these long-short portfolios. Panel J in

Table 1 shows that all the models are strongly rejected by the Gibbons, Ross, and Shanken

(1989) test. An informal analysis of the performance metrics suggests that the SY4 model

is the best, though still incomplete, description of average excess returns on these anomaly

portfolios. The average absolute alpha for portfolios is 0.259% per month in the model, which

is the smallest value for the metric across all models. The A|αi|{A|ri| ratio of 0.307 for the SY4

model is small compared with those of competing factor models. The HXZ model also does a

good job in explaining the set of anomaly long-short spreads. The model generates a value of

0.262% per month for A|αi|, which is marginally higher than that for the SY4 model. About

31% of the dispersion (second moment) of the alpha estimates for the model is due to sampling

error. All other asset pricing models fare poorly on this dispersion metric. We also find that

the BS6 model generates the largest point estimate for ApR2q, while the FF5 model produces

the smallest point estimate for Sh2pαq. Overall, the FFAF model performs the worst in the

horse race among all models.

The results in the Internet Appendix Table IA11 suggest that both the HXZ and the SY4

models are superior to other competing models, as each of these models generates only two

significant alphas. Specifically, the HXZ model generates a statistically significant alpha for

the D10´1 portfolios corresponding to NI and AC anomalies, while the SY4 model generates a

significant alpha for the D10´1 portfolios sorted on STR and AC. The BS6 model also performs

well in explaining average returns on anomaly portfolios. The model generates significant alphas

for the high-minus-low portfolios that are sorted on DR, NI, and AC. Consistent with the

findings in Table 1 (Panel J), the FFAF model ranks last. Out of eight anomaly long-short

portfolios, seven have significant alphas relative to the model. Finally, none of our asset pricing

models accommodates average return on the D10´1 portfolio corresponding to AC anomaly.
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K. Overall model performance in time-series regressions

To facilitate discussion in this section, Table 2 summarizes the overall performance of each

of the return factor models in the time-series regressions presented in Table 1 and Tables IA2

through IA11 of the Internet Appendix. Columns 1 to 7 report the number of the sets of

anomaly portfolios across which a given asset pricing model performs the best. More precisely,

the criteria for overall performance evaluation are the number of times a competing model

generates the smallest point estimates of the GRS statistic, A|αi|, A|αi|{A|ri|, Aα
2
i {Ar

2
i , and

Sh2pαq, and the largest point estimates of As2pαiq{Aα
2
i and ApR2q metrics. In columns 8 to 17,

we provide the number of statistically significant alphas relative to a given factor model tested

on each set of anomaly portfolios. The last column of Table 2 shows, for each asset pricing

model, the number of significant alphas out of 42 small size portfolios from the eight anomaly

variables, STR, CI, DR, market β, NI, MAX, RVar, and AC.

Starting with the Gibbons, Ross, and Shanken (1989) test, we see that the SY4 model

outperforms all the competing models by producing the smallest GRS statistic in five out of

the ten sets of portfolios. The CAPM ranks second in our list of models, as it generates the

smallest GRS statistic in two sets of portfolios. The results also show that the HXZ, FF4, and

BS6 models each produce the smallest GRS statistic in one set of portfolios. For the metric

A|αi|, which measures the unexplained average absolute excess return, the SY4 model generates

the smallest point estimate in five out of the ten sets of portfolios and the HXZ model delivers

the smallest value in two sets of portfolios. The SY4 model continues to outperform its nine

competing models by generating the smallest value for the ratio A|αi|{A|ri| and the largest

value for the ratio As2pαiq{Aα
2
i , respectively, in five and four sets of test asset portfolios. In

contrast, the number of times the HXZ model generates the smallest A|αi|{A|ri| ratio and the

largest As2pαiq{Aα
2
i ratio are, respectively, two and three. The HXZ model ranks first among

the models when assessed by the point estimate of the alpha dispersion metric, Aα2
i {Ar

2
i . The

model generates the smallest point estimate in four out of the ten sets of portfolios. When

assessed by the point estimate of ApR2q, we find that the FF5 and BS6 models do a better

job than the other models in explaining average excess returns. Both these models deliver the

largest value for the metric in five out of the ten sets of portfolios. For the Sh2pαq criterion, the

HXZ, FF5, FF4, and SY4 models turn out to be the best performers, as each of these models

generates the smallest point estimate for the metric in two sets of test asset portfolios.

Comparing the number of statistically significant alphas generated by each of our factor

models, we find the SY4 model is the best performer. The model delivers the least number

of significant alphas for the 25 size-β portfolios, the 35 size-NI portfolios, the 25 size-RVar
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portfolios, the 25 size-AC portfolios, the 30 IND portfolios, and the 8 D10´1 portfolios. The

HXZ, BS6, FF4, and FF5 models take second, third, fourth, and fifth places, respectively.

The SY4 model also turns out to be one of the top performers in explaining the average excess

returns on portfolios with small stocks. Out of 42 small size portfolios, the number of significant

alphas is 11 in the SY4 model, 10 in the BS6 model, and 12 in the HXZ, FF5, and FF4 models.

In contrast, both the FFC model and the FFAF model generate statistically significant alphas

for 19 portfolios, which is the highest number of significant alphas for small size portfolios

produced by any model. The corresponding number for the CAPM is 15, while for the FF3

and FFPS models it is 16. This clearly suggests that all of our asset pricing models have some

difficulty in explaining returns on small stocks. Overall, the time-series results in Tables 1 and

2 indicate that the SY4 model is the best model, in that it outperforms other models on most

performance metrics. The HXZ model takes second place, while the FF5 and BS6 models,

performing about equally well, take joint third place. Stambaugh and Yuan (2016) also report

a similar ranking when comparing only the FF3, HXZ, FF5, and SY4 models, although their

test assets in time-series regressions are different from those employed in this paper.

Common to many recent papers (see, for example, Fama and French, 2015, 2016; Hou, Xue,

and Zhang, 2015, 2017a), the above time-series analyses of the relative performance of factor

models can be criticized on the grounds that they are conducted without any use of a formal

statistical criterion. The ranking of models might differ when their relative performance is

tested statistically. In the following section, we investigate whether a competing asset pricing

model is significantly better than another candidate model by employing the pairwise test

for equality of cross-sectional regression R2s. The pairwise test accounts for the impact of

potential model misspecification and therefore enables us to draw valid statistical inferences

on the relative performance of our competing models. Finally, we conduct the multiple model

comparison analyses to identify whether a given asset pricing model significantly outperforms

a set of alternative models in terms of the OLS (GLS) cross-sectional regression R2.

IV. Cross-sectional results12

A. Size-STR (short-term reversal) portfolios

Table 3 reports pairwise tests of equality of cross-sectional regression R2s for the ten return

factor models, estimated using the value-weighted monthly excess returns on the 25 size-STR

portfolios. Some of our models are nonnested and in those cases we present results of the normal

12 Throughout this section, we reject H0: ρ2A “ ρ2B if the corresponding p-value is at most 0.05.
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test described in Section II.D.1. The results based on the OLS cross-sectional regressions in

Panel A show that the CAPM is outperformed by some of the asset pricing models. That is,

the CAPM generates a significantly lower cross-sectional R2 than the FF3, FFAF, FF4, and

BS6 models. This is not the case for the HXZ, FF5, and SY4 models, although the OLS R2

differences with the CAPM still exceed more than 50 percentage points. This result also shows

that the common practice of simply comparing the point estimate of a given performance metric

can be misleading for identifying a superior asset pricing model. The BS6 model, which is the

best model in the time-series regressions for this set of test asset portfolios, now significantly

dominates only the CAPM. We find that the FF5, FF4, SY4, and BS6 models generate higher

OLS cross-sectional regression R2s than the HXZ model, but the differences are not statistically

distinguishable from zero. Likewise, the FF5 model generates a higher cross-sectional R2 than

the FF4 and SY4 models, but the differences are not significant even at the 10% level.

In Panel B, which reports equality of R2s test results based on the GLS cross-sectional

regressions, we find that the FF3, FFC, FFPS, FFAF, FF4, and BS6 models outperform the

CAPM. The relative performance of other factor pricing models is similar to that observed

for the OLS cross-sectional regressions shown in Panel A. To summarize, the pairwise cross-

sectional regression R2 equality test results in Panels A and B favor the FF3, FFAF, FF4,

and BS6 models over the remaining asset pricing models when judged by the number of times

they significantly dominate another model. But focusing only on the SY4, HXZ, FF5, and BS6

models, which are the top four performing models in the time-series regressions, we find none

of them is significantly better than the other three in pairwise tests. Thus, from this point of

view, the performances of these four recently proposed asset pricing models are not different

from each other when tested on the 25 size-STR portfolios.

Panel A of Table 14 reports multiple model comparison tests of the OLS and GLS cross-

sectional R2s for all the factor models, where we differentiate between the nested and the

nonnested models. The results based on both the OLS and the GLS cross-sectional regressions,

which take into account the process of searching over alternative models, suggest that none of

the asset pricing models is significantly dominated by the others at the 5% level. Notably, we

cannot reject the CAPM, which is nested by the remaining nine factor models that we consider,

although some of these models generate a cross-sectional R2 that is three to four times higher.13

13 Kan, Robotti, and Shanken (2013) provide similar evidence for the CAPM when tested on the 25 size-B/M
portfolios and five industry portfolios.
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B. Size-CI (abnormal capital investment) portfolios

When using the value-weighted monthly excess returns on the 25 size-CI portfolios as test

assets, it can be seen in Panel A of Table 4 that all but the FFC, SY4, and BS6 models

have significantly higher R2s than the CAPM. In fact, the OLS cross-sectional regression R2

differences between these models and the CAPM exceed as much as 40 percentage points (see,

for example, the HXZ model). We observe that there are several occasions on which a large R2

difference does not lead to the rejection of the null hypothesis of equal R2s for two competing

factor pricing models. For example, the OLS cross-sectional R2 of the BS6 model is higher than

that of the FF5 model by about 13 percentage points, but still the null hypothesis cannot be

rejected (p-value = 0.140). A qualitatively similar finding emerges in Panel B, where the GLS

cross-sectional regression R2 of the BS6 model is higher than that of the FF5 model by about

18 percentage points, and still the difference in R2 is statistically insignificant at conventional

levels. We also find that the CAPM produces a cross-sectional R2 that is statistically lower than

those of any of the competing models estimated by the GLS regressions. Furthermore, in Panel

B, both the FFC and the SY4 models now show an improved performance. For example, the

SY4 model significantly outperforms the FFAF model. It is worth emphasizing that the HXZ,

FF5, SY4, and BS6 models are never statistically dominated at the 5% level in Panels A and

B. Overall, our pairwise test results based on the OLS and GLS cross-sectional regression R2s

indicate that the FFC model performs the best in explaining the average excess returns on the

25 size-CI portfolios. The FF3, FFPS, and FF4 models, which are the three best factor models

identified informally for this set of test asset portfolios in the time-series regressions, no longer

perform well in the horse race. Examining the multiple model comparison test results, reported

in Panel B of Table 14, we find that the FFAF (GLS) model is rejected at the 5% significance

level. Despite the lower cross-sectional regression R2 of the CAPM, we fail to reject the null

hypothesis that it performs at least as well as all other asset pricing models.

C. Size-DR (distress risk) portfolios

In Table 5, we report the results on factor pricing model performance in the 25 size-DR

portfolios. The pairwise tests of equality of the OLS cross-sectional regression R2s in Panel

A reveal that none of the models either statistically outperforms or is outperformed by any of

the other models at conventional significance levels. Hence, the 25 size-DR portfolios present

the biggest challenge for all the asset pricing models. A similar picture emerges when model

performance is analyzed on the basis of differences in the GLS cross-sectional regression R2s

(Panel B). There the R2 differences exceed by as much as 26 percentage points but are still
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statistically insignificant. These findings from pairwise tests are consistent with those of the

multiple model comparison tests in Panel C of Table 14. All of the p-values are above the

conventional levels of significance, which suggests that none of the factor pricing models is

outperformed by the rest of the models. Clearly, the above observation contrasts with that

from the time-series regressions (see Panel C of Table 1), where the HXZ model is the best

performer in the horse race, though informally.

D. Size-β (market beta) portfolios

Table 6 presents the results when the test assets are the 25 size-β portfolios. In Panel A, we

notice that only the HXZ, FF5, FF4, and SY4 models offer a somewhat superior performance

by generating significantly higher OLS cross-sectional R2s. Specifically, each of these factor

pricing models outperforms the CAPM. Their R2 differences with the CAPM exceed more than

70 percentage points. We emphasize that the relatively good performance of the SY4 model in

Panel A is consistent with that observed for the time-series regressions using the same set of

anomaly portfolios. The superior performance of the HXZ, FF5, FF4, and SY4 models can also

be seen in Panel B, where pairwise tests of equality for R2s are based on the GLS cross-sectional

regressions. Consistent with Panel A, the CAPM again shows up as the worst-performing asset

pricing model. This time it is additionally significantly outperformed by the FF3, FFC, and

FFPS models. Overall, the OLS and GLS cross-sectional results show that the HXZ, FF5, FF4,

and SY4 models do a relatively better job in explaining the average excess returns on size and

market β sorted portfolios. But looking at the multiple model comparison tests in Panel D of

Table 14, we find that only the FFAF (GLS) model is rejected at the 5% level. Once again, the

CAPM is not rejected at conventional levels of significance. That is, it performs at least as well

as all others when assessed within the multiple model comparison framework.

E. Size-NI (net share issues) portfolios

The pairwise tests of equality for factor model R2s based on the 35 size-NI portfolios in

Table 7 show that the SY4 model is the best overall performer, followed by the HXZ model.

In Panel A, showing results based on the OLS cross-sectional regression R2s, it is observable

that the SY4 model significantly dominates the CAPM, FF3, FFPS, and FFAF models. The

HXZ model, however, fails to perform significantly better than the FFPS model in terms of R2.

The BS6 model now demonstrates an improved relative performance for this set of anomaly

portfolios compared with those observed in Tables 3 through 6. The model outperforms the

CAPM, FF3, and FFAF models by generating significantly higher OLS cross-sectional regression
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R2s. However, in the pairwise test comparing the BS6 and FFPS models, we observe that the

BS6 model is statistically outperformed by the FFPS model. We further notice that all but

the FFC model easily outperform the CAPM. But the FFC model clearly dominates both the

FF3 and the FFAF models. The results based on the GLS cross-sectional regression R2s show a

better performance for the HXZ model compared with that observed in Panel A. Now, the HXZ

model lines up as the best-performing asset pricing model, along with the SY4 model. However,

the relative performances of the FF5, FF4, and BS6 models now fall short slightly. Specifically,

these models are no longer able to generate a significantly higher GLS cross-sectional R2 than

the FF3 model. In Panels A and B, it can also be seen that the HXZ, FF5, and SY4 models

are not outperformed in any of our pairwise R2 tests. Furthermore, the relative performance of

the SY4 model is consistent with that observed in the time-series regressions.

Turning now to the multiple model comparison test results, reported in Panel E of Table 14,

we see that the CAPM (OLS) is rejected at the 5% level of significance. Moreover, for the OLS-

based comparisons, the FF3 and FFAF models are statistically dominated. The GLS-based

comparison tests show that the FF3, FFPS, and FFAF models are dominated at the 5% level.

Notably, the CAPM (GLS) marginally misses rejection of the null hypothesis with a p-value of

0.051. As for the remaining asset pricing models, the corresponding p-values suggest that none

of them can be rejected in the multiple model comparison tests of the OLS and GLS R2s.

F. Size-MAX (lottery demand) portfolios

Moving to the 25 size-MAX portfolios, in Table 8, we find that the CAPM is outperformed

by most other asset pricing models. In particular, the model shows a poor performance relative

to all but the FF5 model in Panel A, for the OLS cross-sectional regressions. We also observe

that in Panel A, the BS6 model demonstrates a somewhat better performance in explaining

the average excess returns on portfolios. In addition to outperforming the CAPM, the model

produces a significantly higher cross-sectional R2 than the FFAF model. Looking at the pairwise

test results in Panel B, based on the GLS cross-sectional regressions, we find that the relative

performance of the CAPM improves marginally. Now it has no significant differences with those

of the FFAF and BS6 models, in addition to the FF5 model, in terms of R2. An improvement in

performance of the HXZ, FF5, FF4, and SY4 models can also be observed, as these models now

generate statistically higher GLS cross-sectional regression R2s than the FFAF model. Taken

together, the pairwise test results in Panels A and B indicate that the HXZ, FF4, SY4, and BS6

models are the top performers among the ten factor pricing models being compared. Finally,

focusing on the OLS- and GLS-based multiple model comparison test results in Panel F of
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Table 14, we find that only the FFAF (GLS) model is rejected at the 5% level of significance.

G. Size-RVar (residual variance) portfolios

The CAPM turns out to be the worst when we conduct the pairwise cross-sectional regression

R2 equality tests for our asset pricing models using monthly excess returns on the 25 size-

RVar portfolios, as shown in Table 9. On the other hand, both the FF5 and the FF4 models

consistently exhibit the best overall performance, although neither is statistically better than the

HXZ or BS6 model in terms of the cross-sectional R2. The most striking result in Table 9 is that

both the FF5 and FF4 models now statistically dominate the SY4 model (see Panel B). The GLS

cross-sectional regression R2 differences with the SY4 model exceed more than 25 percentage

points. In Panel A, it is also observable that the HXZ and BS6 models are jointly ranked, after

the FF5 and FF4 models, in terms of the number of times they dominate another asset pricing

model. Between these two models, however, the BS6 model is statistically dominated by the

FFPS model in the pairwise test of equality of cross-sectional R2s. The relative performance

of the BS6 model improves markedly in Panel B, where it is no longer dominated by the FFPS

model. In fact, we see the opposite: the FFPS model is now statistically outperformed by

the BS6 model. On the other hand, the performance of the HXZ model drops slightly, as it

fails to generate a statistically higher GLS cross-sectional R2 than the FF3 model. In Panel B,

we further notice that the SY4 model’s performance is at a minimum in terms of statistically

outperforming other factor pricing models, in that it is significantly better than only one other

model, namely the CAPM. Finally, for the OLS-based multiple model comparisons in Panel

G of Table 14, it can be seen that the FF3, FFPS, and FFAF models are rejected at the 5%

level. The number of model rejections increases when we consider the GLS-based multiple

model comparison tests. Now, the FFC and SY4 models are also dominated at the 5% level

of significance. All these results on the performance of the factor pricing models contrast with

those in the time-series regressions for the 25 size-RVar portfolios.

H. Size-AC (accruals) portfolios

The R2 equality tests using the 25 size-AC portfolios in Table 10 show a best overall perfor-

mance for the FF4 model. The FFC and FF5 models also show a modest performance in the

horse race, as they generate significantly higher OLS cross-sectional regression R2s than the FF3

model and the CAPM, respectively. Among the remaining competing asset pricing models, it

can be seen that none either statistically dominates or is dominated by any of the other models

at the 5% level. We notice that both the FFC and the FF5 models fail to outperform any
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of the other models in Panel B, showing the GLS cross-sectional regressions. Consistent with

the findings in Panel A, we see that the HXZ, FF5, SY4, and BS6 models neither statistically

dominate nor are dominated by any of the competing factor models. This evidence contrasts

with the good performance of the SY4 model in the time-series regressions using the same set

of anomaly portfolios. Further, analyzing the multiple model comparison test results in Panel

H of Table 14, we find that only the FF3 (OLS) model is statistically dominated by the others.

I. IND (industry) portfolios

We see in Panel A of Table 11 that none of our asset pricing models either statistically

outperforms or is outperformed by any of the other competing models. All of the p-values

are much higher than the 10% level of significance. The statistical inferences about model

performance also remain the same when we look at the pairwise tests of equality for the GLS

cross-sectional regression R2s in Panel B. Clearly, these observations suggest that the 30 IND

portfolios pose a serious challenge for all of our factor pricing models. When model performance

is analyzed, in Panel I of Table 14, using the multiple model comparison tests, we once again see

that none of the models is rejected at conventional significance levels. This empirical evidence

contrasts with that from the time-series regressions, in Panel I of Table 1, where an informal

comparison of performance metrics suggests the CAPM is the best model.

J. D10´1 (high minus low decile) portfolios

Table 12 reports the results based on the set of D10´1 portfolios corresponding to eight

anomalies. The pairwise tests of equality for the OLS cross-sectional regression R2s in Panel

A show that most of the models significantly outperform the CAPM. The two exceptions are

the FFPS and FFAF models. Although both these models generate a higher cross-sectional R2

than the CAPM, the differences are statistically indistinguishable from zero (at the 5% level).

A somewhat similar picture emerges in Panel B, with the GLS cross-sectional regressions, where

we see that only the FFPS model fails to outperform the CAPM. We further find, in Panels

A and B, that the FF3, FFC, FFPS, FFAF, HXZ, FF5, FF4, SY4, and BS6 models are never

statistically dominated in any of our pairwise tests of equality for cross-sectional regression R2s.

These results on the relative performance of our factor pricing models contrast with those in

the time-series regressions for the same set of anomaly long-short portfolios. Finally, in Panel

J of Table 14, we see that the FFAF model is statistically dominated at the conventional 5%

level when the GLS-based multiple model comparison tests are considered.14

14 We do not report results for the CAPM in Panel J of Table 14, as there are more factors in the expanded
model than the cross-sectional data points. In this case, no unique solution exists for the second-pass regression.
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K. Overall model performance in cross-sectional regressions

We summarize the pairwise cross-sectional regression R2 equality test results from Tables 3

through 12 for all the asset pricing models in Table 13. In Panel A, for the OLS-based results,

it can be seen that the FF4 model offers the best overall performance, in that it statistically

outperforms competing asset pricing models the most times in a majority of the sets of test

asset portfolios. The FF5 model takes second place in the horse race. The HXZ and BS6

models, which perform about equally well, turn out jointly to be the next best models. It also

appears that the SY4 model fails to secure a position in the top three places among the ten

different return factor models. Analyzing the GLS cross-sectional regression based test results

in Panel B, we once again find that the FF4 and FF5 models secure the first and the second

places, respectively. But the SY4 model now takes joint third place, along with the HXZ and

BS6 models. We emphasize that in Panels A and B, the HXZ, FF5, and FF4 models are the

only asset pricing models that are never statistically outperformed at the 5% level in any of our

pairwise R2 tests. The results from the sequential tests for nonnested models reported in the

Internet Appendix also corroborate our findings in Table 13.

But looking at the multiple model comparison test results, summarized in Table 15, we see

that only the HXZ, FF5, FF4, and BS6 models are never rejected at the 5% level of significance.

We highlight that this observation holds regardless of whether the OLS- or GLS-based multiple

model comparison tests are employed. We also find that the SY4 model is rejected in one

out the ten sets of test asset portfolios. Although these findings are slightly different from

those summarized in Table 13, they can be rationalized by the fact that the pairwise model

comparisons do not take into account the process of searching across alternative factor pricing

models. Consequently, the pairwise testing procedure can lead to an overstatement of statistical

significance (see Barillas, Kan, Robotti, and Shanken, 2017; Kan, Robotti, and Shanken, 2013).

Taken together, our cross-sectional empirical results summarized in Tables 13 and 15 suggest

that the HXZ, FF5, FF4, and BS6 models perform about equally well and jointly take first place

in the horse race. The SY4 model, which is the top performer in the time-series regressions, is

now the next best asset pricing model. Importantly, we also notice that the CAPM performs

reasonably good – evidence that is different from most empirical studies based on time-series

regressions (see, among others, Fama and French, 1996, 2016; Hou, Xue, and Zhang, 2015,

2017a; Stambaugh and Yuan, 2016). These cross-sectional statistical findings on the relative

performance of the return factor models are different from our informal findings in the time-

series regressions, reported in Section III. They can be rationalized by two possible reasons.

First, in the time-series regression, a return factor receives a zero pricing error in each sample
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because the factor risk premium is estimated as the sample mean of the factor, whereas the cross-

sectional regression minimizes the sum of squares of all the pricing errors (see Cochrane, 2005, p.

244). Second, in the cross-sectional approach, we compare the different factor pricing models by

relying on formal statistical methods and therefore take into account the sampling variability.

Moreover, the cross-sectional statistical tests allow for potential model misspecification, that is,

population deviations from the model. We acknowledge that although model comparison can

be sensitive to the test assets, the findings from the tests based on cross-sectional regressions are

fairly robust across the various sets of test asset portfolios. Our pairwise R2 equality test and the

multiple model comparison test results reinforce the argument of Barillas and Shanken (2017)

and Harvey and Liu (2017) that factor model comparison conducted informally, by eyeballing

point estimates of pricing performance metrics, can be misleading.

V. Conclusion

This paper compares the performance of ten different asset pricing models in explaining

the average excess returns on various sets of prominent anomaly portfolios. Our list of models

comprises the capital asset pricing model of Sharpe (1964) and Lintner (1965), the Fama and

French (1993) three-factor model, the Fama and French (1993) and Carhart (1997) four-factor

model, the Fama and French (1993) and Pástor and Stambaugh (2003) four-factor model, the

Asness and Frazzini (2013) three-factor model, the Hou, Xue, and Zhang (2015) q-factor model,

the Fama and French (2015) five-factor model, the four-factor model of Fama and French (2015)

that drops the value factor, the Stambaugh and Yuan (2016) four-factor model, and the Barillas

and Shanken (2018) six-factor model. An informal analysis based on a comprehensive set of

performance metrics in the time-series domain shows that the Stambaugh and Yuan (2016)

four-factor model provides the best, though still incomplete, description of average monthly

excess returns on a majority of our test asset portfolios. The Hou, Xue, and Zhang (2015)

q-factor model takes second place, while the Fama and French (2015) five-factor model and the

Barillas and Shanken (2018) six-factor model jointly take third place in the horse race.

However, a different picture emerges when the relative performance of all the models is tested

statistically using the pairwise cross-sectional regression R2 equality test and the multiple model

comparison test. We find that the Hou, Xue, and Zhang (2015) q-factor model, the Fama

and French (2015) five-factor model, the four-factor model of Fama and French (2015) that

drops the value factor, and the Barillas and Shanken (2018) six-factor model perform about

equally well and take equal first place. The Stambaugh and Yuan (2016) four-factor model,

which is the top performer in the time-series regressions, turns out to be the next best model.

31



Unlike previous empirical studies, we also find that the capital asset pricing model of Sharpe

(1964) and Lintner (1965) performs reasonably well. Our cross-sectional findings remain robust

irrespective of regression methodologies and sequential tests for nonnested models. All these

results also indicate that the common practice of identifying the superior model(s) by informally

comparing pricing performance metrics can sometimes be misleading. Taken together, our

empirical findings have important implications for practitioners who need to evaluate capital

budgeting, equity valuation, investment management, and fund performance.

Appendix A. Supplementary Data

Supplementary results related to this article can be found in the Internet Appendix.
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Table 1
Performance of factor models in time-series (absolute) tests

The table reports summary statistics for time-series (absolute) tests of ten different factor models: the capital
asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor
(FF3) model; the Fama and French (1993) and Carhart (1997) four-factor (FFC) model; the Fama and
French (1993) and Pástor and Stambaugh (2003) four-factor (FFPS) model; the Asness and Frazzini (2013)
three-factor (FFAF) model, which combines their value factor with the market and size factors of the FF3
model; the Hou, Xue, and Zhang (2015) q-factor (HXZ) model; the Fama and French (2015) five-factor (FF5)
model; the four-factor (FF4) model that excludes the value factor from the FF5 model; the Stambaugh and
Yuan (2016) four-factor (SY4) model; and the Barillas and Shanken (2018) six-factor (BS6) model, which
includes the market, size, and momentum factors from the FF5 model, the profitability and investment factors
from the HXZ model, and the value factor from the FFAF model. The test assets are the value-weighted
monthly excess returns on anomaly portfolios: the 25 size-STR (short-term reversal) portfolios, the 25 size-CI
(abnormal capital investment) portfolios, the 25 size-DR (distress risk) portfolios, the 25 size-β (market
beta) portfolios, the 35 size-NI (net share issues) portfolios, the 25 size-MAX (lottery demand) portfolios,
the 25 size-RVar (residual variance) portfolios, the 25 size-AC (accruals) portfolios, the 30 IND (industry)
portfolios, and the 8 D10´1 (high minus low decile) portfolios. For each of the factor models, GRS is
the F -statistic of the Gibbons, Ross, and Shanken (1989) test on the null hypothesis that the alphas (i.e.,
intercepts in time-series regressions) across a given set of anomaly portfolios are jointly equal to zero, ppGRSq
is the p-value associated with the GRS statistic (i.e., F -statistic), A|αi| is the average absolute value of the
alphas, A|αi|{A|ri| is the ratio of the average absolute value of the alphas to the average absolute value
of ri estimated as the average excess return on an anomaly portfolio i minus the value-weighted average
excess return on the market portfolio, Aα2

i {Ar
2
i is the ratio of the average squared alpha to the average

squared value of ri, As
2
pαiq{Aα

2
i is the ratio defined as the average variance estimate of the sampling errors

of the estimated alphas to Aα2
i , ApR2

q is the average value of the time-series regression R2 adjusted for
degrees of freedom, Sh2

pfq is the maximum squared Sharpe ratio of the factor(s), Sh2
Bpfq is the average of

Sh2
pfq from 100,000 full-sample bootstrap simulation runs, and Sh2

pαq is the maximum squared Sharpe ratio
for the alphas across a given set of anomaly portfolios. The sample period is from January 1968 to December 2016.

Model GRS ppGRSq A|αi|
A|αi|

A|ri|

Aα2
i

Ar2i

As2pαiq

Aα2
i

ApR2
q Sh2

pfq Sh2
Bpfq Sh2

pαq

Panel A: 25 size-STR portfolios

CAPM 4.147 0.000 0.202 0.842 0.708 0.241 0.752 0.012 0.012 0.732
FF3 4.373 0.000 0.155 0.647 0.558 0.164 0.866 0.043 0.032 0.709
FFC 4.403 0.000 0.191 0.793 0.750 0.119 0.875 0.086 0.054 0.803
FFPS 4.502 0.000 0.150 0.625 0.546 0.169 0.866 0.056 0.046 0.704
FFAF 4.444 0.000 0.144 0.599 0.532 0.162 0.872 0.027 0.026 0.746
HXZ 3.887 0.000 0.176 0.733 0.707 0.146 0.866 0.182 0.118 0.729
FF5 4.041 0.000 0.160 0.668 0.550 0.165 0.874 0.107 0.078 0.749
FF4 4.045 0.000 0.160 0.666 0.544 0.173 0.869 0.107 0.060 0.685
SY4 4.902 0.000 0.230 0.956 1.097 0.096 0.870 0.233 0.112 0.877
BS6 3.830 0.000 0.163 0.677 0.531 0.179 0.883 0.237 0.147 0.746

Panel B: 25 size-CI portfolios

CAPM 2.797 0.000 0.183 0.743 0.610 0.280 0.755 0.012 0.012 0.597
FF3 2.196 0.001 0.081 0.329 0.121 0.660 0.885 0.043 0.032 0.587
FFC 3.011 0.000 0.156 0.635 0.381 0.197 0.895 0.086 0.054 0.899
FFPS 2.233 0.001 0.079 0.323 0.123 0.658 0.886 0.056 0.046 0.575
FFAF 2.463 0.000 0.091 0.371 0.148 0.483 0.894 0.027 0.026 0.645
HXZ 2.339 0.000 0.145 0.591 0.382 0.239 0.885 0.182 0.118 0.633
FF5 1.997 0.003 0.082 0.335 0.145 0.547 0.893 0.107 0.078 0.559
FF4 1.981 0.003 0.081 0.330 0.142 0.585 0.888 0.107 0.060 0.556
SY4 1.987 0.003 0.119 0.485 0.247 0.394 0.881 0.233 0.112 0.631
BS6 2.355 0.000 0.097 0.397 0.215 0.361 0.904 0.237 0.147 0.785

(Continued)
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Table 1 – Continued

Model GRS ppGRSq A|αi|
A|αi|

A|ri|

Aα2
i

Ar2i

As2pαiq

Aα2
i

ApR2
q Sh2

pfq Sh2
Bpfq Sh2

pαq

Panel C: 25 size-DR portfolios

CAPM 0.953 0.530 0.113 0.623 0.406 0.973 0.734 0.012 0.012 0.485
FF3 2.074 0.002 0.130 0.714 0.758 0.255 0.867 0.043 0.032 0.545
FFC 1.948 0.004 0.106 0.583 0.353 0.499 0.881 0.086 0.054 0.772
FFPS 2.032 0.002 0.129 0.710 0.728 0.269 0.868 0.056 0.046 0.539
FFAF 1.984 0.003 0.105 0.577 0.506 0.327 0.880 0.027 0.026 0.521
HXZ 1.518 0.052 0.082 0.452 0.257 0.912 0.854 0.182 0.118 0.484
FF5 1.807 0.010 0.108 0.591 0.493 0.393 0.875 0.107 0.078 0.493
FF4 1.573 0.039 0.115 0.632 0.562 0.398 0.855 0.107 0.060 0.493
SY4 1.900 0.006 0.093 0.513 0.298 0.755 0.869 0.233 0.112 0.595
BS6 2.716 0.000 0.123 0.673 0.606 0.303 0.889 0.237 0.147 0.627

Panel D: 25 size-β portfolios

CAPM 2.387 0.000 0.236 1.187 1.248 0.208 0.738 0.012 0.012 0.533
FF3 1.788 0.011 0.129 0.646 0.425 0.272 0.870 0.043 0.032 0.662
FFC 1.341 0.125 0.082 0.411 0.186 0.632 0.873 0.086 0.054 0.667
FFPS 1.917 0.005 0.135 0.678 0.469 0.249 0.870 0.056 0.046 0.663
FFAF 2.149 0.001 0.185 0.929 0.758 0.161 0.857 0.027 0.026 0.598
HXZ 1.827 0.009 0.076 0.381 0.160 0.831 0.866 0.182 0.118 0.536
FF5 1.857 0.007 0.083 0.415 0.179 0.621 0.881 0.107 0.078 0.855
FF4 1.837 0.008 0.080 0.402 0.175 0.662 0.874 0.107 0.060 0.620
SY4 1.217 0.216 0.063 0.319 0.103 1.457 0.861 0.233 0.112 0.424
BS6 2.193 0.001 0.112 0.563 0.318 0.388 0.882 0.237 0.147 0.650

Panel E: 35 size-NI portfolios

CAPM 4.639 0.000 0.244 1.003 1.047 0.196 0.727 0.012 0.012 1.300
FF3 4.115 0.000 0.148 0.606 0.557 0.175 0.863 0.043 0.032 1.406
FFC 3.653 0.000 0.134 0.551 0.451 0.224 0.864 0.086 0.054 1.381
FFPS 4.057 0.000 0.148 0.608 0.569 0.173 0.864 0.056 0.046 1.397
FFAF 4.477 0.000 0.183 0.752 0.757 0.132 0.856 0.027 0.026 1.369
HXZ 3.133 0.000 0.104 0.428 0.223 0.503 0.861 0.182 0.118 1.268
FF5 3.324 0.000 0.110 0.450 0.241 0.386 0.877 0.107 0.078 1.466
FF4 3.319 0.000 0.110 0.453 0.243 0.395 0.874 0.107 0.060 1.374
SY4 2.780 0.000 0.109 0.446 0.251 0.496 0.858 0.233 0.112 1.180
BS6 3.404 0.000 0.124 0.511 0.314 0.341 0.874 0.237 0.147 1.297

Panel F: 25 size-MAX portfolios

CAPM 7.867 0.000 0.318 1.142 1.296 0.094 0.754 0.012 0.012 0.947
FF3 7.165 0.000 0.221 0.792 0.741 0.083 0.862 0.043 0.032 0.965
FFC 6.725 0.000 0.208 0.748 0.614 0.100 0.866 0.086 0.054 1.054
FFPS 7.157 0.000 0.220 0.788 0.737 0.085 0.863 0.056 0.046 0.955
FFAF 7.673 0.000 0.269 0.967 1.020 0.060 0.857 0.027 0.026 1.003
HXZ 6.097 0.000 0.152 0.547 0.324 0.214 0.861 0.182 0.118 0.867
FF5 6.377 0.000 0.147 0.526 0.331 0.166 0.885 0.107 0.078 0.992
FF4 6.356 0.000 0.145 0.521 0.325 0.178 0.878 0.107 0.060 0.895
SY4 5.445 0.000 0.141 0.507 0.275 0.265 0.863 0.233 0.112 0.888
BS6 6.074 0.000 0.150 0.537 0.261 0.235 0.884 0.237 0.147 0.982

(Continued)
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Table 1 – Continued

Model GRS ppGRSq A|αi|
A|αi|

A|ri|

Aα2
i

Ar2i

As2pαiq

Aα2
i

ApR2
q Sh2

pfq Sh2
Bpfq Sh2

pαq

Panel G: 25 size-RVar portfolios

CAPM 6.835 0.000 0.361 1.157 1.384 0.078 0.746 0.012 0.012 1.149
FF3 6.738 0.000 0.240 0.770 0.989 0.055 0.865 0.043 0.032 1.216
FFC 6.019 0.000 0.221 0.710 0.660 0.079 0.870 0.086 0.054 1.207
FFPS 6.678 0.000 0.243 0.779 0.996 0.055 0.865 0.056 0.046 1.203
FFAF 7.514 0.000 0.305 0.978 1.306 0.041 0.855 0.027 0.026 1.222
HXZ 5.623 0.000 0.123 0.395 0.213 0.273 0.863 0.182 0.118 1.038
FF5 6.049 0.000 0.139 0.445 0.405 0.113 0.893 0.107 0.078 1.194
FF4 6.058 0.000 0.137 0.440 0.406 0.122 0.881 0.107 0.060 1.123
SY4 5.813 0.000 0.116 0.373 0.232 0.271 0.866 0.233 0.112 1.072
BS6 6.427 0.000 0.143 0.458 0.228 0.214 0.892 0.237 0.147 1.023

Panel H: 25 size-AC portfolios

CAPM 3.865 0.000 0.147 0.821 0.657 0.485 0.759 0.012 0.012 0.725
FF3 3.935 0.000 0.113 0.634 0.458 0.263 0.902 0.043 0.032 0.877
FFC 3.485 0.000 0.110 0.614 0.394 0.316 0.902 0.086 0.054 0.882
FFPS 3.781 0.000 0.109 0.613 0.434 0.279 0.902 0.056 0.046 0.869
FFAF 3.870 0.000 0.116 0.650 0.477 0.249 0.901 0.027 0.026 0.833
HXZ 3.693 0.000 0.134 0.749 0.570 0.238 0.904 0.182 0.118 0.805
FF5 4.186 0.000 0.117 0.656 0.468 0.251 0.910 0.107 0.078 0.910
FF4 4.032 0.000 0.118 0.664 0.475 0.249 0.909 0.107 0.060 0.846
SY4 2.818 0.000 0.095 0.530 0.328 0.495 0.889 0.233 0.112 0.812
BS6 4.750 0.000 0.137 0.768 0.608 0.218 0.909 0.237 0.147 0.964

Panel I: 30 IND portfolios

CAPM 1.311 0.127 0.150 1.173 1.630 0.669 0.578 0.012 0.012 0.650
FF3 2.284 0.000 0.206 1.604 2.527 0.409 0.614 0.043 0.032 0.672
FFC 2.395 0.000 0.174 1.356 1.928 0.551 0.619 0.086 0.054 0.808
FFPS 2.339 0.000 0.217 1.692 2.870 0.361 0.618 0.056 0.046 0.667
FFAF 1.774 0.007 0.183 1.425 2.260 0.449 0.614 0.027 0.026 0.692
HXZ 2.395 0.000 0.207 1.618 2.387 0.489 0.618 0.182 0.118 0.675
FF5 2.644 0.000 0.243 1.899 3.033 0.340 0.643 0.107 0.078 0.622
FF4 2.282 0.000 0.249 1.944 3.170 0.332 0.633 0.107 0.060 0.623
SY4 1.971 0.002 0.180 1.401 1.774 0.691 0.615 0.233 0.112 0.684
BS6 4.530 0.000 0.298 2.327 4.545 0.254 0.641 0.237 0.147 0.735

Panel J: 8 D10´1 portfolios

CAPM 9.964 0.000 0.547 0.647 0.557 0.079 0.192 0.012 0.012 0.052
FF3 12.860 0.000 0.577 0.683 0.545 0.057 0.361 0.043 0.032 0.057
FFC 10.194 0.000 0.464 0.549 0.332 0.090 0.403 0.086 0.054 0.044
FFPS 12.805 0.000 0.580 0.686 0.557 0.056 0.363 0.056 0.046 0.058
FFAF 14.790 0.000 0.623 0.737 0.668 0.046 0.368 0.027 0.026 0.075
HXZ 5.940 0.000 0.262 0.310 0.109 0.308 0.381 0.182 0.118 0.022
FF5 8.317 0.000 0.362 0.429 0.189 0.154 0.411 0.107 0.078 0.019
FF4 8.183 0.000 0.365 0.432 0.192 0.161 0.386 0.107 0.060 0.020
SY4 4.347 0.000 0.259 0.307 0.120 0.280 0.414 0.233 0.112 0.033
BS6 7.153 0.000 0.270 0.320 0.133 0.240 0.431 0.237 0.147 0.045
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Table 2
Overall performance of factor models in time-series (absolute) tests

The table reports overall performance in time-series (absolute) tests of ten different factor models: the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner
(1965); the Fama and French (1993) three-factor (FF3) model; the Fama and French (1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and
Pástor and Stambaugh (2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor (FFAF) model, which combines their value factor with the market and
size factors of the FF3 model; the Hou, Xue, and Zhang (2015) q-factor (HXZ) model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model that
excludes the value factor from the FF5 model; the Stambaugh and Yuan (2016) four-factor (SY4) model; and the Barillas and Shanken (2018) six-factor (BS6) model, which
includes the market, size, and momentum factors from the FF5 model, the profitability and investment factors from the HXZ model, and the value factor from the FFAF
model. NGRS, NA|αi|, NA|αi|{A|ri|, NAα2

i {Ar
2
i , NAs2pαiq{Aα

2
i , NApR2

q, and NSh2
pαq are the number of the sets of anomaly portfolios across which a given factor model

produces, respectively, the smallest F -statistic of the Gibbons, Ross, and Shanken (1989) test, the smallest value of A|αi|, the smallest value of A|αi|{A|ri|, the smallest value
of Aα2

i {Ar
2
i , the largest value of As2pαiq{Aα

2
i , the largest value of ApR2

q, and the smallest value of Sh2
pαq. NSTR, NCI, NDR, Nβ, NNI, NMAX, NRVar, NAC, NIND, and

ND10´1 are the number of statistically significant alphas (i.e., with a Newey and West (1987)-adjusted t-statistic ě 2.00), respectively, across the 25 size-STR (short-term
reversal) portfolios, the 25 size-CI (abnormal capital investment) portfolios, the 25 size-DR (distress risk) portfolios, the 25 size-β (market beta) portfolios, the 35 size-NI
(net share issues) portfolios, the 25 size-MAX (lottery demand) portfolios, the 25 size-RVar (residual variance) portfolios, the 25 size-AC (accruals) portfolios, the 30 IND
(industry) portfolios, and the 8 D10´1 (high minus low decile) portfolios relative to a given factor model. NMicro is the number of statistically significant alphas (i.e., with a
Newey and West (1987)-adjusted t-statistic ě 2.00) on the 42 smallest size (i.e., microcap) portfolios relative to a given factor model. The sample period is from January
1968 to December 2016. See also notes to Table 1.

Model NGRS NA|αi| N
A|αi|

A|ri|
N
Aα2

i

Ar2i
N
As2pαiq

Aα2
i

NApR2
q NSh2

pαq NSTR NCI NDR Nβ NNI NMAX NRVar NAC NIND ND10´1 NMicro

CAPM 2 1 1 1 2 0 1 10 9 0 12 15 14 17 4 4 5 15
FF3 0 0 0 1 1 0 0 6 4 7 7 11 12 13 10 9 6 16
FFC 0 0 0 0 0 0 0 11 14 4 3 13 14 14 8 7 5 19
FFPS 0 1 1 0 0 0 0 6 4 8 10 11 11 14 7 9 6 16
FFAF 0 1 1 0 0 0 0 7 3 6 13 15 15 14 9 7 7 19
HXZ 1 2 2 4 3 0 2 8 4 0 2 5 4 4 7 7 2 12
FF5 0 0 0 0 0 5 2 9 4 5 2 7 8 5 10 10 6 12
FF4 1 0 0 0 0 0 2 8 4 3 2 7 8 4 10 10 6 12
SY4 5 5 5 2 4 0 2 11 4 3 0 3 6 4 3 4 2 11
BS6 1 0 0 2 0 5 1 5 2 7 4 7 8 5 5 11 3 10
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Table 3
Tests of equality of cross-sectional R2s: 25 size-STR portfolios

The table reports pairwise tests of equality of the ordinary least squares (OLS) and generalized least squares
(GLS) cross-sectional regression R2s for ten different factor models: the capital asset pricing model (CAPM) of
Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3) model; the Fama and French
(1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and Pástor and Stambaugh
(2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor (FFAF) model, which combines
their value factor with the market and size factors of the FF3 model; the Hou, Xue, and Zhang (2015) q-factor
(HXZ) model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model that excludes
the value factor from the FF5 model; the Stambaugh and Yuan (2016) four-factor (SY4) model; and the Barillas
and Shanken (2018) six-factor (BS6) model, which includes the market, size, and momentum factors from the
FF5 model, the profitability and investment factors from the HXZ model, and the value factor from the FFAF
model. The test assets are the value-weighted monthly excess returns on the 25 size-STR (short-term reversal)
portfolios. Panel A (Panel B) shows the difference between the OLS (GLS) cross-sectional regression R2s of the
factor models in row i and column j, denoted ρ̂2i ´ ρ̂

2
j , and the corresponding p-value (in parentheses) calculated

using the Newey and West (1987)-adjusted t-statistic for the test of H0: ρ2i “ ρ2j . The one-tailed (two-tailed)
p-values in the cases of comparing nested (nonnested) models are computed under the assumption that the
factor models are potentially misspecified. The sample period is from January 1968 to December 2016.

Panel A: OLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.577 ´0.582 ´0.622 ´0.487 ´0.510 ´0.627 ´0.573 ´0.553 ´0.660
(0.046) (0.062) (0.132) (0.021) (0.128) (0.098) (0.049) (0.066) (0.023)

FF3 ´0.006 ´0.046 0.090 0.066 ´0.050 0.004 0.024 ´0.083
(0.649) (0.155) (0.195) (0.693) (0.319) (0.972) (0.667) (0.259)

FFC ´0.040 0.096 0.072 ´0.045 0.010 0.030 ´0.077
(0.554) (0.203) (0.638) (0.357) (0.925) (0.540) (0.300)

FFPS 0.135 0.112 ´0.005 0.050 0.069 0.000
(0.170) (0.564) (0.945) (0.729) (0.408) (0.617)

FFAF ´0.023 ´0.140 ´0.086 ´0.066 ´0.173
(0.878) (0.113) (0.475) (0.432) (0.087)

HXZ ´0.117 ´0.062 ´0.042 ´0.149
(0.494) (0.528) (0.774) (0.411)

FF5 0.055 0.074 ´0.033
(0.295) (0.284) (0.431)

FF4 0.020 ´0.087
(0.852) (0.465)

SY4 ´0.107
(0.238)

Panel B: GLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.213 ´0.221 ´0.304 ´0.193 ´0.115 ´0.277 ´0.190 ´0.163 ´0.474
(0.009) (0.025) (0.040) (0.004) (0.180) (0.083) (0.046) (0.063) (0.014)

FF3 ´0.008 ´0.091 0.020 0.097 ´0.064 0.023 0.049 ´0.261
(0.567) (0.171) (0.787) (0.449) (0.506) (0.838) (0.527) (0.161)

FFC ´0.083 0.028 0.106 ´0.056 0.031 0.058 ´0.252
(0.512) (0.600) (0.454) (0.565) (0.792) (0.448) (0.151)

FFPS 0.111 0.189 0.027 0.114 0.141 ´0.170
(0.454) (0.259) (0.835) (0.458) (0.348) (0.401)

FFAF 0.078 ´0.084 0.003 0.030 ´0.280
(0.588) (0.470) (0.978) (0.704) (0.101)

HXZ ´0.161 ´0.074 ´0.048 ´0.358
(0.318) (0.391) (0.724) (0.095)

FF5 0.087 0.113 ´0.197
(0.143) (0.405) (0.135)

FF4 0.026 ´0.284
(0.834) (0.096)

SY4 ´0.310
(0.129)
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Table 4
Tests of equality of cross-sectional R2s: 25 size-CI portfolios

The table reports pairwise tests of equality of the ordinary least squares (OLS) and generalized least squares
(GLS) cross-sectional regression R2s for ten different factor models: the capital asset pricing model (CAPM) of
Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3) model; the Fama and French
(1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and Pástor and Stambaugh
(2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor (FFAF) model, which combines
their value factor with the market and size factors of the FF3 model; the Hou, Xue, and Zhang (2015) q-factor
(HXZ) model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model that excludes
the value factor from the FF5 model; the Stambaugh and Yuan (2016) four-factor (SY4) model; and the Barillas
and Shanken (2018) six-factor (BS6) model, which includes the market, size, and momentum factors from the
FF5 model, the profitability and investment factors from the HXZ model, and the value factor from the FFAF
model. The test assets are the value-weighted monthly excess returns on the 25 size-CI (abnormal capital
investment) portfolios. Panel A (Panel B) shows the difference between the OLS (GLS) cross-sectional regression
R2s of the factor models in row i and column j, denoted ρ̂2i ´ ρ̂

2
j , and the corresponding p-value (in parentheses)

calculated using the Newey and West (1987)-adjusted t-statistic for the test of H0: ρ2i “ ρ2j . The one-tailed
(two-tailed) p-values in the cases of comparing nested (nonnested) models are computed under the assumption
that the factor models are potentially misspecified. The sample period is from January 1968 to December 2016.

Panel A: OLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.352 ´0.482 ´0.365 ´0.301 ´0.403 ´0.352 ´0.352 ´0.442 ´0.486
(0.023) (0.150) (0.036) (0.034) (0.048) (0.043) (0.036) (0.052) (0.141)

FF3 ´0.130 ´0.013 0.051 ´0.051 0.000 0.001 ´0.090 ´0.134
(0.035) (0.398) (0.230) (0.431) (0.984) (0.982) (0.225) (0.151)

FFC 0.117 0.181 0.079 0.130 0.131 0.040 ´0.003
(0.200) (0.077) (0.298) (0.136) (0.128) (0.449) (0.924)

FFPS 0.064 ´0.038 0.013 0.013 ´0.077 0.000
(0.258) (0.532) (0.686) (0.693) (0.326) (0.228)

FFAF ´0.102 ´0.051 ´0.050 ´0.141 ´0.185
(0.243) (0.304) (0.336) (0.114) (0.076)

HXZ 0.050 0.051 ´0.039 ´0.083
(0.330) (0.287) (0.513) (0.323)

FF5 0.001 ´0.090 ´0.133
(0.831) (0.181) (0.140)

FF4 ´0.090 ´0.134
(0.164) (0.135)

SY4 ´0.044
(0.463)

Panel B: GLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.273 ´0.507 ´0.300 ´0.127 ´0.383 ´0.297 ´0.287 ´0.467 ´0.474
(0.002) (0.009) (0.010) (0.045) (0.008) (0.036) (0.013) (0.004) (0.032)

FF3 ´0.233 ´0.026 0.146 ´0.110 ´0.023 ´0.014 ´0.193 ´0.201
(0.025) (0.359) (0.072) (0.378) (0.704) (0.875) (0.179) (0.224)

FFC 0.207 0.379 0.124 0.210 0.220 0.040 0.032
(0.242) (0.051) (0.425) (0.164) (0.150) (0.719) (0.586)

FFPS 0.172 ´0.084 0.003 0.013 ´0.167 ´0.175
(0.097) (0.501) (0.969) (0.896) (0.290) (0.323)

FFAF ´0.256 ´0.169 ´0.160 ´0.339 ´0.347
(0.079) (0.122) (0.169) (0.043) (0.067)

HXZ 0.087 0.096 ´0.084 ´0.091
(0.451) (0.339) (0.530) (0.490)

FF5 0.010 ´0.170 ´0.178
(0.604) (0.218) (0.247)

FF4 ´0.180 ´0.187
(0.176) (0.206)

SY4 ´0.008
(0.941)
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Table 5
Tests of equality of cross-sectional R2s: 25 size-DR portfolios

The table reports pairwise tests of equality of the ordinary least squares (OLS) and generalized least squares
(GLS) cross-sectional regression R2s for ten different factor models: the capital asset pricing model (CAPM) of
Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3) model; the Fama and French
(1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and Pástor and Stambaugh
(2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor (FFAF) model, which combines
their value factor with the market and size factors of the FF3 model; the Hou, Xue, and Zhang (2015) q-factor
(HXZ) model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model that excludes
the value factor from the FF5 model; the Stambaugh and Yuan (2016) four-factor (SY4) model; and the Barillas
and Shanken (2018) six-factor (BS6) model, which includes the market, size, and momentum factors from the
FF5 model, the profitability and investment factors from the HXZ model, and the value factor from the FFAF
model. The test assets are the value-weighted monthly excess returns on the 25 size-DR (distress risk) portfolios.
Panel A (Panel B) shows the difference between the OLS (GLS) cross-sectional regression R2s of the factor
models in row i and column j, denoted ρ̂2i ´ ρ̂

2
j , and the corresponding p-value (in parentheses) calculated using

the Newey and West (1987)-adjusted t-statistic for the test of H0: ρ2i “ ρ2j . The one-tailed (two-tailed) p-values
in the cases of comparing nested (nonnested) models are computed under the assumption that the factor models
are potentially misspecified. The sample period is from January 1968 to December 2016.

Panel A: OLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.217 ´0.297 ´0.219 ´0.251 ´0.246 ´0.252 ´0.187 ´0.270 ´0.298
(0.495) (0.561) (0.573) (0.454) (0.536) (0.611) (0.658) (0.513) (0.712)

FF3 ´0.081 ´0.002 ´0.034 ´0.029 ´0.035 0.029 ´0.053 ´0.081
(0.235) (0.831) (0.489) (0.782) (0.684) (0.682) (0.571) (0.502)

FFC 0.078 0.047 0.051 0.045 0.110 0.027 ´0.001
(0.569) (0.607) (0.519) (0.744) (0.365) (0.761) (0.967)

FFPS ´0.032 ´0.027 ´0.033 0.032 ´0.051 0.000
(0.597) (0.810) (0.706) (0.674) (0.604) (0.522)

FFAF 0.005 ´0.001 0.063 ´0.019 ´0.048
(0.951) (0.988) (0.405) (0.786) (0.584)

HXZ ´0.006 0.059 ´0.024 ´0.052
(0.962) (0.413) (0.781) (0.550)

FF5 0.065 ´0.018 ´0.046
(0.232) (0.790) (0.711)

FF4 ´0.083 ´0.111
(0.410) (0.364)

SY4 ´0.028
(0.722)

Panel B: GLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.086 ´0.242 ´0.088 ´0.133 ´0.148 ´0.102 ´0.058 ´0.149 ´0.256
(0.431) (0.362) (0.650) (0.278) (0.452) (0.779) (0.800) (0.430) (0.632)

FF3 ´0.156 ´0.002 ´0.047 ´0.062 ´0.016 0.028 ´0.063 ´0.170
(0.191) (0.861) (0.396) (0.610) (0.805) (0.647) (0.605) (0.432)

FFC 0.154 0.109 0.094 0.140 0.184 0.093 ´0.014
(0.453) (0.521) (0.579) (0.483) (0.371) (0.538) (0.818)

FFPS ´0.045 ´0.060 ´0.015 0.029 ´0.062 ´0.169
(0.479) (0.638) (0.834) (0.646) (0.622) (0.445)

FFAF ´0.015 0.030 0.074 ´0.017 ´0.124
(0.878) (0.707) (0.415) (0.876) (0.518)

HXZ 0.046 0.090 ´0.001 ´0.108
(0.721) (0.421) (0.990) (0.550)

FF5 0.044 ´0.047 ´0.154
(0.404) (0.637) (0.494)

FF4 ´0.091 ´0.198
(0.496) (0.351)

SY4 ´0.107
(0.539)
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Table 6
Tests of equality of cross-sectional R2s: 25 size-β portfolios

The table reports pairwise tests of equality of the ordinary least squares (OLS) and generalized least squares
(GLS) cross-sectional regression R2s for ten different factor models: the capital asset pricing model (CAPM) of
Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3) model; the Fama and French
(1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and Pástor and Stambaugh
(2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor (FFAF) model, which combines
their value factor with the market and size factors of the FF3 model; the Hou, Xue, and Zhang (2015) q-factor
(HXZ) model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model that excludes
the value factor from the FF5 model; the Stambaugh and Yuan (2016) four-factor (SY4) model; and the Barillas
and Shanken (2018) six-factor (BS6) model, which includes the market, size, and momentum factors from the
FF5 model, the profitability and investment factors from the HXZ model, and the value factor from the FFAF
model. The test assets are the value-weighted monthly excess returns on the 25 size-β (market beta) portfolios.
Panel A (Panel B) shows the difference between the OLS (GLS) cross-sectional regression R2s of the factor
models in row i and column j, denoted ρ̂2i ´ ρ̂

2
j , and the corresponding p-value (in parentheses) calculated using

the Newey and West (1987)-adjusted t-statistic for the test of H0: ρ2i “ ρ2j . The one-tailed (two-tailed) p-values
in the cases of comparing nested (nonnested) models are computed under the assumption that the factor models
are potentially misspecified. The sample period is from January 1968 to December 2016.

Panel A: OLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.693 ´0.785 ´0.710 ´0.554 ´0.743 ´0.749 ´0.745 ´0.750 ´0.778
(0.071) (0.099) (0.096) (0.113) (0.039) (0.044) (0.034) (0.045) (0.072)

FF3 ´0.091 ´0.016 0.139 ´0.050 ´0.056 ´0.052 ´0.057 ´0.084
(0.063) (0.321) (0.200) (0.539) (0.427) (0.524) (0.575) (0.368)

FFC 0.075 0.231 0.041 0.035 0.040 0.034 0.007
(0.351) (0.155) (0.569) (0.590) (0.563) (0.682) (0.864)

FFPS 0.156 ´0.034 ´0.039 ´0.035 ´0.041 0.000
(0.202) (0.612) (0.484) (0.590) (0.662) (0.426)

FFAF ´0.189 ´0.195 ´0.191 ´0.196 ´0.224
(0.234) (0.205) (0.225) (0.231) (0.171)

HXZ ´0.006 ´0.001 ´0.007 ´0.034
(0.865) (0.965) (0.938) (0.569)

FF5 0.004 ´0.001 ´0.028
(0.594) (0.987) (0.642)

FF4 ´0.006 ´0.033
(0.937) (0.587)

SY4 ´0.027
(0.767)

Panel B: GLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.218 ´0.443 ´0.246 ´0.070 ´0.337 ´0.325 ´0.323 ´0.429 ´0.448
(0.021) (0.029) (0.047) (0.347) (0.013) (0.028) (0.013) (0.009) (0.051)

FF3 ´0.225 ´0.028 0.148 ´0.119 ´0.107 ´0.105 ´0.212 ´0.230
(0.051) (0.365) (0.175) (0.372) (0.324) (0.373) (0.249) (0.255)

FFC 0.198 0.373 0.106 0.118 0.120 0.014 ´0.004
(0.320) (0.102) (0.537) (0.546) (0.542) (0.940) (0.954)

FFPS 0.175 ´0.091 ´0.079 ´0.077 ´0.184 ´0.202
(0.165) (0.476) (0.465) (0.505) (0.321) (0.325)

FFAF ´0.267 ´0.255 ´0.253 ´0.359 ´0.377
(0.100) (0.089) (0.091) (0.054) (0.088)

HXZ 0.012 0.014 ´0.093 ´0.111
(0.883) (0.859) (0.544) (0.468)

FF5 0.002 ´0.105 ´0.123
(0.784) (0.450) (0.517)

FF4 ´0.107 ´0.125
(0.425) (0.509)

SY4 ´0.018
(0.916)
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Table 7
Tests of equality of cross-sectional R2s: 35 size-NI portfolios

The table reports pairwise tests of equality of the ordinary least squares (OLS) and generalized least squares
(GLS) cross-sectional regression R2s for ten different factor models: the capital asset pricing model (CAPM) of
Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3) model; the Fama and French
(1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and Pástor and Stambaugh
(2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor (FFAF) model, which combines
their value factor with the market and size factors of the FF3 model; the Hou, Xue, and Zhang (2015) q-factor
(HXZ) model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model that excludes
the value factor from the FF5 model; the Stambaugh and Yuan (2016) four-factor (SY4) model; and the Barillas
and Shanken (2018) six-factor (BS6) model, which includes the market, size, and momentum factors from the
FF5 model, the profitability and investment factors from the HXZ model, and the value factor from the FFAF
model. The test assets are the value-weighted monthly excess returns on the 35 size-NI (net share issues)
portfolios. Panel A (Panel B) shows the difference between the OLS (GLS) cross-sectional regression R2s of the
factor models in row i and column j, denoted ρ̂2i ´ ρ̂

2
j , and the corresponding p-value (in parentheses) calculated

using the Newey and West (1987)-adjusted t-statistic for the test of H0: ρ2i “ ρ2j . The one-tailed (two-tailed)
p-values in the cases of comparing nested (nonnested) models are computed under the assumption that the
factor models are potentially misspecified. The sample period is from January 1968 to December 2016.

Panel A: OLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.438 ´0.641 ´0.463 ´0.315 ´0.645 ´0.607 ´0.596 ´0.660 ´0.665
(0.006) (0.055) (0.016) (0.017) (0.004) (0.004) (0.005) (0.003) (0.020)

FF3 ´0.203 ´0.025 0.124 ´0.206 ´0.169 ´0.158 ´0.222 ´0.227
(0.009) (0.349) (0.047) (0.011) (0.025) (0.031) (0.015) (0.020)

FFC 0.178 0.326 ´0.004 0.034 0.045 ´0.019 ´0.024
(0.070) (0.010) (0.964) (0.734) (0.677) (0.792) (0.700)

FFPS 0.148 ´0.182 ´0.144 ´0.133 ´0.197 0.001
(0.064) (0.052) (0.109) (0.134) (0.045) (0.037)

FFAF ´0.330 ´0.292 ´0.282 ´0.345 ´0.350
(0.004) (0.008) (0.013) (0.003) (0.004)

HXZ 0.038 0.048 ´0.015 ´0.020
(0.434) (0.365) (0.817) (0.689)

FF5 0.011 ´0.053 ´0.058
(0.412) (0.404) (0.416)

FF4 ´0.064 ´0.069
(0.427) (0.415)

SY4 ´0.005
(0.922)

Panel B: GLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.094 ´0.278 ´0.101 ´0.029 ´0.307 ´0.226 ´0.223 ´0.336 ´0.329
(0.007) (0.013) (0.108) (0.207) (0.000) (0.004) (0.001) (0.000) (0.016)

FF3 ´0.184 ´0.008 0.065 ´0.214 ´0.132 ´0.130 ´0.242 ´0.235
(0.019) (0.605) (0.128) (0.023) (0.075) (0.068) (0.018) (0.053)

FFC 0.177 0.249 ´0.029 0.052 0.055 ´0.058 ´0.051
(0.151) (0.067) (0.797) (0.702) (0.689) (0.589) (0.513)

FFPS 0.072 ´0.206 ´0.125 ´0.122 ´0.235 ´0.227
(0.155) (0.041) (0.132) (0.127) (0.027) (0.066)

FFAF ´0.278 ´0.197 ´0.194 ´0.307 ´0.300
(0.006) (0.014) (0.017) (0.003) (0.018)

HXZ 0.081 0.084 ´0.029 ´0.021
(0.229) (0.223) (0.729) (0.742)

FF5 0.003 ´0.110 ´0.103
(0.681) (0.180) (0.329)

FF4 ´0.113 ´0.105
(0.196) (0.333)

SY4 0.007
(0.931)
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Table 8
Tests of equality of cross-sectional R2s: 25 size-MAX portfolios

The table reports pairwise tests of equality of the ordinary least squares (OLS) and generalized least squares
(GLS) cross-sectional regression R2s for ten different factor models: the capital asset pricing model (CAPM) of
Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3) model; the Fama and French
(1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and Pástor and Stambaugh
(2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor (FFAF) model, which combines
their value factor with the market and size factors of the FF3 model; the Hou, Xue, and Zhang (2015) q-factor
(HXZ) model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model that excludes
the value factor from the FF5 model; the Stambaugh and Yuan (2016) four-factor (SY4) model; and the Barillas
and Shanken (2018) six-factor (BS6) model, which includes the market, size, and momentum factors from the
FF5 model, the profitability and investment factors from the HXZ model, and the value factor from the FFAF
model. The test assets are the value-weighted monthly excess returns on the 25 size-MAX (lottery demand)
portfolios. Panel A (Panel B) shows the difference between the OLS (GLS) cross-sectional regression R2s of the
factor models in row i and column j, denoted ρ̂2i ´ ρ̂

2
j , and the corresponding p-value (in parentheses) calculated

using the Newey and West (1987)-adjusted t-statistic for the test of H0: ρ2i “ ρ2j . The one-tailed (two-tailed)
p-values in the cases of comparing nested (nonnested) models are computed under the assumption that the
factor models are potentially misspecified. The sample period is from January 1968 to December 2016.

Panel A: OLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.313 ´0.383 ´0.315 ´0.212 ´0.345 ´0.366 ´0.354 ´0.359 ´0.393
(0.007) (0.039) (0.011) (0.023) (0.009) (0.056) (0.012) (0.007) (0.034)

FF3 ´0.069 ´0.002 0.101 ´0.032 ´0.052 ´0.041 ´0.046 ´0.080
(0.091) (0.691) (0.108) (0.572) (0.424) (0.469) (0.301) (0.231)

FFC 0.067 0.170 0.037 0.017 0.028 0.023 ´0.011
(0.213) (0.061) (0.458) (0.829) (0.656) (0.554) (0.830)

FFPS 0.103 ´0.030 ´0.050 ´0.039 ´0.044 0.001
(0.088) (0.603) (0.445) (0.497) (0.342) (0.238)

FFAF ´0.133 ´0.153 ´0.142 ´0.147 ´0.181
(0.123) (0.070) (0.080) (0.081) (0.040)

HXZ ´0.020 ´0.009 ´0.014 ´0.048
(0.764) (0.824) (0.760) (0.369)

FF5 0.011 0.007 ´0.028
(0.544) (0.931) (0.661)

FF4 ´0.005 ´0.039
(0.932) (0.456)

SY4 ´0.034
(0.554)

Panel B: GLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.107 ´0.219 ´0.110 ´0.024 ´0.229 ´0.245 ´0.238 ´0.293 ´0.263
(0.003) (0.032) (0.040) (0.371) (0.004) (0.058) (0.015) (0.002) (0.169)

FF3 ´0.113 ´0.003 0.082 ´0.122 ´0.138 ´0.132 ´0.186 ´0.156
(0.092) (0.682) (0.093) (0.243) (0.167) (0.145) (0.053) (0.121)

FFC 0.109 0.195 ´0.009 ´0.025 ´0.019 ´0.074 ´0.044
(0.357) (0.157) (0.924) (0.838) (0.881) (0.416) (0.651)

FFPS 0.086 ´0.119 ´0.135 ´0.128 ´0.183 ´0.153
(0.110) (0.251) (0.172) (0.148) (0.058) (0.126)

FFAF ´0.205 ´0.221 ´0.214 ´0.269 ´0.239
(0.048) (0.015) (0.010) (0.016) (0.017)

HXZ ´0.016 ´0.010 ´0.064 ´0.034
(0.777) (0.889) (0.474) (0.328)

FF5 0.007 ´0.048 ´0.018
(0.681) (0.607) (0.746)

FF4 ´0.055 ´0.025
(0.594) (0.670)

SY4 0.030
(0.742)
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Table 9
Tests of equality of cross-sectional R2s: 25 size-RVar portfolios

The table reports pairwise tests of equality of the ordinary least squares (OLS) and generalized least squares
(GLS) cross-sectional regression R2s for ten different factor models: the capital asset pricing model (CAPM) of
Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3) model; the Fama and French
(1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and Pástor and Stambaugh
(2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor (FFAF) model, which combines
their value factor with the market and size factors of the FF3 model; the Hou, Xue, and Zhang (2015) q-factor
(HXZ) model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model that excludes
the value factor from the FF5 model; the Stambaugh and Yuan (2016) four-factor (SY4) model; and the Barillas
and Shanken (2018) six-factor (BS6) model, which includes the market, size, and momentum factors from the
FF5 model, the profitability and investment factors from the HXZ model, and the value factor from the FFAF
model. The test assets are the value-weighted monthly excess returns on the 25 size-RVar (residual variance)
portfolios. Panel A (Panel B) shows the difference between the OLS (GLS) cross-sectional regression R2s of the
factor models in row i and column j, denoted ρ̂2i ´ ρ̂

2
j , and the corresponding p-value (in parentheses) calculated

using the Newey and West (1987)-adjusted t-statistic for the test of H0: ρ2i “ ρ2j . The one-tailed (two-tailed)
p-values in the cases of comparing nested (nonnested) models are computed under the assumption that the
factor models are potentially misspecified. The sample period is from January 1968 to December 2016.

Panel A: OLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.296 ´0.481 ´0.314 ´0.096 ´0.542 ´0.580 ´0.580 ´0.520 ´0.579
(0.006) (0.071) (0.019) (0.162) (0.002) (0.017) (0.008) (0.013) (0.013)

FF3 ´0.185 ´0.018 0.200 ´0.246 ´0.285 ´0.284 ´0.224 ´0.283
(0.048) (0.409) (0.069) (0.034) (0.012) (0.011) (0.054) (0.010)

FFC 0.167 0.385 ´0.061 ´0.099 ´0.099 ´0.039 ´0.098
(0.136) (0.025) (0.291) (0.166) (0.160) (0.417) (0.152)

FFPS 0.218 ´0.228 ´0.267 ´0.266 ´0.206 0.003
(0.089) (0.061) (0.024) (0.023) (0.094) (0.017)

FFAF ´0.446 ´0.485 ´0.484 ´0.424 ´0.483
(0.006) (0.003) (0.003) (0.011) (0.004)

HXZ ´0.039 ´0.038 0.022 ´0.037
(0.388) (0.360) (0.489) (0.341)

FF5 0.001 0.060 0.002
(0.863) (0.207) (0.963)

FF4 0.060 0.001
(0.180) (0.972)

SY4 ´0.059
(0.241)

Panel B: GLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.028 ´0.051 ´0.030 ´0.006 ´0.266 ´0.450 ´0.449 ´0.170 ´0.392
(0.220) (0.400) (0.495) (0.778) (0.001) (0.006) (0.001) (0.040) (0.013)

FF3 ´0.023 ´0.003 0.021 ´0.238 ´0.422 ´0.422 ´0.143 ´0.364
(0.431) (0.725) (0.452) (0.069) (0.012) (0.010) (0.273) (0.019)

FFC 0.020 0.045 ´0.215 ´0.399 ´0.398 ´0.119 ´0.341
(0.718) (0.475) (0.051) (0.016) (0.015) (0.228) (0.037)

FFPS 0.024 ´0.235 ´0.420 ´0.419 ´0.140 ´0.361
(0.422) (0.075) (0.011) (0.010) (0.277) (0.021)

FFAF ´0.259 ´0.444 ´0.443 ´0.164 ´0.386
(0.035) (0.007) (0.006) (0.183) (0.012)

HXZ ´0.184 ´0.184 0.095 ´0.126
(0.137) (0.127) (0.190) (0.250)

FF5 0.001 0.280 0.058
(0.878) (0.035) (0.556)

FF4 0.279 0.057
(0.031) (0.559)

SY4 ´0.222
(0.131)
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Table 10
Tests of equality of cross-sectional R2s: 25 size-AC portfolios

The table reports pairwise tests of equality of the ordinary least squares (OLS) and generalized least squares
(GLS) cross-sectional regression R2s for ten different factor models: the capital asset pricing model (CAPM) of
Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3) model; the Fama and French
(1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and Pástor and Stambaugh
(2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor (FFAF) model, which combines
their value factor with the market and size factors of the FF3 model; the Hou, Xue, and Zhang (2015) q-factor
(HXZ) model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model that excludes
the value factor from the FF5 model; the Stambaugh and Yuan (2016) four-factor (SY4) model; and the Barillas
and Shanken (2018) six-factor (BS6) model, which includes the market, size, and momentum factors from the
FF5 model, the profitability and investment factors from the HXZ model, and the value factor from the FFAF
model. The test assets are the value-weighted monthly excess returns on the 25 size-AC (accruals) portfolios.
Panel A (Panel B) shows the difference between the OLS (GLS) cross-sectional regression R2s of the factor
models in row i and column j, denoted ρ̂2i ´ ρ̂

2
j , and the corresponding p-value (in parentheses) calculated using

the Newey and West (1987)-adjusted t-statistic for the test of H0: ρ2i “ ρ2j . The one-tailed (two-tailed) p-values
in the cases of comparing nested (nonnested) models are computed under the assumption that the factor models
are potentially misspecified. The sample period is from January 1968 to December 2016.

Panel A: OLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.360 ´0.639 ´0.382 ´0.335 ´0.494 ´0.584 ´0.551 ´0.489 ´0.680
(0.093) (0.201) (0.144) (0.121) (0.079) (0.048) (0.025) (0.106) (0.202)

FF3 ´0.279 ´0.022 0.025 ´0.134 ´0.224 ´0.191 ´0.129 ´0.320
(0.007) (0.568) (0.504) (0.092) (0.100) (0.099) (0.179) (0.083)

FFC 0.257 0.304 0.145 0.055 0.088 0.150 ´0.041
(0.185) (0.143) (0.420) (0.717) (0.556) (0.412) (0.459)

FFPS 0.047 ´0.112 ´0.202 ´0.169 ´0.107 0.001
(0.557) (0.340) (0.168) (0.203) (0.340) (0.098)

FFAF ´0.159 ´0.249 ´0.216 ´0.154 ´0.345
(0.083) (0.080) (0.078) (0.154) (0.081)

HXZ ´0.090 ´0.057 0.005 ´0.186
(0.393) (0.507) (0.958) (0.259)

FF5 0.033 0.095 ´0.096
(0.196) (0.514) (0.466)

FF4 0.062 ´0.129
(0.636) (0.324)

SY4 ´0.191
(0.275)

Panel B: GLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.080 ´0.301 ´0.106 ´0.077 ´0.140 ´0.212 ´0.158 ´0.174 ´0.352
(0.103) (0.066) (0.328) (0.158) (0.092) (0.059) (0.033) (0.092) (0.111)

FF3 ´0.222 ´0.026 0.003 ´0.061 ´0.132 ´0.078 ´0.095 ´0.272
(0.054) (0.510) (0.891) (0.430) (0.235) (0.290) (0.334) (0.145)

FFC 0.196 0.225 0.161 0.089 0.144 0.127 ´0.050
(0.352) (0.245) (0.410) (0.658) (0.468) (0.449) (0.432)

FFPS 0.029 ´0.035 ´0.106 ´0.052 ´0.068 ´0.246
(0.700) (0.777) (0.452) (0.658) (0.556) (0.227)

FFAF ´0.064 ´0.135 ´0.081 ´0.097 ´0.275
(0.491) (0.241) (0.350) (0.342) (0.142)

HXZ ´0.072 ´0.017 ´0.034 ´0.211
(0.471) (0.814) (0.738) (0.239)

FF5 0.055 0.038 ´0.140
(0.185) (0.779) (0.431)

FF4 ´0.017 ´0.194
(0.890) (0.273)

SY4 ´0.178
(0.276)
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Table 11
Tests of equality of cross-sectional R2s: 30 IND portfolios

The table reports pairwise tests of equality of the ordinary least squares (OLS) and generalized least squares
(GLS) cross-sectional regression R2s for ten different factor models: the capital asset pricing model (CAPM) of
Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3) model; the Fama and French
(1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and Pástor and Stambaugh
(2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor (FFAF) model, which combines
their value factor with the market and size factors of the FF3 model; the Hou, Xue, and Zhang (2015) q-factor
(HXZ) model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model that excludes
the value factor from the FF5 model; the Stambaugh and Yuan (2016) four-factor (SY4) model; and the Barillas
and Shanken (2018) six-factor (BS6) model, which includes the market, size, and momentum factors from the
FF5 model, the profitability and investment factors from the HXZ model, and the value factor from the FFAF
model. The test assets are the value-weighted monthly excess returns on the 30 IND (industry) portfolios. Panel
A (Panel B) shows the difference between the OLS (GLS) cross-sectional regression R2s of the factor models
in row i and column j, denoted ρ̂2i ´ ρ̂2j , and the corresponding p-value (in parentheses) calculated using the
Newey and West (1987)-adjusted t-statistic for the test of H0: ρ2i “ ρ2j . The one-tailed (two-tailed) p-values in
the cases of comparing nested (nonnested) models are computed under the assumption that the factor models
are potentially misspecified. The sample period is from January 1968 to December 2016.

Panel A: OLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.044 ´0.046 ´0.045 ´0.046 ´0.168 ´0.280 ´0.206 ´0.210 ´0.183
(0.782) (0.936) (0.941) (0.773) (0.644) (0.645) (0.635) (0.550) (0.907)

FF3 ´0.001 ´0.001 ´0.001 ´0.123 ´0.235 ´0.162 ´0.166 ´0.139
(0.927) (0.953) (0.949) (0.615) (0.427) (0.636) (0.526) (0.645)

FFC 0.001 0.000 ´0.122 ´0.234 ´0.161 ´0.164 ´0.138
(0.971) (0.996) (0.615) (0.428) (0.626) (0.531) (0.636)

FFPS ´0.001 ´0.123 ´0.235 ´0.161 ´0.165 0.000
(0.985) (0.600) (0.416) (0.622) (0.516) (0.604)

FFAF ´0.122 ´0.234 ´0.161 ´0.164 ´0.138
(0.601) (0.414) (0.634) (0.511) (0.640)

HXZ ´0.112 ´0.039 ´0.042 ´0.016
(0.387) (0.805) (0.708) (0.884)

FF5 0.073 0.070 0.096
(0.456) (0.478) (0.619)

FF4 ´0.004 0.023
(0.987) (0.781)

SY4 0.027
(0.888)

Panel B: GLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.087 ´0.102 ´0.087 ´0.080 ´0.113 ´0.164 ´0.161 ´0.104 ´0.170
(0.381) (0.520) (0.591) (0.404) (0.498) (0.518) (0.361) (0.562) (0.671)

FF3 ´0.015 0.000 0.007 ´0.027 ´0.077 ´0.074 ´0.017 ´0.083
(0.574) (0.967) (0.769) (0.711) (0.525) (0.549) (0.845) (0.564)

FFC 0.015 0.022 ´0.012 ´0.062 ´0.059 ´0.002 ´0.068
(0.786) (0.750) (0.916) (0.664) (0.682) (0.986) (0.628)

FFPS 0.007 ´0.026 ´0.077 ´0.074 ´0.017 ´0.083
(0.761) (0.708) (0.524) (0.549) (0.845) (0.563)

FFAF ´0.033 ´0.084 ´0.081 ´0.024 ´0.090
(0.622) (0.482) (0.502) (0.769) (0.529)

HXZ ´0.051 ´0.048 0.009 ´0.057
(0.489) (0.534) (0.886) (0.645)

FF5 0.003 0.060 ´0.006
(0.819) (0.509) (0.964)

FF4 0.057 ´0.009
(0.574) (0.939)

SY4 ´0.066
(0.682)

50



Table 12
Tests of equality of cross-sectional R2s: 8 D10´1 portfolios

The table reports pairwise tests of equality of the ordinary least squares (OLS) and generalized least squares
(GLS) cross-sectional regression R2s for ten different factor models: the capital asset pricing model (CAPM) of
Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3) model; the Fama and French
(1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and Pástor and Stambaugh
(2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor (FFAF) model, which combines
their value factor with the market and size factors of the FF3 model; the Hou, Xue, and Zhang (2015) q-factor
(HXZ) model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model that excludes
the value factor from the FF5 model; the Stambaugh and Yuan (2016) four-factor (SY4) model; and the Barillas
and Shanken (2018) six-factor (BS6) model, which includes the market, size, and momentum factors from the
FF5 model, the profitability and investment factors from the HXZ model, and the value factor from the FFAF
model. The test assets are the value-weighted monthly excess returns on the 8 D10´1 (high minus low decile)
portfolios. Panel A (Panel B) shows the difference between the OLS (GLS) cross-sectional regression R2s of the
factor models in row i and column j, denoted ρ̂2i ´ ρ̂

2
j , and the corresponding p-value (in parentheses) calculated

using the Newey and West (1987)-adjusted t-statistic for the test of H0: ρ2i “ ρ2j . The one-tailed (two-tailed)
p-values in the cases of comparing nested (nonnested) models are computed under the assumption that the
factor models are potentially misspecified. The sample period is from January 1968 to December 2016.

Panel A: OLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.690 ´0.861 ´0.832 ´0.543 ´0.889 ´0.914 ´0.817 ´0.972 ´0.986
(0.026) (0.035) (0.291) (0.051) (0.011) (0.009) (0.008) (0.007) (0.039)

FF3 ´0.171 ´0.142 0.147 ´0.199 ´0.224 ´0.127 ´0.281 ´0.296
(0.071) (0.198) (0.172) (0.176) (0.204) (0.203) (0.195) (0.195)

FFC 0.029 0.318 ´0.028 ´0.053 0.043 ´0.111 ´0.126
(0.877) (0.192) (0.817) (0.733) (0.798) (0.324) (0.267)

FFPS 0.289 ´0.057 ´0.082 0.014 ´0.140 0.017
(0.246) (0.740) (0.690) (0.940) (0.500) (0.482)

FFAF ´0.346 ´0.371 ´0.275 ´0.429 ´0.444
(0.121) (0.099) (0.125) (0.112) (0.111)

HXZ ´0.025 0.071 ´0.083 ´0.098
(0.837) (0.412) (0.554) (0.518)

FF5 0.097 ´0.058 ´0.072
(0.155) (0.580) (0.528)

FF4 ´0.154 ´0.169
(0.389) (0.381)

SY4 ´0.015
(0.642)

Panel B: GLS

Model FF3 FFC FFPS FFAF HXZ FF5 FF4 SY4 BS6

CAPM ´0.607 ´0.669 ´0.687 ´0.461 ´0.797 ´0.823 ´0.782 ´0.883 ´0.913
(0.005) (0.010) (0.111) (0.016) (0.001) (0.002) (0.001) (0.000) (0.014)

FF3 ´0.062 ´0.080 0.146 ´0.191 ´0.216 ´0.175 ´0.276 ´0.306
(0.310) (0.389) (0.181) (0.186) (0.268) (0.216) (0.197) (0.187)

FFC ´0.018 0.207 ´0.129 ´0.154 ´0.114 ´0.214 ´0.244
(0.913) (0.308) (0.215) (0.507) (0.533) (0.272) (0.234)

FFPS 0.226 ´0.110 ´0.136 ´0.095 ´0.196 ´0.226
(0.336) (0.537) (0.593) (0.653) (0.410) (0.353)

FFAF ´0.336 ´0.361 ´0.321 ´0.422 ´0.452
(0.134) (0.110) (0.103) (0.112) (0.105)

HXZ ´0.025 0.015 ´0.085 ´0.116
(0.880) (0.896) (0.520) (0.438)

FF5 0.040 ´0.060 ´0.090
(0.356) (0.620) (0.519)

FF4 ´0.101 ´0.131
(0.459) (0.422)

SY4 ´0.030
(0.639)
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Table 13
Summary of factor model performance: Tests of equality of cross-sectional R2s

The table reports summary of pairwise tests for equality of the ordinary least squares (OLS) and generalized
least squares (GLS) cross-sectional regression R2s for ten different factor models: the capital asset pricing model
(CAPM) of Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3) model; the
Fama and French (1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and Pástor
and Stambaugh (2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor (FFAF) model,
which combines their value factor with the market and size factors of the FF3 model; the Hou, Xue, and Zhang
(2015) q-factor (HXZ) model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model
that excludes the value factor from the FF5 model; the Stambaugh and Yuan (2016) four-factor (SY4) model;
and the Barillas and Shanken (2018) six-factor (BS6) model, which includes the market, size, and momentum
factors from the FF5 model, the profitability and investment factors from the HXZ model, and the value factor
from the FFAF model. The test assets are the value-weighted monthly excess returns on anomaly portfolios:
the 25 size-STR (short-term reversal) portfolios, the 25 size-CI (abnormal capital investment) portfolios, the
25 size-DR (distress risk) portfolios, the 25 size-β (market beta) portfolios, the 35 size-NI (net share issues)
portfolios, the 25 size-MAX (lottery demand) portfolios, the 25 size-RVar (residual variance) portfolios, the
25 size-AC (accruals) portfolios, the 30 IND (industry) portfolios, and the 8 D10´1 (high minus low decile)
portfolios. Panel A (Panel B) shows, for each set of anomaly portfolios, the number of times a given factor
model produces a significantly (i.e., at the 5% level) higher OLS (GLS) cross-sectional regression R2 relative to
another competing factor model. See also notes to Table 3.

Panel A: OLS

Model Size-STR Size-CI Size-DR Size-β Size-NI Size-MAX Size-RVar Size-AC IND D10´1

CAPM 0 0 0 0 0 0 0 0 0 0
FF3 1 1 0 0 2 1 1 0 0 1
FFC 0 1 0 0 2 1 2 1 0 1
FFPS 0 1 0 0 2 1 2 0 0 0
FFAF 1 1 0 0 1 1 0 0 0 0
HXZ 0 1 0 1 3 1 3 0 0 1
FF5 0 1 0 1 3 0 4 1 0 1
FF4 1 1 0 1 3 1 4 1 0 1
SY4 0 0 0 1 4 1 2 0 0 1
BS6 1 0 0 0 3 2 3 0 0 1

Panel B: GLS

CAPM 0 0 0 0 0 0 0 0 0 0
FF3 1 1 0 1 1 1 0 0 0 1
FFC 1 2 0 1 2 1 0 0 0 1
FFPS 1 1 0 1 0 1 0 0 0 0
FFAF 1 1 0 0 0 0 0 0 0 1
HXZ 0 1 0 1 4 2 2 0 0 1
FF5 0 1 0 1 2 1 6 0 0 1
FF4 1 1 0 1 2 2 6 1 0 1
SY4 0 2 0 1 4 2 1 0 0 1
BS6 1 1 0 0 2 1 5 0 0 1
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Table 14
Multiple model comparison tests

The table reports multiple model comparison tests of the ordinary least squares (OLS) and generalized least squares (GLS) cross-sectional regression R2s for ten different
factor models: the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3) model; the Fama and French
(1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993) and Pástor and Stambaugh (2003) four-factor (FFPS) model; the Asness and Frazzini
(2013) three-factor (FFAF) model, which combines their value factor with the market and size factors of the FF3 model; the Hou, Xue, and Zhang (2015) q-factor (HXZ)
model; the Fama and French (2015) five-factor (FF5) model; the four-factor (FF4) model that excludes the value factor from the FF5 model; the Stambaugh and Yuan
(2016) four-factor (SY4) model; and the Barillas and Shanken (2018) six-factor (BS6) model, which includes the market, size, and momentum factors from the FF5 model,
the profitability and investment factors from the HXZ model, and the value factor from the FFAF model. ρ̂2 is the cross-sectional regression R2 of the benchmark model; u
is the number of alternative factor models in each multiple nonnested model comparison; LR is the value of the likelihood ratio statistic with corresponding p-value reported
in adjacent column; v is the number of factor models that nest the benchmark model; ρ̂2M ´ ρ̂2 is the difference between the cross-sectional regression R2 of the expanded
factor model (M) and the cross-sectional regression R2 of the benchmark model with corresponding p-value reported in adjacent column. The sample period is from January
1968 to December 2016. See also notes to Table 13.

Panel A: 25 size-STR portfolios

Benchmark
OLS GLS

ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value

CAPM 0.216 9 0.744 0.440 0.008 9 0.734 0.749
FF3 0.793 5 1.281 0.463 2 0.048 0.438 0.221 5 2.448 0.283 2 0.110 0.267
FFC 0.798 6 1.274 0.601 0.229 6 2.875 0.309
FFPS 0.838 6 0.196 0.650 0.312 6 0.780 0.433
FFAF 0.703 6 3.245 0.140 0.201 6 3.891 0.164
HXZ 0.726 6 0.861 0.298 0.123 6 4.007 0.087
FF5 0.843 6 0.663 0.716 0.285 6 2.736 0.245
FF4 0.788 6 0.636 0.559 1 0.055 0.295 0.198 6 3.993 0.143 1 0.087 0.143
SY4 0.769 6 1.598 0.402 0.171 6 3.106 0.180
BS6 0.876 6 0.000 0.858 0.482 6 0.000 0.757

Panel B: 25 size-CI portfolios

Benchmark
OLS GLS

ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value

CAPM 0.341 9 0.615 0.328 0.000 9 0.832 0.291
FF3 0.693 5 1.144 0.500 2 0.133 0.070 0.274 5 2.242 0.288 2 0.251 0.057
FFC 0.823 6 0.009 0.808 0.507 6 0.000 0.841
FFPS 0.706 6 1.017 0.494 0.300 6 1.622 0.333
FFAF 0.642 6 1.577 0.224 0.128 6 7.392 0.020
HXZ 0.744 6 0.819 0.515 0.384 6 0.689 0.514
FF5 0.694 6 1.320 0.520 0.297 6 2.408 0.282
FF4 0.693 6 1.381 0.500 1 0.001 0.831 0.287 6 2.838 0.230 1 0.010 0.604
SY4 0.783 6 0.487 0.652 0.467 6 0.130 0.733
BS6 0.827 6 0.000 0.812 0.475 6 0.301 0.681

(Continued)
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Table 14 – Continued

Panel C: 25 size-DR portfolios

Benchmark
OLS GLS

ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value

CAPM 0.522 9 0.395 0.961 0.238 9 0.399 0.992
FF3 0.738 5 0.398 0.525 2 0.101 0.459 0.324 5 1.048 0.454 2 0.173 0.363
FFC 0.819 6 0.002 0.801 0.480 6 0.053 0.784
FFPS 0.741 6 0.309 0.546 0.326 6 0.785 0.498
FFAF 0.772 6 0.252 0.824 0.371 6 0.458 0.722
HXZ 0.768 6 0.357 0.602 0.386 6 0.372 0.607
FF5 0.774 6 0.116 0.663 0.341 6 0.537 0.576
FF4 0.709 6 0.575 0.473 1 0.065 0.232 0.297 6 1.478 0.370 1 0.044 0.404
SY4 0.792 6 0.114 0.829 0.388 6 0.411 0.652
BS6 0.820 6 0.000 0.896 0.495 6 0.000 0.762

Panel D: 25 size-β portfolios

Benchmark
OLS GLS

ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value

CAPM 0.046 9 0.856 0.226 0.001 9 0.651 0.559
FF3 0.739 5 0.825 0.548 2 0.093 0.108 0.218 5 2.043 0.261 2 0.233 0.082
FFC 0.830 6 0.000 0.868 0.444 6 0.003 0.803
FFPS 0.755 6 0.796 0.596 0.246 6 1.435 0.362
FFAF 0.600 6 1.888 0.157 0.071 6 7.298 0.023
HXZ 0.789 6 0.327 0.695 0.337 6 0.681 0.603
FF5 0.795 6 0.259 0.838 0.325 6 0.683 0.607
FF4 0.790 6 0.305 0.810 1 0.004 0.594 0.323 6 0.756 0.586 1 0.002 0.784
SY4 0.796 6 0.155 0.667 0.430 6 0.011 0.781
BS6 0.823 6 0.029 0.834 0.448 6 0.000 0.857

Panel E: 35 size-NI portfolios

Benchmark
OLS GLS

ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value

CAPM 0.081 9 0.798 0.028 0.014 9 0.589 0.051
FF3 0.520 5 7.043 0.023 2 0.209 0.023 0.107 5 7.819 0.017 2 0.184 0.070
FFC 0.722 6 0.151 0.659 0.292 6 0.462 0.489
FFPS 0.545 6 4.396 0.079 0.115 6 6.259 0.039
FFAF 0.396 6 13.180 0.001 0.043 6 13.793 0.001
HXZ 0.726 6 0.154 0.792 0.321 6 0.165 0.772
FF5 0.688 6 0.870 0.523 0.240 6 2.511 0.229
FF4 0.678 6 0.829 0.488 1 0.011 0.412 0.237 6 2.326 0.244 1 0.003 0.681
SY4 0.741 6 0.010 0.862 0.350 6 0.000 0.863
BS6 0.746 6 0.000 0.899 0.342 6 0.007 0.858

(Continued)
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Table 14 – Continued

Panel F: 25 size-MAX portfolios

Benchmark
OLS GLS

ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value

CAPM 0.309 9 0.636 0.763 0.000 9 0.808 0.612
FF3 0.623 5 1.509 0.409 2 0.111 0.138 0.107 5 4.866 0.060 2 0.134 0.215
FFC 0.692 6 0.046 0.810 0.220 6 0.632 0.435
FFPS 0.625 6 1.599 0.426 0.110 6 4.583 0.085
FFAF 0.522 6 4.390 0.060 0.024 6 11.365 0.003
HXZ 0.655 6 0.824 0.545 0.229 6 1.149 0.500
FF5 0.675 6 0.195 0.636 0.245 6 0.281 0.675
FF4 0.664 6 0.543 0.598 1 0.011 0.544 0.238 6 0.318 0.656 1 0.007 0.681
SY4 0.668 6 0.433 0.679 0.293 6 0.000 0.837
BS6 0.703 6 0.000 0.862 0.263 6 0.107 0.832

Panel G: 25 size-RVar portfolios

Benchmark
OLS GLS

ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value

CAPM 0.293 9 0.671 0.282 0.000 9 0.754 0.302
FF3 0.589 5 6.676 0.020 2 0.188 0.066 0.028 5 12.002 0.002 2 0.041 0.576
FFC 0.774 6 1.766 0.316 0.051 6 9.876 0.008
FFPS 0.607 6 5.467 0.039 0.031 6 11.818 0.003
FFAF 0.389 6 10.582 0.002 0.007 6 17.716 0.000
HXZ 0.835 6 0.964 0.609 0.266 6 2.812 0.206
FF5 0.874 6 0.000 0.858 0.450 6 0.000 0.821
FF4 0.873 6 0.000 0.868 1 0.001 0.863 0.450 6 0.000 0.827 1 0.001 0.878
SY4 0.813 6 1.399 0.490 0.171 6 5.890 0.039
BS6 0.872 6 0.002 0.895 0.392 6 0.364 0.545

Panel H: 25 size-AC portfolios

Benchmark
OLS GLS

ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value

CAPM 0.041 9 0.864 0.529 0.041 9 0.707 0.899
FF3 0.401 5 3.176 0.203 2 0.303 0.039 0.121 5 3.241 0.236 2 0.268 0.118
FFC 0.679 6 0.558 0.497 0.343 6 0.641 0.452
FFPS 0.422 6 2.304 0.234 0.147 6 1.724 0.296
FFAF 0.376 6 3.007 0.158 0.118 6 3.315 0.209
HXZ 0.535 6 1.350 0.463 0.182 6 1.720 0.355
FF5 0.625 6 0.496 0.605 0.253 6 0.643 0.508
FF4 0.592 6 0.856 0.554 1 0.033 0.196 0.199 6 1.304 0.409 1 0.055 0.185
SY4 0.530 6 1.292 0.403 0.215 6 1.352 0.421
BS6 0.721 6 0.000 0.865 0.393 6 0.000 0.866

(Continued)
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Table 14 – Continued

Panel I: 30 IND portfolios

Benchmark
OLS GLS

ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value

CAPM 0.084 9 0.561 0.968 0.008 9 0.357 0.984
FF3 0.128 5 1.019 0.328 2 0.002 0.993 0.094 5 0.527 0.567 2 0.016 0.841
FFC 0.130 6 1.013 0.401 0.109 6 0.277 0.584
FFPS 0.129 6 1.169 0.563 0.094 6 0.681 0.701
FFAF 0.130 6 1.106 0.403 0.087 6 0.800 0.624
HXZ 0.251 6 1.287 0.519 0.121 6 0.659 0.690
FF5 0.364 6 0.000 0.834 0.172 6 0.002 0.807
FF4 0.290 6 0.000 0.737 1 0.073 0.456 0.169 6 0.006 0.801 1 0.003 0.819
SY4 0.294 6 0.609 0.544 0.111 6 0.468 0.545
BS6 0.267 6 0.269 0.515 0.177 6 0.000 0.719

Panel J: 8 D10´1 portfolios

Benchmark
OLS GLS

ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value ρ̂2 u LR p-value v ρ̂2M ´ ρ̂2 p-value

CAPM 0.004 9 – – 0.067 9 – –
FF3 0.694 5 2.243 0.224 2 0.177 0.322 0.674 5 2.706 0.186 2 0.084 0.704
FFC 0.865 6 1.178 0.441 0.736 6 2.144 0.265
FFPS 0.836 6 0.500 0.480 0.754 6 0.941 0.370
FFAF 0.547 6 4.399 0.056 0.528 6 5.055 0.048
HXZ 0.893 6 0.362 0.730 0.865 6 0.616 0.694
FF5 0.918 6 0.369 0.675 0.890 6 0.429 0.580
FF4 0.822 6 0.769 0.562 1 0.097 0.155 0.849 6 0.672 0.578 1 0.040 0.356
SY4 0.976 6 0.202 0.813 0.950 6 0.218 0.783
BS6 0.991 6 0.000 0.858 0.980 6 0.000 0.860
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Table 15
Summary of factor model performance: Multiple model comparison tests

The table reports summary of multiple model comparison tests of the ordinary least squares (OLS) and
generalized least squares (GLS) cross-sectional regression R2s for ten different factor models: the capital asset
pricing model (CAPM) of Sharpe (1964) and Lintner (1965); the Fama and French (1993) three-factor (FF3)
model; the Fama and French (1993) and Carhart (1997) four-factor (FFC) model; the Fama and French (1993)
and Pástor and Stambaugh (2003) four-factor (FFPS) model; the Asness and Frazzini (2013) three-factor
(FFAF) model, which combines their value factor with the market and size factors of the FF3 model; the
Hou, Xue, and Zhang (2015) q-factor (HXZ) model; the Fama and French (2015) five-factor (FF5) model;
the four-factor (FF4) model that excludes the value factor from the FF5 model; the Stambaugh and Yuan
(2016) four-factor (SY4) model; and the Barillas and Shanken (2018) six-factor (BS6) model, which includes
the market, size, and momentum factors from the FF5 model, the profitability and investment factors from
the HXZ model, and the value factor from the FFAF model. For each set of anomaly portfolios, X (X)
denotes a rejection of the null hypothesis, at the 5% level, that the benchmark model given in column 1 per-
forms at least as well as all other competing nested (nonnested) factor models. See also notes to Tables 13 and 14.

Panel A: OLS

Model Size-STR Size-CI Size-DR Size-β Size-NI Size-MAX Size-RVar Size-AC IND D10´1

CAPM X
FF3 X X X X
FFC
FFPS X
FFAF X X
HXZ
FF5
FF4
SY4
BS6

Panel B: GLS

CAPM
FF3 X X
FFC X
FFPS X X
FFAF X X X X X X
HXZ
FF5
FF4
SY4 X
BS6
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