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Abstract
Bayesian statistical learning provides a coherent probabilistic framework for modelling uncertainty in systems. This
review describes the theoretical foundations underlying Bayesian statistics and outlines the computational frameworks for
implementing Bayesian inference in practice. We then describe the use of Bayesian learning in single-cell biology for the
analysis of high-dimensional, large data sets.
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Introduction

Statisticsprovides a theoretical foundation for rigorous and cohe-
rent data analysis by providing a mathematical framework in
which to unify models of how data are produced by systems or
experiment with techniques to handle uncertainty associ-
ated with these processes (Friedman et al. 2001). Whilst there
is no single universal statistical approach, one philosophy
that has gathered strength in the last 30 years is Bayesian
statistical inference (Lindley 1972; Robert 2007; Bernardo
and Smith 2009; Gelman et al. 2013). Bayesian statistics
offers certain capabilities that enable it to be amenable to a
variety of complex statistical applications and constraints,
notably in machine learning, where other statistical frame-
works would find difficulty. As a consequence, Bayesian
approaches are now widely used in a variety of scientific and
technological applications including biological research.

In this review, we will examine the fundamental concepts
that underpin Bayesian Statistics and consider a concise but
otherwise precise overview of the mechanics of applying
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Bayesian methodology. We will then consider applications of
Bayesian techniques in the field of single-cell biology
in which technological advances have enabled the high-
throughput collection of massive quantities of data that have
given us an unprecedented insight into cell function.

Fundamentals of Bayesianmodelling

Bayesian modelling requires three components (Fig. 1a).
The first is data (D) corresponding to measurements that
are taken from the system of interest. Data can range
from simple scalar values or, in big data applications,
potentially complex structured tuples of multidimensional
tensors (Rukat et al. 2017, 2018). The second component is
a generative model (M) which describes a stochastic process
by which the observed data arises. The generative model
can be mechanistically inspired and based upon real-world
physical laws and measurement processes, or may be given
by generic statistical models that attempt to describe the
dependencies between observed data sources and possibly
unseen (latent) factors. Finally, an object of inference (θ )
that we wish to learn about is required. This could be a
set of unknown parameters that govern the properties of the
generative model which need to be estimated or predictions
of future data under alternate conditions.

We can define the posterior probability of the object of
inference given the observed data in terms of the likelihood
and prior probabilities and the evidence via Bayes’ theorem:

p(θ |D, M)
︸ ︷︷ ︸

Posterior

=
Likelihood

︷ ︸︸ ︷

p(D|θ,M) ×
Prior
︷︸︸︷

p(θ)

p(D|M)
︸ ︷︷ ︸

Marginal Likelihood

(1)
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Fig. 1 a Overview of Bayesian modelling. Data is assumed to be
generated by a stochastic model which describes various underlying
processes and is specified by some unknown parameters. Bayesian
inference seeks to recover those parameters from the observed data.
b Prior beliefs are expressed as a probability distribution over param-
eters θ = (θ1, θ2) which are updated when data is collected via the
likelihood function to give a posterior distribution over θ . c Real-
world posterior distributions often contain a number of separated high

probability regions. An ideal Metropolis-Hastings algorithm would
possess a proposal mechanism that allows regular movement between
different high-probability regions without the need to tranverse
through low-probability intermediate regions. d Variational methods
build approximations of the true posterior distribution. In this exam-
ple, a mean-field approximation breaks the dependencies between the
parameters (θ1, θ2) so the variational posterior models each dimension
separately

What this says is that, given a generative model M and data
D, the posterior probability distribution over the object of
inference θ is given by our prior belief that θ takes on a
certain value, scaled by the likelihood that the generativemodel
under those beliefs would give rise to the data observed
(Fig. 1b). The denominator corresponds to a normalising
term to ensure that the probability distributions are valid
but also describes the marginal likelihood of the data under
the assumed model. The latter quantity is useful if alternate
generative models are available and one can use the marginal
likelihood as a means of determining which generative
model is likely to be the most consistent with nature. Ratios
of marginal likelihoods for different models, say M1 and
M2, P(D|M2)/P (D|M1), are known as Bayes Factors.

Bayesian statistics can be seen as a coherent system for
probability-based belief updating. We begin with some prior
knowledge about θ , we collect data and then we combine
the data with our prior beliefs to give our posterior beliefs—
what we believe about θ after seeing data. Importantly,
since θ is an unobserved quantity, Bayesian inference
describes our lack of certainty in its value via a probability
distribution. If we take an interval of possible values for θ

(a posterior credible interval), we can compute the amount

of probability mass contained within that interval from the
posterior distribution and obtain the probability that the true
parameters lie in that region. This interpretation is often
considered more natural than the coverage (confidence)
intervals used in frequentist-based statistics.

Bayesian computation

The implementation of Bayesian computation centres on
the calculation of the marginal likelihood, p(D|M). This
quantity is required to evaluate the posterior probability
p(θ |D, M) and requires a multidimensional integral over
all parameters associated with the statistical model. Direct
computation is typically intractable, due to the curse of
dimensionality for any problem of even moderate dimen-
sionality, which results in a combinatorial explosion in
the number of configurations that must be summed/
integrated over. The challenges are analogous to the com-
putation of the partition function in statistic mechanics and
Bayesian statisticians have utilised techniques inspired by
statistical mechanics to overcome this obstacle in Bayesian
computation.
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Monte Carlo methods

Markov Chain Monte Carlo (MCMC) simulations (Gilks
et al. 1995; Brooks et al. 2011) generate sequences of random
numbers such that their long-term statistical properties
converge towards the target posterior distribution of interest.
The predominant MCMC implementation derives from the
Metropolis algorithm formulation in the 1953 paper by
Metropolis et al. (1953, whose work was motivated by
statistical mechanics applications involving sampling low-
energy configurations of complex molecular systems). The
technique was later extended in generality by Hastings
(1970) to give the Metropolis-Hastings (M-H) algorithm.
The key insight by Metropolis et al. (1953) was to derive
a sampling algorithm which did not require the evaluation
of the partition function (marginal likelihood) but only
point-wise evaluation of the Boltzmann factors. Given
a current configuration of the system θ , the Metropolis
algorithm proceeds by proposing a new state θ ′ via any
proposal distribution and then evaluate the Boltzmann
factor exp(−E(θ ′)/kT ) at the proposed new state. If the
new state results in a lower energy configuration then
move to that new state, if it results in a higher energy
configuration then choose to move to the new state with a
probability which is given by the ratio of the Boltzmann
factors: α = exp(−(E(θ ′) − E(θ))/kT ). By treating the
negative logarithm of the unnormalised posterior probability
distribution as an energy function, E(θ) = − logp(θ |D),
the Metropolis algorithm (and its derivatives) has been co-
opted by Bayesian statisticians as a means of efficiently
performing from complex posterior distributions.

MCMC algorithms provide theoretical guarantees that
the stationary distribution of the random number sequences
will asymptotically converge to the posterior distribution
of interest. The determination of when convergence occurs
and designing efficient proposal schemes to enable that
convergence to be achieved in the shortest time is highly
challenging and remains an area of ongoing research. The
critical design choice in the M-H algorithm is the proposal
mechanism. If the proposed states are randomly chosen,
they are less likely to yield high-probability configurations
and will be rejected. If the new states are too similar to the
current state, then their probabilities will be similar but the
configurations will not be fundamentally different leading
to poor exploration of the overall probability space (Fig. 1c).
The proposal mechanism must therefore balance the need to
search the configuration space globally whilst maintaining
a sufficient locality to provide a useful acceptance rate.

A variety of modern MCMC variants now exist (Giro-
lami and Calderhead 2011; Chen et al. 2014; Hoffman and
Gelman 2014; Shahbaba et al. 2014). For instance, orig-
inally conceived by Duane et al. (Duane et al. 1987) for

lattice field theory simulations of quantum chromodynam-
ics, Bayesians have generalised Hamiltonian Monte Carlo
(HMC) methods (Neal et al. 2011) which exploit geomet-
ric information to greatly increase the sampling efficiency
of MCMC algorithms. Whilst standard M-H algorithms
can be described as a propose-and-check approach, HMC
biases proposals along trajectories that are likely to lead
to high-probability configurations. Probabilistic program-
ming languages such as Stan (Carpenter et al. 2016) and
PyMC3 (Salvatier et al. 2016) contain prebuilt implementa-
tions of HMC and variants freeing modellers from many of
the detailed requirements of building HMC algorithms.

Variational methods

The computational requirements of MCMC methods can
be prohibitive in applications that involve large, high-
dimensional data sets or complex models. As the dimension-
ality of θ increases, the convergence complexity of MCMC
algorithms also increases when sampling from high-
dimensional posteriors (Mengersen et al. 1999; Rajaratnam
and Sparks 2015). An alternative is to abandon the the-
oretical guarantees of MCMC methods and to construct
analytically tractable approximations qν(θ |D) to the true
posterior distribution p(θ |D)—this is the motivation under-
lying Variational Bayesian methods (Blei et al. 2017).

In the construction of variational approximations, it is
typical to assume that the approximating distribution has a
simplified structure (Fig. 1d). The frequently used mean-
field approximation assumes a fully factorisable form of
the approximate posterior, qν(θ |D) = ∏T

t=1 q
(t)
ν (θt |D)

where the dependencies between the different elements of
θ are uncoupled and each factor q

(t)
ν is typically given

by a simple distribution (e.g. Gaussian, Gamma). If the
approximating distribution qν is parameterised by ν, the
variational approach seeks to optimise these variational
parameters to minimise the difference—measured using
the Kullback-Leibler (KL) divergence—between the true
and approximate posterior distributions. Therefore, unlike
Monte Carlo methods which use stochastic sampling,
variational methods transform the inference problem into
an optimisation task. The latter means that assessing
the convergence of variational methods is relatively
straightforward and typically requires significantly less time
for complex models than MCMC approaches.

Classic variational algorithms used analytically derived
optimisation steps (coordinate ascent VI) but, more recently,
stochastic variational inference (SVI) methods employ
stochastic gradient descent algorithms instead (Hoffman
et al. 2013; Titsias and Lázaro-Gredilla 2014). SVI uses
cheap to compute, “noisy” estimates of natural gradients
based on a subset of data points instead of the true gradients
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which require a pass through all data points. This exploits
the fact that the expected value of these noisy gradients is
equal to the true gradient and so convergence of the SVI
algorithm can be guaranteed under certain conditions. As
a consequence, SVI allows the application of variational
methods to a wider class of models and by operating on
mini-batches of data in each optimisation step provides
substantial speed-ups in large data settings.

Amortised variational inference uses inference networks
within variational inference algorithms for latent variable
models—where each data item is associated with its
own set of parameters (Zhang et al. 2018). In such
situations, a typical variational approximation would result
in each data item also being associated with its own
compliment of variational parameters; thus, with larger
data sets, there would be an increase in the number
of variational parameters to optimise. Inference networks
replace these local variational parameters with a single
set of global parameters associated with a neural network.
The goal is to use variational inference to optimise the
parameters associated with this neural network and to
use the optimised network to predict the local variational
parameters. Inference networks therefore offer another layer
of approximation that breaks the dependency between the
computational requirements of the variational inference
algorithm and the size of the data set.

Whilst the accuracy of variational approximations is
often impossible to quantify (Yao et al. 2018), they pro-
vide the current mainstay inferential approach for high-
dimensional Bayesian modelling. Current machine learning
development libraries, such as TensorFlow (Abadi et al.
2016) and PyTorch (Paszke et al. 2017), provide a substan-
tial body of tools for the construction of neural networks,
and optimisation algorithms for the implementation of vari-
ational inference algorithms.

Bayesian applications in single-cell biology

The recent availability of a plethora of relatively low-cost
experimental methods and protocols for high-throughput
screening of individual cells has lead to an explosion in
single-cell biological data (Theillet 1998). A single-cell
experiment can generate data that is both high-dimensional
and large in sample size with recent studies involving single-
cell RNA sequencing routinely able to produce cell numbers
on the order of 105 cells measuring 103 − 104 genes. Inter-
national endeavours, such as The Human Cell Atlas (HCA)
project (Regev et al. 2017), will seek to catalogue and
sequence all known human cell types in the coming years.

The benefit of single-cell measurements is to remove
the averaging effect when measurements are taken on

Fig. 2 a Single-cell differential expression analysis aims to identify
differences in expression level and variability between cell types. Con-
founding effects such as dropout and batch effects must be accounted
for in order to avoid false conclusions. b Variational autoencoders
use deep neural networks to encode input expression data vectors into
low-dimensional latent representations whilst simultaneously learn-
ing decoders that can generate realistic expression data from these
latent representations. c Pseudotemporal model aims to identify latent

uni-dimensional representations that correspond to physical time vari-
ation from high-dimensional cross-sectional single-cell data. d Prob-
abilistic approaches to tumour phylogeny inference are essential in
the presence of sequencing noise since genotyping errors can lead
to uncertainties in phylogenetic reconstruction. Here, the presence of
allelic dropout leading to genotyping error in a single-cell type could
lead to alternate phylogenetic histories and different interpretations of
the importance of acquired mutations
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populations of cells which can obscure important stochastic
dynamics operating in individual cells. However, the
challenge when working with single cells is the inherent
sensitivity of cells to physical manipulation and the
difficulties of robustly measuring minuscule quantities of
potentially unstable molecules, e.g. RNA. Consequently,
single-cell data from any technical platform is inherently
noisy, contains various levels of missingness and may
harbour many sources of bias—all of which could have
both a biological or technical origin (Stegle et al. 2015;
Poirion et al. 2016). Probabilistic modelling of single-cell
data, based on a Bayesian framework, provides a coherent
strategy for encapsulating these complexities.

Differential expression

Differential expression (DE) aims to identify genes that are
up- or downregulated between cell types (Fig. 2a). Whilst
standard frequentist-based hypothesis testing procedures
can be employed, Bayesian DE alternatives offer certain
benefits. Kharcenko et al. (2014) introduced a generative
model that includes drop-outs for differential expression
analysis. Dropouts are frequent occurrences in single-cell
expression data due to the low quantities of mRNA involved
which means the presence of some transcripts cannot
always be reliably detected by sequencing—the result is a
zero expression measurement for cells that might actually
be expressing a gene at a low level. BASiCS (Bayesian
Analysis of Single-Cell Sequencing data (Vallejos et al.
2015; Vallejos et al. 2016)) jointly models highly variable
genes and differential expression between cell populations
which allows it to detect differential variability—an effect
often masked by both standard differential expression
methods. A related analysis is identifying differential
splicing in which exon usage varies between cells or
cell populations. Differential splicing can be difficult to
detect in single-cell RNA-seq data due to amplification
biases, shallow read depths, and other technical artefacts. To
solve this, the Bayesian method BRIE (Bayesian regression
for isoform estimation (Huang and Sanguinetti 2017))
leverages sequence-derived features as an informative prior
distribution in a hierarchical model to greatly increase the
accuracy of inference.

Deep learning representations

One particular analytical problem is the identification of
latent structure within these high-dimensional data sets in
order to understand the underlying fundamental biological
processes. Ideas inspired from deep learning (LeCun et al.
2015) have recently emerged in single-cell biology as a
means of extracting low-dimensional representations from
high-dimensional data (Ding et al. 2018; Lopez et al. 2018).

For instance, scVI (Lopez et al. 2018) uses a hierarchical
Bayesian model—a variational autoencoder (Kingma and
Welling 2013), incorporating deep neural networks and
stochastic variational inference stochastic optimisation to
aggregate information across similar cells and genes whilst
simultaneously adjusting for batch effects and lack of
measurement sensitivity (Fig. 2b). The benefit of the deep
neural networks is that the functional relationship between
the measured gene expression and the latent representations
does not need to be prespecified by the modeller and scVI
is able to exploit the vast array of data available to learn
these relationships from the data itself. Implementations
using modern machine learning development frameworks
allow a vast array of high-performance computational
machinery (such as graphics processing units) to be
exploited permitting methods such as scVI to make short
work of data sets involving millions of cells.

Temporal modelling

High-throughput single-cell molecular technologies provide
an instantaneous measurement of the molecular state of
individual cells. Genuine time series measurements of individ-
ual cells undergoing dynamic processes, such as differentia-
tion or cell cycle, are difficult due to the inherently destructive
nature of the measurement process and asynchronicity of
cellular progression. To circumvent this, analytical methods
have been developed that use a cross-sectional “snapshot”
of cells’ gene expression to assign a pseudotime to each cell-
--a surrogate measure of progression through the process of
interest (Fig. 2c). Downstream analyses such as differential
expression (Campbell and Yau 2017b; Sander et al. 2017)
can then be performed using the pseudo times in lieu of
physical time information.

A majority of Bayesian pseudotime inference meth-
ods build upon the Gaussian Process Latent Variable
(GPLVM) framework. The first model for single-cell RNA-
seq was DeLorean (Reid and Wernisch 2016) that uses a
Matern3/2 kernel with a Gaussian likelihood on suitably log-
transformed data. DeLorean uses the probabilistic program-
ming language Stan (Carpenter et al. 2016) for inference
that performs an adaptive version of Hamiltonian Monte
Carlo. This was recently reimplemented in the method
GrandPrix (Ahmed et al. 2019) with fast inducing point
variational inference implemented in the GPFlow frame-
work (Matthews et al. 2017) to achieve order-of-magnitude
faster inference. A related model is the PseudoGP frame-
work (Campbell and Yau 2016) that uses the posterior
distributions from probabilistic pseudotime to quantify the
uncertainty in downstream analyses such as differential
expression. Branching differentiation processes can also
be modelled using Gaussian processes (Boukouvalas et al.
2018; Penfold et al. 2018).
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Further, Bayesian pseudotime methods have been devel-
oped based on dimensionality reduction techniques other
than GPLVM. A popular class of these are factor analysis
models that seek a probabilistic mapping from the latent
space (pseudotimes) through a linear or parametric nonlin-
ear function. Such an approach was successfully applied
in the Ouija framework (Campbell and Yau 2018) that
uses a sigmoidal mapping to learn pseudotimes from small
marker gene panels along with interpretable parameters cor-
responding to activation times of genes. A related model is
MFA (Campbell and Yau 2017a) that implements a mixture
of linear factor analysers to infer bifurcations from single-
cell gene expression data, using MCMC sampling for infer-
ence. Finally, a Bayesian variant of unidimensional scaling
(BUDS, Nguyen and Holmes 2017) has been proposed for
ordering single cell with an emphasis on visualising uncertainty.

Tumour evolution

Bayesian approaches have also been developed for single-
cell–based modelling of cancer evolution (Zafar et al. 2018;
Goh et al. 2019). Here, the data corresponds to genome
sequences of tumour samples and the unobserved object
of inference is the evolutionary tree relating the different
cancer cell populations within the tumour (Yuan et al.
2015; Roth et al. 2016) or a mutation tree representing
the partial (temporal) order of the mutation events (Jahn
et al. 2016; Ross and Markowetz 2016). Since an arbitrary
number of evolutionary mechanisms may be possible, the
information included in the priors help to regularise the
inferential problem to make it tractable by limiting the
space of possible evolutionary trajectories. Uncertainty
propagation is also of specific help in this problem. Allelic
dropout in single-cell sequencing can cause mutations to
become undetected and lead to errors in the genotyping
of individual cells. Errors in cellular mutation profiles
could fundamentally alter the inferred evolutionary trees
hence joint modelling of sequencing errors and evolutionary
trajectories is critical (Fig. 2d).

Discussion

Bayesian methodology is a conceptually natural approach to
apply to biological research applications. Modern proba-
bilistic programming language environments for Bayesian
computation have further facilitated its application by pro-
viding interfaces for specifying potentially highly complex
models even for non-experts. This review has described the
underlying theoretical framework as well as the compu-
tational techniques required to implement Bayesian mod-
elling with a focus on applications in single-cell biology.
Nonetheless, further research into improved and faster

Bayesian computation techniques for big data biology
is required. Despite its strong theoretical foundations,
Bayesian approaches are still relatively underused in bio-
logical sciences. Bayesian modelling requires considerable
thought to be given to the constitution of the generative
models and the specification of prior beliefs. Probabilistic
programming languages have simplified model develop-
ment by allowing users to focus on model specification
rather than the computational implementations but there
remains a considerable “art” to designing good models
and expertise is gained through experience. Research to
develop more automatic tools for Bayesian model specifi-
cation would be beneficial. Posterior uncertainty character-
isation intrinsically means that there is no “right answer” in
Bayesian modelling—only a distribution over possibilities.
Probabilistic outcomes can be difficult to interpret even for
seasoned experts and non-experts may find such summaries
challenging to palate. Finally, in high-dimensional, large
data settings, recent computational advances have made
Bayesian inference feasible for increasingly larger prob-
lems but often remains more computationally taxing than
alternative approaches that might forego uncertainty char-
acterisation for point estimation. However, as described in
many of the single-cell applications, without formal uncer-
tainty modelling, erroneous inferences can be made in the
presence of confounding factors or noisy/missing data.
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