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Abstract— Objective: A new method for fitting Diffusion-

Weighted Magnetic Resonance Imaging (DW-MRI) data 

composed of an unknown number of multi-exponential 

components is presented and evaluated. Methods: The Auto-

regressive Discrete Acquisition Points Transformation (ADAPT) 

method is an adaption of the auto-regressive moving average 

system, which allows for the modelling of multi-exponential data 

and enables the estimation of the number of exponential 

components without prior assumptions. ADAPT was evaluated 

on simulated DW-MRI data. The optimum ADAPT fit was then 

applied to human brain DWI data and the correlation between 

the ADAPT coefficients and the parameters of the commonly 

used bi-exponential Intravoxel Incoherent Motion (IVIM) 

method were investigated. Results: The ADAPT method can 

correctly identify the number of components and model the 
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exponential data.  The ADAPT coefficients were found to have 

strong correlations with the IVIM parameters. ADAPT(1,1)-β0 

correlated with IVIM-D: ρ=0.708, P <0.001.  ADAPT(1,1)-α1 

correlated with IVIM-f: ρ=0.667, P <0.001. ADAPT(1,1)-β1 

correlated with IVIM-D*: ρ=0.741, P <0.001). Conclusion: 

ADAPT provides a method that can identify the number of 

exponential components in DWI data without prior assumptions, 

and determine potential complex diffusion biomarkers. 

Significance: ADAPT has the potential to provide a generalized 

fitting method for discrete multi-exponential data, and determine 

meaningful coefficients without prior information. 

 

 
Index Terms— Multi-exponential fitting, Diffusion MRI, 

Robustness 

 

I. INTRODUCTION 

ULTI-EXPONENTIAL fitting is a challenging task for 

diffusion-weighted magnetic resonance imaging (DW-

MRI) data, where there are a limited number of data points 

and the number of components within the diffusion signal is 

unknown. Both theoretical and experimental studies have 

suggested that the water diffusion in tissue is characterized by 

multi-exponential behavior [1], [2], [3]. Diffusion weighted 

imaging (DWI) has been demonstrated to have clinical 

relevance for identifying areas of cerebral ischemia and 

oncological diagnosis [4]. As the reported diffusion coefficient 

is dependent upon the fitting method implemented, it is crucial 

that the optimum method is realized. 

 In order to attain the diffusion coefficient for each voxel 

in the MR image, the scan is repeated at different b-values [5], 

a parameter that is changed by varying the diffusion 

sensitization of the MR sequence. If a gradient pulse is applied 

during the MR scan, a phase shift in the proton precession is 

induced. If an exact reverse gradient is subsequently applied, 

particles that have moved, via diffusion, will experience at net 

phase shift and the detected signal intensity will attenuate. The 

b-value is related to the duration, strength and time-spacing of 

these two gradient pulses. As the b-values increase, so does 

the sensitivity to particle motion, and the detected signal 

attenuates exponentially. By plotting the signal on a 

logarithmic scale and calculating the gradient, the diffusion 

coefficient for that voxel is attained [6]. The greater the signal 

attenuation, the greater the rate of diffusion.
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Multi-component models have been applied to DWI data 

previously, and the most common is the Intravoxel Incoherent 

Motion (IVIM) method [7]. The IVIM method assumes that 

the signal is composed of two exponentials, accounting for 

tissue water diffusion and bulk flow in small blood vessels. 

When plotted on a logarithmic scale, the gradient of each 

component provides the diffusion related coefficients for each 

exponential term. If IVIM is fitted using the Levenberg-

Marquardt algorithm, initial starting values for the parameters 

are required, and the fitting stability is often improved by 

using a multistep fitting approach [8].  However, additional 

physical processes such as multiple diffusion rates within one 

physical component,  bulk flow in tubules or glandular 

secretion may also affect the detected signal, which leads to 

more than two exponential components  [9]. Hence, a method 

with the ability to optimize the number of components could 

provide a new insight into the physical properties of water 

motion in tissue. 

Fitting of multi-exponential equations to experimental data 

is a notable problem for many different scientific fields. The 

number of exponential terms within a signal, the decay 

coefficients of each term along with the fractional value of 

each term, indicating each component’s contribution to the 

overall signal, all have to be determined [10]. The accuracy of 

such models is of particular importance in the biomedical 

field, where multi-exponential decay is common and robust 

biomarkers are required. The complex fitting problem is 

therefore further exacerbated by the poor signal to noise ratios 

(SNRs) and a limited number of data points [11].  

Common exponential fitting methods such as graphical 

methods are simple to execute, but are subjective and prone to 

high errors [12]. Parametric techniques, which provide a 

solution as a series of damped sinusoids [13], are also 

commonly implemented, but are restricted to data equally 

spaced in time [11]. These algorithms have also been 

demonstrated to be highly susceptible to noise and perform 

poorly when trying to determine the number of exponential 

terms in signals with a large number of components [10], [11]. 

Transform methods have also been developed [10], in which 

the data is Fourier transformed to create a spectral plot with 

spikes representing exponential components [11]. However, 

this approach exacerbates high frequency noise in the 

deconvolution process [14], causing ripples and broadening of 

the spectral peaks, making interpretations of the results 

difficult. Overall, there is a need to develop improved analysis 

methods for multi-exponential data. 

Auto Regressive Moving Average (ARMA) models [15] are 

generalized versions of multi-exponential models and can 

predict the behavior of a data series from previous values 

alone. ARMA has the flexibility to represent a wide range of 

data series, with the order (number of lag terms) of the 

optimum ARMA model relating to the complexity of the data. 

However, such a method is restricted to the time domain. To 

adapt the method for the modeling of DWI data, the ARMA 

model was modified, henceforth referred to as the Auto-

regressive Discrete Acquisition Points Transformation 

(ADAPT) method. ADAPT interprets the discrete signal as a 

function of acquisition points. Although there is no simple 

relationship between the IVIM parameters and ADAPT 

coefficients, ADAPT presents the opportunity for novel 

diffusion biomarkers to be obtained with no prior assumption 

about the nature of the data. Futhermore, ADAPT does not 

require any multistep fitting processes, unlike other DWI 

fitting methods. The aim of this study was therefore to 

develop a new generalized fitting method for multi-

exponential data where the number of components is unknown 

a priori and evaluate it on simulated and real multi b-value 

DWI data 

II. MATERIALS AND METHODS 

A. The Auto-regressive Discrete Acquisition Points 

Transformation (ADAPT) Method 

ADAPT models the diffusion signal by the equation:  

 

ln(𝑆𝑛) = ∑ 𝛽𝑖𝑏𝑛−𝑖 + ∑ 𝛼𝑗ln (𝑆𝑛−𝑗)
𝑃
𝑗=1

𝑄
𝑖=0  (1) 

 

Where Sn-Signal at acquisition point n; bn- b-value at 

acquisition time point n. αj, βi- minimisation coefficients. Here 

the acquisition point of the b-values is used such that b 

value=0 s/mm2 at acquisition point 0, b(0)=0. b-value=20 

s/mm2 at acquisition point 1, b(1)=20 and so forth. The 

previously acquired b-values are therefore used as previous 

input terms. Upon selecting the order of the ADAPT(P,Q) 

model, the α and β minimization coefficients are determined 

such that the error between the data and the model is 

minimized. The coefficients are determined via establishing 

the matrices in (2), stated above. S is a matrix engineered from 

the input b-values and the detected signal with acquisition 

point n=0, …, N. A is the matrix of ADAPT coefficients. Spred 

is the final model of the predicted signal normalised by S(0)- 

the initial signal value at b=0 and n=0. By finding the least 
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squares error of (3), the ADAPT coefficients are minimised 

and the model Spred is established: 

 

S ∙ A = Spred (3) 

 

1) Determining the Number of Components 

Upon selection of the optimum ADAPT order, the transfer 

function can be expressed as (4): 

 

H(n) =
ln (Sn)

bn
=

β0+β1L̂+⋯+βPL̂P

1−α1L̂−⋯−αQL̂Q  (4) 

 

Where L̂ is the lag operator [16] such that  ln(Sn) L̂ =
ln(Sn−1). By mapping the transfer function of the optimum 

order to the Z-domain the following is obtained (5): 

 

H(z) =
β0+β1z−1+⋯+βPz−P

1−α1z−1−⋯−αQz−Q  (5) 

 

Equation 5 can be rearranged using partial fraction 

decomposition. An inverse Z-transform was then performed 

and the number of components established. For example 

ADAPT(1,1) gives: 

 

ln(Sn) = β0bn + β1bn−1 + α1 ln(Sn−1) (6) 

 

Taking the transfer function of ADAPT(1,1) in the Z-

domain and performing partial fraction decomposition (PFD) 

and an Inverse Z transform:  

 

H(n) = β1α1
n−1 + β0α1

n (7) 

 

Here ADAPT(1,1) is evaluated to be a two component decay 

model.  

B. Data Simulations 

All simulated and acquired in vivo data was created or 

obtained using a range of 11 exponentially spaced b-values 

between 0 and 1000 [0, 20, 40, 80, 110, 140, 170, 200, 300, 

500, 1000] s/mm2. All simulations and data analysis were 

conducted using MATLAB (MathWorks, Natick, MA, USA, 

v.2016b).  

1) Simulation of a Bi-exponential Signal 

A range of bi-exponential diffusion signals were created by 

simulating data using the equation for the IVIM method (8): 

 
S(b)

S(0)
= f ∙ exp−bD∗

+ (1 − f) ∙ exp−bD (8) 

 

Where S(b)/S(0) is the signal intensity for a particular b-

value, b, normalized by the signal intensity when b=0 s/mm2; 

D is the tissue diffusion coefficient; D* is the pseudo-diffusion 

coefficient (related to the perfusion of blood in the capillary 

network); and f is the volume fraction of incoherently flowing 

blood in the tissue describing the fraction of the signal arising 

from the vascular network [6].  

Bi-exponential signals were created with a range of f values 

(0.1, 0.3 and 0.5) and three different D*/D ratios 

corresponding to those observed in the brain, kidney and liver 

(10, 20 and 70 respectively) [17]. The D parameter was fixed 

at 0.0007 mm2/s and the D* parameters considered were 0.007 

mm2/s, 0.014 mm2/s and 0.049 mm2/s. Random white 

Gaussian noise was added to the simulated signals to mimic 

SNR levels of 50, typical of those measured in in vivo data. 

The ADAPT method was applied to the bi-exponential signals, 

and a range of orders from ADAPT(0,0) to ADAPT(3,3) were 

considered.  

2) Simulation of a Multi-Component Partial Volume Effects 

Model 

A partial volume effects (PVE) model was simulated, in 

which compartments from both cerebral white matter (WM), 

assumed to be a two compartment model, and cerebrospinal 

fluid (CSF), assumed to be one compartment, are 

simultaneously detected, thus creating a tri-exponential model 

(9).  

 
S(b)

S(0)
= Ae−bα + Be−bβ + Ce−bγ (9) 

 

Such a tissue model is of particular interest to DWI, as the 

use of the IVIM method in the brain requires cautious 

interpretation in regions of tissue edges due to PVE. The high 

value of the diffusion coefficient in CSF and the much lower 

diffusion coefficient in WM results in the incorrect detection 

of a large perfusion value within the cerebral cortex, when a 

voxel contains information from both these regions [18]. CSF 

was assumed to exhibit mono-exponential behavior with a 

diffusion coefficient assumed to be that of free water at  

37℃  ( DCSF = 3 ×  10−3mm2/s) [19]. WM was assumed to 

be represented by the bi-exponential IVIM method. The WM 

model parameters were taken from averaged IVIM values 

previously reported in a volunteer study (fWM = 0.07;DWM =
0.77 × 10−3mm2/s ; D∗

WM = 7.9 × 10−3mm2/s ) [20]. A 

partial volume effect (PVE) model was created as a 

summation of the CSF and WM model such that (9) was 

parametrized with physically meaningful coefficients:  

 
S(b)

S(0)
= fCSFe

−bDCSF + (1 − fCSF)(fWMe−bD∗
WM + (1 −

fWM)e−bDWM) (10) 

 

Where fCSF indicated the fraction of the signal that was 

contributed by the CSF compartment. A range of PVE models 

were created with varying CSF:WM ratios (100:0, 75:25, 

50:50, 25:75 and 0:100). White Gaussian noise was added to 

PVE models to mimic SNR levels ≈ 50. 

3) Robustness Analysis 

Poor signal quality can result in a change of parameter 

values or in the detection of an additional component. Hence 

the effects of poor SNR on the robustness of the fitting 

methods were investigated. Random white Gaussian noise was 

added to the simulated signals to mimic SNR levels between 

20 and 100. Although the noise present in MRI data is 

governed by a Rician noise distribution, the distribution is 

nearly Gaussian for the SNR levels considered in this study 

[21]. Noise was added using the MATLAB Communications 

System Toolbox ‘Add White Gaussian Noise’ (awgn) 

function. The data simulations were performed using 1000 

random data iterations for each model and SNR level. 
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C. In Vivo Data Acquisition 

A volunteer brain scan (age 25 years), SNR≈50 in WM at b-

value = 0 s/mm2, was acquired on a Philips Achieva 3T TX 

(Philips Healthcare, Best, the Netherlands) MRI scanner at 

Birmingham Children’s Hospital using a 32-multichannel 

receiver head coil. A brain tumour, suprasellar pilomyxoid 

astrocytoma, patient (age 3.2 years) was also scanned. The 

patient case was considered due to the ventricles being 

enlarged, allowing for an easier investigation of the one 

compartment CSF. It should be noted that no tumour was 

present on the slice considered. Informed parental consent 

was obtained for all subjects and the East Midlands – Derby 

Research Ethics Committee (REC 04/MRE04/41) approved 

the study operating under the rules of Declaration of Helsinki 

1975 (and as revised in 1983). The diffusion-weighted MRI 

sequence used a sensitivity-encoded (SENSE) approach with 

the following parameters: b-value data acquired in three 

orthogonal directions, FOV 230mm x 230mm, TR/TE 

3,214/84ms, matrix size 256x256, 5mm slice thickness and in 

plane resolution 0.9mm x 0.9mm. The spectral presaturation 

with inversion recovery (SPIR) was used for fat suppression 

and the scan duration was 2.21 minutes. 

D. Data Analysis 

1) Measuring SNR 

 In vivo SNR levels were calculated using the standard 

NEMA method based on the difference image from two 

acquisitions, this is the recommended method for determining 

SNR when parallel imaging techniques are used [22]. The 

quality of parameter estimation depends strongly on the SNR, 

with the SNR for the low IVIM perfusion regime 

recommended to be above a critical value of 40 [17][21]. A 

SNR≈50 was recorded in the White Matter (b-value =0), in 

agreement with previous studies using this acquisition 

protocol [8]. 

2) Model Selection 

The Akaike information criterion (AIC) [23] was used as a 

means of model selection for determining the optimum 

ADAPT order. The AIC estimates the relative quality of each 

of the multiparametric fitting methods, rewarding for 

goodness of fit and penalizing for the complexity. Such a 

selection process aims to reduce the risk of over-fitting. As the 

b-value sequence used within the diffusion-weighted imaging 

(DWI) protocol typically has less than 30 b-values (11 in the 

cases considered), they can be considered to be a finite data 

set [3]. Thus the corrected AIC (AICc) [24], with a harsher 

penalty for over fitting, was implemented. The AICc formula 

(11): 

 

AICc = n ∙ log (
RSS

n
) +

2∙k∙(k+1)

n−k−1
 (11) 

 

Where n is the number of b-values used to fit the signal; k is 

the number of parameters; and RSS is the residual sum 

squared.  The fit with the lowest AICc value is considered to 

be the optimum fit. The number of parameters, k, includes the 

diffusion signal S0 [25] and an additional parameter is counted 

due to the Gaussian noise hypothesis for the signal residuals 

[3]. There is debate in the literature that the AIC is only 

suitable for analysing nested models and is consequently 

inherently biased. The authors believe that although the 

models in this study are nested, the AIC is a suitable criterion 

for a wide range of model types, both nested and non-nested 

[26]. To ensure that such a selection criterion is not ad-hoc, an 

additional selection criterion is also considered- the Bayesian 

Information Criterion corrected for small samples (BICc) [27].  

It is advocated that an approach of using two criteria 

together can increase the confidence in identifying the 

optimum order [28], hence the BICc (12): was also calculated 

 

BICc =
k∙n∙log(n)

𝑛−𝑘−1
+ n ∙ log (

RSS

n
) (12)  

 

The relative significance of the optimum information criterion 

fit was justified with the used of Bayes Factors [29] 

(Appendix A). wi is the Weight, indicating the probability of 

model i being the optimum model and the associated statistic 

the log evidence ratio (LER)  indicates evidence for the 

parsimoniousness of the optimum model against a competing 

model. LER values greater than 0, 0.5, 1 or 2 indicate 

respectively that the evidence is ‘minimal’, ‘substantial’, 

‘strong’ or ‘decisive’. 

3) Statistical Analysis 

For the data simulations, correlation analysis (Pearson 

correlation coefficient, r) was performed to determine how the 

ADAPT(1,1) coefficient were related to the IVIM parameters. 

ADAPT(1,1) was considered as it was found to be the 

optimum fit for bi-exponential equations. The IVIM 

parameters were calculated using the multi-exponential fitting 

methods as described in the section below (II.D.3).The 

statistical significance of the relationship was assessed using 

the p-value (P <0.05). The robustness of the ADAPT and 

multi-exponential coefficients, when fitted to the PVE models, 

was assessed by calculating the coefficient of variation (CV) 

over the 1000 iterations measured. 

 For the in vivo data, correlation analysis (Spearman’s rank 

correlation coefficient, ρ) was performed to compare the 

ADAPT(1,1) coefficients to the IVIM parameters. ρ values 

between 0.60-0.79, and 0.80-1.0, were considered to represent 

a ‘strong’ and ‘very strong’ correlation respectively. Five 

regions of interest (ROIs), each 4x4 pixels, were selected from 

within both the one compartment CSF and the two 

compartment WM. The ROIs were drawn upon the DWI scans 

with no additional filtering. The optimum ADAPT and multi-

exponential fitting methods were fitted to each of the ROIs. To 

investigate the robustness of the fitting parameters, the 

average parameter value and CV was calculated.  

4) Multi-exponential Fitting Methods 

The bi-exponential fitting method for the IVIM equation 

was assessed using non-linear least squares minimization, with 

the Levenberg-Marquardt algorithm and a constrained 2-

parameter fitting method [21]. The tri-exponential fitting 

method used the same minimization technique and a 

constrained 4-parameter fitting method. The mono-

exponential fitting method was also considered for the PVE 

models and in vivo data. By plotting the signal on a 

logarithmic scale and calculating the gradient, the Apparent 

Diffusion Coefficient (ADC) is attained. 
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Fig.1. The ADAPT orders fitted to a range of simulated bi-exponential 

signals. 

5) Performance of Fitting Methods 

All calculations were performed on OS: Windows 10 Pro 

64-bit (10.0 Build 16299), CPU: AMD Ryzen 5 1600, 3.2 

GHz, Memory: 8192 MB DDR4 RAM.  To compare the 

performance of the ADAPT and IVIM fitting methods, the 

CPU run time of each method was recorded and averaged over 

10 iterations. 

III. RESULTS 

A. ADAPT Method Applied to Simulated Bi-exponential 

Signal 

 

1) Selection of Optimum Fit 

A range of ADAPT orders were fitted to the simulated bi-

exponential signal (SNR ≈ 50) with varying IVIM parameters 

(Fig.1). For each of the 9 scenarios considered ADAPT(1,1) 

was found to be the optimum order, having the lowest AICc 

for every case (Table I). For the bi-exponential signals where 

D*/D=10, the competing order ADAPT(2,1) was found to 

have an AICc-LER just below 0.5 in two instances. For the bi-

exponential signals with D*/D=70 and f=0.3 or 0.5, the AICc-

LER ratio indicates that ADAPT(1,0) and ADAPT(2,0) are 

competing orders that should also be taken into consideration. 

ADAPT orders (2,2), (3,0), (3,1), (3,2) and (3,3) were also 

considered for each case but possessed comparatively higher 

AICc values and thus very high AICc-LERs. The BICc 

confirmed that the optimum order was ADAPT(1,1) (Table 

II). No competing orders were detected when D*/D=10. For 

the signals with D*/D=70 and f=0.3 or 0.5, the BICc indicated 

that ADAPT(1,0) was the optimum order. However, the BICc-

LER for ADAPT(1,1) was low and the BICc values almost 

equivalent. 

2) Number of Components 

The Transfer function, Z-transform, PFD and subsequent 

inverse Z-transform were performed on ADAPT(0,0), 

ADAPT(1,0), ADAPT(1,1), ADAPT(2,0) and ADAPT(2,1). 

ADAPT(0,0) is equivalent to the mono-exponential model and 

thus a one component decay model. As previously stated, 

ADAPT(1,1) was evaluated to be a two component decay 

model. In all bi-exponential simulations considered, a two 

component model was found to be the optimum fit, based 

upon the AICc. ADAPT(2,0) and ADAPT(2,1), which were 

found to be competing orders are also two-component decays 

models (Appendix B). ADAPT(1,0), a one component decay 

model (Appendix B), was found to be a competing order for 

some cases. However, for the D*/D ratio of 70 and f value of 

0.3, the AICc-LER of ADAPT(1,0) is 0.48 is close to the cut 

off and the wi probability (ADAPT(1,0) wi=0.14) is more than 

half that of the optimum order (ADAPT(1,1) wi=0.43). ). The 

BICc selected ADAPT(1,0) as the optimum order (wi=0.44), 

however, the BICc-LER for ADAPT(1,1) was very low, 0.12 

and wi= 0.33.  For the D*/D ratio of 70 and f-value of 0.5, the 

TABLE I 

ADAPT ORDERS FITTED TO BI-EXPONENTIAL DIFFUSION SIGNALS-AICC 

   ADAPT Orders 

D*/D f  (0,0) (1,0) (1,1) (2,0) (2,1) 

10 

0.1 
AICc -73 -97 -120 -97 -115 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 10.06 4.85 0 4.94 0.92 

0.3 
AICc -49 -79 -101 -80 -98 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 11.22 4.74 0 4.39 0.49 

0.5 
AICc -36 -68 -91 -69 -89 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 11.87 5.03 0 4.75 0.42 

20 

0.1 
AICc -65 -88 -106 -93 -103 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 8.93 3.88 0 2.98 0.67 

0.3 
AICc -39 -68 -82 -73 -79 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 9.35 3.12 0 2.02 0.70 

0.5 
AICc -25 -56 -71 -61 -68 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 9.90 3.21 0 2.07 0.70 

70 

0.1 
AICc -59 -78 -84 -80 -80 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 5.39 1.24 0 0.75 0.70 

0.3 
AICc -32 -56 -58 -57 -55 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 5.58 0.48 0 0.23 0.66 

0.5 
AICc -18 -43 -45 -44 -42 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 5.84 0.39 0 0.09 0.62 

A range of two compartment bi-exponential diffusion signals (SNR≈50) 

were investigated with a range of IVIM-D*/D ratios and IVIM-f values. 

The ADAPT method was applied to the bi-exponential signals and the 

optimum fit (highlighted) was selected by choosing the method with the 

lowest AICc. Those ADAPT orders lightly shaded have an AICc-LER<0.5 

indicating competing models. 
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wi probability of ADAPT(1,0)  (ADAPT(1,0) wi=0.15) is 

more than half that of the optimum order (ADAPT(1,1) 

wi=0.37). The BICc selected ADAPT(1,0) as the optimum 

order (wi=0.46), however, the BICc-LER for ADAPT(1,1) 

was low, 0.21 and wi= 0.28. 

B. Tri-exponential Partial Volume Effect Models 

1) Selection of Optimum Order 

Mono-, bi- and tri- exponential fitting methods were applied to 

the PVE models (SNR ≈ 50) with varying CSF:WM ratios and 

the optimum fit selected using the AICc (Table III) and the 

BICc (Table IV). Based on the AICc, the number of detected 

components did not correspond to the number of exponential 

terms presented in the signal. In particular, a tri-exponential fit 

was found to best represent both two and three component 

models. The one compartment model was best represented by 

a bi-exponential fit. However, the LER-AICc values indicated 

that all other multi-exponential fits were competing. Based on 

the BICc, the one compartment and three compartment models 

were correctly identified but a two compartment model was 

overfitted and found to be best represented by a tri-exponential 

fit. No other multi-exponential fits were found to compete. 

According to the AICc and BICc, the two compartment model 

is wrongly fitted by a tri-exponential fit for even very high 

SNR≈100 (Figure 3). 

The range of ADAPT orders from (0,0) to (3,3) were also 

applied to the PVE models (Table III). With the AICc, a 

distinct number of terms were found to be able to distinguish 

between two and three compartment models. The two and 

three compartment models were found to be best fitted by 

ADAPT orders (1,1) and (3,1) with no other competing order 

found to be significant. All other AICc-LERs were found to be 

>0.5, indicating that no other fit was significant. The BICc 

results were found to be similar (Table IV), although 

ADAPT(1,1) was found to be a competing order (BICc-LER= 

0.28) for the three compartment CSF:WM=25:75 signal. The 

one compartment CSF model was best fitted by ADAPT(1,1) 

according to the AICc and ADAPT(1,0) with the BICc. Both 

list a range of different orders as the optimum fit, indicating 

that noise can easily corrupt a one compartment signal. The 

one compartment signal was investigated at SNR≈100 and 

decisively found to be represented by ADAPT(0,0) (Fig. 4), 

mathematically equivalent to the mono-exponential equation.  

 Comparing the AICc values of the exponential and ADAPT 

fitting methods, for the one component signal, the AICc was 

lowest with ADAPT, indicating a better fit. However, the 

optimum AICc values are very similar and the RSS values are 

of the same order of magnitude (RSS for ADC = 1.2 ×10-5, 

ADAPT(0,0) = 1.5 ×10-5, ADAPT(1,1) = 4.0×10-6). For the 

three component signals, the tri-exponential fits have much 

lower AICc values than ADAPT(3,1). The RSS values are also 

two orders of magnitude smaller (i.e RSS for CSF:WM-50:50, 

TRI = 4.3 ×10-5, ADAPT(3,1) =1.0 ×10-4). For the two-

component data, the wrongly identified tri-exponential fit has 

a very low RSS value (RSS for TRI  = 4.5 ×10-6, suggesting 

that the signal is being over fitted. Although the AICc for 

IVIM is still lower than ADAPT(1,1) (RSS for IVIM = 1.8 

×10-5, ADAPT(1,1) = 7.2 ×10-5), the RSS values are of the 

same order of magnitude, indicating a similar accuracy of fit.  

2) Number of ADAPT Components 

The transfer function, Z-transform, PFD and subsequent 

inverse Z-transform were performed on ADAPT(3,1) which 

was evaluated to be a three component decay model 

(Appendix B).  

C. SNR and Robustness of Data Simulations 

1) Influence of Noise upon the Tri-exponential Partial 

Volume Effects Model 

 Using the AICc-LERs, the ability for the multi-exponential 

fitting methods (Fig.3) and the ADAPT methods (Fig.4) to 

detect the number of components was investigated as a 

function of varying SNR. In the interest of concision, the 

BICc-LER was not considered. The multi-exponential fitting 

methods correctly identified the mono-exponential behavior in 

the PVE signal CSF:WM 100:0. However, the LER 

demonstrates that the optimum fit quickly becomes bi-

exponential below the high SNR of 85. The three 

compartment PVE signals are best represented by the tri-

TABLE II 

ADAPT ORDERS FITTED TO BI-EXPONENTIAL DIFFUSION SIGNALS-BICC 

   ADAPT Orders 

D*/D f  (0,0) (1,0) (1,1) (2,0) (2,1) 

10 

0.1 
BICc -68 -89 -109 -86 -101 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 8.79 4.19 0 4.94 1.67 

0.3 
BICc -46 -74 -93 -72 -87 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 10.04 4.13 0 4.39 1.15 

0.5 
BICc -34 -63 -83 -61 -78 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 10.70 4.42 0 4.75 1.08 

20 

0.1 
BICc -63 -83 -99 -85 -92 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 7.76 3.28 0 2.98 1.33 

0.3 
BICc -37 -63 -74 -65 -68 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 8.18 2.51 0 2.02 1.36 

0.5 
BICc -23 -51 -63 -53 -57 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 8.72 2.61 0 2.07 1.36 

70 

0.1 
BICc -56 -73 -76 -72 -69 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 5.39 1.24 0 0.75 0.70 

0.3 
BICc -30 -50 -50 -49 -44 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 4.53 0 0.12 0.35 1.44 

0.5 
BICc -15 -38 -37 -36 -42 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 4.88 0 0.21 0.30 0.62 

The optimum ADAPT order for the simulated bi-exponential diffusion 

signals was selected using the lowest BICc. Those ADAPT orders lightly 

shaded have a BICc-LER<0.5 indicating competing models. 

 

Fig.2. The optimum ADAPT order and the multi-exponential models are 

shown fitted to the PVE model CSF:WM   50:50.  The ADAPT model 

demonstrates its ability to accurately fit and identify the tri-exponential signal. 
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TABLE IV 

PARTIAL VOLUME EFFECT MODELS FITTED WITH ADAPT ORDERS AND MULTI-EXPONENTIAL FITTING METHODS-BICC 

  Exponential Model ADAPT Orders 

CSF:WM  ADC IVIM TRI (0,0) (1,0) (1,1) (2,0) (3,0) (3,1) 

100:0 
BICc -149 -144 -139 -152 -155 -150 -151 -153 -144 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 0 0.94 2.02 0.72 0 1.09 0.75 0.45 2.40 

75:25 
BICc -62 -100 -139 -56 -74 -89 -70 -66 -93 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 16.84 8.64 0 8.07 4.12 0.91 5.07 6.00 0 

50:50 
BICc -59 -97 -137 -57 -78 -93 -74 -69 -96 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 16.95 8.66 0 8.43 3.81 0.61 4.66 5.84 0 

25:75 
BICc -63 -105 -136 -64 -87 -103 -83 -77 -102 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 15.75 6.72 0 8.44 3.55 0 4.27 5.61 0.28 

0:100 
BICc -75 -129 -137 -78 -98 -120 -96 -91 -109 

𝐿𝐸𝑅𝐵𝐼𝐶𝑐
 13.48 1.69 0 9.13 4.75 0 5.17 6.37 2.50 

 

exponential fit down to a SNR of 35 for the CSF:WM of 75:25 

and 50:50, and SNR 40 for 25:75. The PVE signal CSF:WM 

0:100 is incorrectly represented by a tri-exponential fit. This 

however becomes a bi-exponential fit below below SNR 50. 

CSF:WM 100:0 is best represented by the one component 

ADAPT(0,0) above a SNR of 75. Below SNR 75 the one 

component ADAPT(1,0), is the optimum order. However, 

ADAPT(2,0) and ADAPT(3,0) have AICc-LERs<0.5, 

indicating significant competing fitting methods. All three 

compartment PVE models are best represented by the three 

component ADAPT(3,1) down to an SNR of 45. For CSF:WM 

0:100, the optimum order is the two component model 

ADAPT(1,1) down to a SNR of 45.  Below this value the one 

component models and ADAPT (2,0), another two component 

model, begin to show significance. 

D. ADAPT Components Applied to In Vivo Data Acquisition 

The ADAPT method was applied to a DWI axial slice of both 

a volunteer and a patient case (Fig. 5). Three ADAPT 

components are observed as a white line along the boundary 

of the ventricles for the volunteer case (Fig. 5c). Such clusters 

of high order behavior could be caused by partial volume 

effects. Few voxels exhibit one-component behavior in the 

ventricles of the volunteer. This could be due to the limited 

size of the ventricles. A patient case was considered in which 

the ventricles were enlarged. Large clusters of one component 

behavior were observed (Fig.5d).  

E. ADAPT(1,1) Coefficient Study with Data Simulations 

 The relationship between the ADAPT α and β coefficients, 

created as a result of minimizing (2), and the IVIM f, D and 

D* parameters were investigated (Fig. 6). If IVIM-f and 

IVIM-D* are fixed and only IVIM-D is varied for simulated 

data, the gradient of the detected diffusion signal can be 

observed to increase with an increasing IVIM-D value (Fig. 

6a).  An increase in the gradient of the signal would also 

increase the value of the ADAPT-β coefficients and result in a 

directly linear relationship between the IVIM-D and 

ADAPT(1,1)-β0 with R2=1(Fig. 6d). When IVIM-f and IVIM-

D are fixed, increases in IVIM-D* result in a subtle increase in 

the gradient at the low b-values (Fig. 6c). Such behaviour 

results in a linear correlation between IVIM-D* and the higher 

order ADAPT(1,1)- β1 coefficient with R2=0.99 (Fig. 6f). 

When IVIM-D and IVIM-D* are fixed and only IVIM-f is 

varied, an increase in IVIM-f results in an increase in the 

curvature of the bi-exponential signal and the prevalence of 

the second component (Fig. 6b). Consequently a linear 

relationship is found between IVIM-f and ADAPT(1,1)-α1 

with R2=0.99 (Fig. 6e). 

The coefficients of ADAPT and the multi-exponential 

fitting methods were investigated for the PVE models 

(SNR≈50) (Fig. 7).  For the one compartment model, the 

optimum mono-exponential fitting method and ADAPT(1,0) 

were considered. ADAPT(0,0) was also considered due to 

TABLE III 

PARTIAL VOLUME EFFECT MODELS FITTED WITH ADAPT ORDERS AND MULTI-EXPONENTIAL FITTING METHODS-AICC 

   Exponential Model ADAPT Orders 

CSF:WM 
Number of 

compartments 
 ADC IVIM TRI (0,0) (1,0) (1,1) (2,0) (3,0) (3,1) 

100:0 1 
AICc -154 -155 -154 -154 -160 -161 -159 -161 -158 

𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 0.32 0 0.33 1.45 0.17 0 0.32 0.02 0.55 

75:25 
3 AICc -67 -110 -154 -59 -79 -97 -78 -77 -108 

 𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 18.85 9.40 0 10.65 6.13 2.32 6.48 6.75 0 

50:50 
3 AICc -64 -108 -152 -60 -83 -101 -82 -80 -110 

 𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 18.97 9.42 0 11.01 5.83 2.02 6.08 6.59 0 

25:75 
3 AICc -68 -116 -150 -67 -92 -111 -91 -88 -116 

 𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 17.77 7.47 0 10.75 5.29 1.13 5.40 6.08 0 

0:100 
2 AICc -80 -140 -151 -81 -103 -128 -104 -102 -123 

 𝐿𝐸𝑅𝐴𝐼𝐶𝑐
 15.50 2.44 0 10.30 5.35 0 5.17 5.71 1.09 

 A range of PVE models, with varying CSF:WM ratios, were investigated. Multi-exponential fitting methods and the ADAPT 

method were fitted. The optimum fit was selected by choosing the method with the lowest AICc. 

 

The optimum fitting method for the PVE models (SNR≈ 50) was also selected by choosing the method with the lowest BICc. 
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being mathematically equivalent to the mono-exponential 

equation. The CV was found to be 0.4% for the mono-

exponential ADC and 0.2% for ADAPT(0,0)-β0. Both have a 

CV <1% indicating that both fitting methods are robust for 

fitting one compartment data. For ADAPT(1,0), β0 had a CV 

of 0.6% and α1 2735.7%. The β0 coefficients from 

ADAPT(0,0) and ADAPT(1,0) had a percentage variation of 

0.0002%. Given the similarity in β0  coefficients and the high 

CV for ADAPT(1,0)-α1, it can be theorized that the additional 

parameter in the one component ADAPT(1,0) is a 

consequence of the noise added to the signal. For the three 

compartment models, the optimum fitting methods, 

ADAPT(3,1) and the tri-exponential fit were compared. In 

general, the ADAPT(3,1) coefficients have a lower CV than 

the tri-exponential parameters. α2 and α3 have a higher CV 

than the TRI-fCSF and fWM parameters for the CSF:WM=50:50 

case, but the CV is still less than 6.1%. For the 

CSF:WM=25:75 case, the TRI-fCSF has a CV of 13.2% 

significantly higher than any of the other parameters 

associated with three compartments. For the two compartment 

model, ADAPT(1,1) was compared against both the bi- and 

tri- exponential fitting methods. Although selected as the 

optimum multi-exponential fit, it is evident that the tri-

exponential is the incorrect fit as the CV of TRI-fCSF is 

193.0%. Comparing the ADAPT(1,1) coefficients to the IVIM 

parameters, β0, β1, and α1 had CVs of 0.4%, 2.8% and 0.8% 

respectively. IVIM-D, IVIM-D* and IVIM-F were 0.3%, 

2.2% and 2.9%. Both methods possessed low CVs for their 

parameters indicating that ADAPT(1,1) and IVIM are both 

robust fitting methods for two compartment signals. 

F. ADAPT(1,1) Coefficient Study with In Vivo Data 

The ADAPT(1,1)-β0 (Fig. 8b), α1 (Fig. 8d) and β1 (Fig. 8f) 

coefficients for an in vivo axial slice of a patient brain scan 

were correlated on a pixel-wise basis with the IVIM-D (Fig. 

8a), IVIM-f (Fig. 8c) and IVIM-D* (Fig. 8e) parameters 

respectively. Upon visual inspection, the IVIM-D and 

ADAPT(1,1)-β0 parametric maps appear similar with the 

calibration bars also showing comparable scales. Furthermore, 

when the voxels with ADAPT(1,1) as their optimum order 

were selected (n=6002), ρ=0.708 (P <0.001) was obtained, 

indicating a strong relationship between IVIM-D and 

Fig.3. Using the AICc-LERs, the ability for the multi-exponential fitting methods to detect the number of components in the PVE models was investigated as a 

function of varying SNR. An AICc-LER<0.5 indicates a competing model that needs to be considered. An AICc-LER>2 indicates a competing model that 

‘definitely’ does not need to be considered. 

Fig.4. Using the AICc-LERs, the ability for the ADAPT method to detect the number of components in the partial volume effect models was investigated as a 

function of varying SNR. 
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ADAPT(1,1)-β0. However, the edges of the ventricles appear 

to be affected by partial volume effects more in the IVIM 

maps than the ADAPT maps. IVIM-D* and ADAPT(1,1)-β1 

were found to have a ρ = 0.741 (P<0.001), also indicating a 

strong relationship. The CPU run time of the IVIM fit for one 

slice was averaged over 10 iterations and found to be 575.0 ± 

3.1 seconds. Comparatively the CPU run time of ADAPT 

method was just 23.2 ± 0.1 seconds. 

 The CV was calculated from the average coefficient values 

calculated from ROIs within the CSF and WM (Table V). For 

the one compartment CSF, ADAPT(0,0)-β0 was almost 

identical to the ADC value and the CV >1.5%. For the two 

compartment WM, ADAPT(1,1)-β0 was found to be the same 

order of magnitude as IVIM-D although the CV of IVIM-D 

was found to be just 4.6% compared to 10.7% for β0. 

However, ADAPT(1,1)-α1 has a lower CV than IVIM-f 16.7% 

compared to 18.2%. ADAPT(1,1)-β1 has a significantly lower 

CV than IVIM-D*, 25.0% compared to 78.7%.  

IV. DISCUSSION 

It has been demonstrated that the number of components in 

diffusion-weighted MRI data is determined unreliably by 

simply applying multi-exponential fitting methods and then 

selecting the optimum fit. The ADAPT method is superior at 

identifying multiple components, even when the third 

component is more subtle, i.e. PVE model with CSF:WM 

75:25. However, the BICc did detect competing orders, 

indicating that the third compartment could be difficult to 

detect for cases where the fraction of CSF is even more subtle. 

Although the tri-exponential fitting methods had lower RSSs 

than ADAPT(3,1) for the three compartment PVE models, the 

low RSSs is more likely due to the study being culpable of the 

inverse crime (see below) and the tri-exponential fitting 

method being inherently biased towards the simulated tri-

exponential data. Furthermore, the RSS values for the 

optimum ADAPT orders are still low and the model selection 

is more robust. It is recommended that if the number of 

compartments in a signal is unknown, the ADAPT method 

should be used instead of multi-exponential fitting for model 

selection. The ADAPT method also demonstrated that it could 

correctly identify the number of components in the bi-

exponential signal across a large range of IVIM parameter 

values. The SNR analysis demonstrated that ADAPT was 

more robust at detecting both one and two compartment 

signals. ADAPT is a generalization of exponential models and 

makes no prior assumptions about the number of components 

within the data. Thus ADAPT lends itself as a potential novel 

method for the detection of the number of components in DWI 

data and potentially for providing more intricate diffusion 

biomarkers. The data simulations indicated that there is a 

relationship between the IVIM parameters and ADAPT 

coefficients. A strong relationship between these two methods 

is also evident in the in vivo patient example. Although the 

relationship between the IVIM parameters and ADAPT 

coefficients is complex and non-linear in nature, ADAPT 

presents the opportunity for complex diffusion biomarkers to 

be obtained by making no prior assumptions about the nature 

Fig.5. Example case of the ADAPT method applied to in vivo DWI axial 

slices. a) DWI slice of volunteer where b value=0 s/mm2. b) DWI slice 

of patient with enlarged ventricles where b value=0 s/mm2 c) ADAPT 

applied to volunteer slice and the corresponding number of detected 

components are displayed. f) ADAPT applied to patient slice. Fig.6. The relationship between the ADAPT(1,1) coefficients and the IVIM 

parameters was investigated. a) Effects on the diffusion signal when only 

IVIM-D is varied and the other two IVIM parameters are fixed. b) Only 

IVIM-f varied. c) Only IVIM-D* varied. d) Linear relationship between 

IVIM-D and ADAPT(1,1)-β0. e) Between IVIM-f and ADAPT(1,1)-α1. f) 

Between IVIM-D* and ADAPT(1,1)-β1. 
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of the data nor does it require any multistep fitting processes. 

Consequently, in this study, ADAPT is a much faster fitting 

method. The in vivo ROIs showed that ADAPT(1,1) and 

IVIM had comparable parameter CVs. However, IVIM-D* 

was considerably higher. Although this may be due to tissue 

heterogeneity within the white matter, the average IVIM-D* 

value is higher than expected, indicating that ADAPT may be 

more robust than IVIM at fitting WM.  

Both the ADAPT and multi-exponential fitting methods 

struggled to correctly identify the number of signal 

components at poor SNRs (< 45). The addition of noise to the 

tri-exponential PVE models resulted in the methods under-

fitting the signal. This was most likely due to noise 

modulating the true signal and causing individual components 

to be mistakenly classified together. The addition of noise to 

the mono-exponential fitting method resulted in the over 

fitting the signal. Although ADAPT was still able to detect a 

one component model at poor SNR, the optimum order, using 

the AICc, switched from ADAPT(0,0) to ADAPT(1,0) 

resulting in an additional parameter.  Although more robust 

than the multi-exponential fitting methods, the ADAPT 

method requires further development to optimize how it 

handles low SNR data and the inclusion of an additional 

component or parameter to account for noise should be 

considered.   

In general the AICc and BICc selected the same optimum 

order, increasing the confidence that the most appropriate 

order had been selected. However, a more formal protocol is 

required for when the information criterions disagree. 

One should note that only one range of clinically relevant b-

values was considered for the data simulated or acquired in 

vivo in this study. The number of data points and their 

magnitude could have a significant influence on the 

performance of the ADAPT method and the generality of the 

findings. However, there is no clear consensus on what 

optimal b-value sequence should be used for DWI [30]. As the 

Fig.8. Parametric maps of Axial  brain slice of patient with 

enlarged ventricles a) IVIM-D (mm2/s);  c)IVIM-f; e)IVIM-D* 

(mm2/s); b) ADAPT(1,1)-β0; d)ADAPT(1,1)-α1; f)ADAPT(1,1)-β1. 

TABLE V 

OPTIMUM FITTING METHODS APPLIED TO IN VIVO ROIS- PARAMETER 

COEFFICIENT OF VARIATION (CV) 

Number of 

compartments 
Parameter Average 

Standard  

Deviation. 
CV (%) 

1 
ADC 2.89E-03 4.04E-05 1.40 

(0,0)-b0 2.90E-03 3.73E-05 1.30 

2 

IVIM-D 8.66E-04 4.01E-05 4.64 

(1,1)-b0 6.24E-04 6.71E-05 10.77 

IVIM-D* 4.66E-02 3.67E-02 78.65 

(1,1)-b1 1.01E-03 2.53E-04 24.98 

IVIM-f 0.074 0.013 18.16 

(1,1)-a1 0.601 0.100 16.65 

ROIs were drawn within the WM and CSF on the patient axial slice (Fig. 

5b). The parameter values for the optimum methods were calculated. 

 

 
Fig.7. Coefficient of Variation calculated for the optimum ADAPT and multi-exponential fitting methods for each of the PVE models (SNR ≈ 50) considered. 
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ADAPT method requires a discrete approximation of the 

diffusion signal, there will inevitably be a truncation in the 

approximation which is inherent to the method. Another 

limitation of the simulations in this study was the assumption 

that diffusion in the CSF exhibits mono-exponential behavior, 

consequently the effects of CSF circulation or pulsatile flow 

[31] were not considered. However, the method presented 

remains a useful test for detecting multiple components. 

As far as the authors are aware, no other diffusion models 

with a perfusion fraction exist for simulating data other than 

the multi-exponential equations explored. Hence it was not 

possible to avoid committing the ‘inverse crime’ (IC) where 

multi-exponential equations were used to simulate as well as 

fit the data. In order to mitigate the IC, Gaussian noise was 

added to the simulated data [32] and a range of different multi-

exponential models were explored. In addition, the ADAPT 

method is a different mathematical model and therefore the IC 

wasn’t committed with this class of models.   

The study only considered DWI data, which averages over 

all the directions in which a gradient is applied. Consequently 

this method is only able to measure isotropic diffusion 

compartments. If anisotropic effects, such as fanning or 

crossing of axon bundles, were to be investigated, many 

diffusion weighted images, with diffusion weighted gradients 

in different directions, would be required resulting in 

Diffusion Tensor Imaging (DTI). Although multi b-value 

models are not yet routine in clinical settings[4], it would be 

interesting to consider an application of ADAPT to this 

technique, in particular investigating anisotropic effects with 

further simulations and in vivo studies. 

Further investigations are required to understand how the 

number of optimum ADAPT components relates to the 

number of exponential terms within the signal. The transfer 

function requires further rearrangement to enable the inverse 

Z-transform solution to be in the form of a summation of 

multi-exponential compartments.  

V. CONCLUSION 

The ADAPT method has shown that it can distinguish 

between multi-exponential diffusion data containing different 

numbers of components. This is something that cannot be 

achieved by applying multi-exponential fitting methods and 

selecting the optimum fit. Such a novel method allows for the 

identification of different components within a diffusion 

signal. The relationship between the ADAPT and IVIM 

parameters suggest that potential complex diffusion 

biomarkers can be obtained by making no prior assumptions 

about the nature of the data. Whilst ADAPT has been applied 

to DWI data, it should find application in other discrete data 

sets which can be manipulated to be represented as a function 

of acquisition points. 

APPENDIX 

A. Bayes Factor-Associated Statistics 

The Akaike weight, wi indicates the probability of model i 

being the optimum model:  

wi =
exp (−

1

2
∆iAICc)

∑ exp (M
m=1 −

1

2
∆mAICc)

 (12) 

 

Where M is the number of compared models and:  

 

∆iAICc = AICc(i) − AICcmin (13) 

 

Where AICcmin is the minimum AICc value of all the 

models considered. The Akaike weight of all the models 

summed together should equal one. The Evidence Ratio ER: 

 

ERi =
wmax

wi
 (14) 

 

Where wmax is the Akaike weight of the optimum model. 

The LER is provided by taking the log of the ER such that. 

 

LERi = log10(ERi) (15) 

 

B. Derivation of the Number of ADAPT Components 

ADAPT(1,0) gives: 

 

ln(Sn) = β0bn + α1ln (Sn−1) (16) 

 

And the transfer function of ADAPT(1,0) in the Z-domain:  

 

H(z) =
β0z

z−α1
 (17) 

 

Performing partial fraction decomposition (PFD) and an 

Inverse Z transform:  

 

H(n) = β0α1
n (18) 

 

Hence ADAPT(1,0) was also evaluated to be a one component 

decay model. ADAPT(2,0) gives:  

 

ln(Sn) = β0bn + α1 ln(Sn−1) + α2ln (Sn−2) (19) 

 

And the transfer function of ADAPT(2,0) in the Z-domain: 

 

H(z) =
β0z2

z2−α1−α2
=

β0z2

(z−r1)(z−r2)
 (20) 

 

Where the denominator is factorized such that r1 and r2 are 

roots of the quadratic expression. Performing PFD and an 

Inverse Z transform: 

 

H(n) = Ar1
n−1 + Br2

n−1
 (21) 

 

Where A and B represent the numerators that would be 

attained through the PFD. Hence ADAPT(2,0) was also 

evaluated to be a two component decay model. ADAPT(2,1) 

gives: 

 

ln(Sn) = β0bn + β1bn−1 + α1 ln(Sn−1) + α2ln (Sn−2) (22) 

 

And the transfer function of ADAPT(2,1) in the Z-domain: 
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H(z) =
β0z2+β1z

z2−α1−α2
 (23) 

 

Performing PFD and an Inverse Z transform: 

 

H(n) = Cr1
n−1 + Dr2

n−1
 (24) 

 

`Where r1 and r2 are roots of the quadratic expression in the 

denominator of the transfer function and C and D represent the 

numerators that would be attained through the PFD. Hence 

ADAPT(2,1) was also evaluated to be a two component decay 

model. ADAPT(3,1) gives:  

 

 ln(Sn) = β0bn + β1bn−1 + α1 ln(Sn−1) + α2 ln(Sn−2) +
α3ln (Sn−3) (25) 

 

And the transfer function of ADAPT(3,1) in the Z-domain: 

 

H(z) =
β0z2+β1z

z3−α1z2−α2z−α3
=

β0z2+β1z

(z−r1)(z−r2)(z−r3)
 (26) 

 

Where the denominator is factorized such that r1, r2 and r3 

are roots of the cubic expression. Performing PFD and an 

Inverse Z transform: 

 

H(n) = Fr1
n−1 + Gr2

n−1 + Hr3
n−1

  (27) 

 

Where F, G and H represent the numerators that would be 

attained through the PFD. Hence ADAPT(3,1) was evaluated 

to be a three component decay model. 
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