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ABSTRACT The solubilities of hardly soluble solutes in compressed CO2 were 

measured using a new Static Precise Mass Measuring (SPMM) method. The solubility 

of two solutes, azoxystrobin a substituted pyrimidine, and benflumetol an anti-malarial 

drug were determined at pressures and temperatures from 80 to 250 bar and 301K to 

323K. Solubility of these two compounds were 64-661 mg/kg CO2 and 1.3-19.7 mg/kg 

CO2, respectively. The measured solubilities were correlated using the density-based 

model proposed by Chrastil and theory of dilute solutions based model proposed by 

Mendez-Santiago and Teja. A linear relationship between the solubility and the solvent 

density was obtained.  

 

1. INTRODUCTION 

   Extraction, reaction and particle production processes using compressed CO2 have 

received considerable interest as alternatives to methods that use conventional 

solvents
1-7

. The main advantages of such processes manifest themselves in terms of 

high quality products, environmentally friendly operation, time and energy savings 

and, in some cases, lower operational costs of the plant. 

The solubility of a solute in compressed CO2 or in a mixture of CO2 with some 



other organic solvent is a key parameter in a supercritical fluid process especially for 

the development and optimisation of the process. This work reports a method to 

measure the solubility of virtually insoluble solutes in compressed CO2. The method 

eliminates the erroneous collection of samples that would have, by their nature, 

extremely low masses. In addition, the method avoids the use of spectrophotometric 

equipment to measure solubility. 

In general, the methods for measuring solute solubility in compressed CO2 can be 

divided into two main categories: dynamic and static methods
8
. In the dynamic method, 

a CO2-rich phase is passed or recycled through a fixed solid or liquid sample bed until 

the CO2 is saturated. A sample is then taken from the fluid phase and the amount of CO2 

and solute is measured gravimetrically or by a high pressure online spectroscopic 

technique such as UV absorption or chromatography. In the static method, compressed 

CO2 contacts the sample with a sufficient contact area and time to ensure saturation of 

the solvent phase and then a sample is taken from the saturated CO2 phase and the 

masses are determined. Another common static method used to measure solubility is 

cloud point observation, where a sample of known mass is totally dissolved in high 

pressure CO2 through agitation. The system is then depressurised by altering the 

volume to decrease the solvent power of CO2, which causes the dissolved solute to 

reach its saturation point. The solute begins to form a cloud which appears opaque to 

the viewer – as the solute begins to emerge from the CO2 solution. The pressure and 

temperature are then noted and the volume of CO2 measured at this point. The solubility 

can then be calculated from the mass of original solute.   

All of these methods need sufficient solute solubility; the static method also needs a 

reasonable dissolution rate, whereas the spectroscopic techniques need additional high 

pressure online equipment which can be expensive, and the creation of a calibration 

curve at extremely low dilution. When the solubility is lower than 1 g solute per kg 

CO2, the measurement is difficult either because a representative amount of sample has 

to be collected from a large volume of CO2 leading to disturbances in the equilibrium, 

relatively weak responses from the low concentrations on spectroscopic detectors or 

there is too little solute dissolved to produce a visible cloud point.  



The solubilities of two compounds have been measured in this work. The first, a 

hydrophilic agrochemical named azoxystrobin and the second benflumetol, a type of 

clinical medicine used for malaria treatment. The need to generate solubility data in 

compressed CO2 of these two compounds is necessary for the design and optimisation 

of subsequent particle production processes
5, 9

, as well as adding new solubility data to 

the literature. Because of their chemical nature, their solubility measurements using 

traditional approaches were found to be impossible and consequently a new approach 

was developed to measure their solubility. The method is described herein and named 

the Static Precise Mass Measuring (SPMM) method. One of the characteristics of this 

method is that if the impurities in the sample are insoluble in CO2, they will not 

interfere with the result. If impurities are soluble in CO2, a pre-extraction purification 

removes them and purifies the sample. This method was used to determine the 

solubility of azoxystrobin and benflumetol from 301K to 323K and 80 to 250 bar in 

CO2. The method was validated by measuring solubility data for caffeine in CO2 and 

comparing to those in the literature. The data for azoxystrobin and benflumetol were 

correlated using models proposed by Chrastil
10 

and Mendez-Santiago and Teja
11

. 

 

2. EXPERIMENTAL 

2.1 Materials and Reagents 

           

     

Figure 1. Chemical Structure of Azoxystrobin 

Azoxystrobin  

(Methyl-(E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylat

e, C22H17N3O5, see figure 1, CAS: 131860-33-8), was provided by Syngenta, an 

agrochemical manufacture in UK with a purity of 99.001% (by DSC), and purified 

by CO2 extraction at 313K, 250 bar prior to use.  

 



  

Figure 2. Chemical Structure of Benflumetol 

Benflumetol 

(lumefantrine,(9Z)-2,7-Dichloro-9-[(4-chlorophenyl)methylene]-α-[(dibutylamino)m

ethyl]-9H-fluorene-4-methanol, C30H32Cl3NO, see figure 2, CAS: 82186-77-4) (> 

98%, lot number: 201508037) was kindly donated by Haiboyuan Chemical 

Company in China and purified by CO2 extraction at the measurement conditions 

prior to be measured.  

Caffeine was obtained from Sigma-Aldrich at a purity of 99% and purified by CO2 

extraction at 313K, 140 bar prior to use. 

Carbon dioxide (99.8%) was purchased from BOC UK and was dried with 

molecular sieve 5A prior to use.  

The physicochemical properties of azoxystrobin, benflumetol and caffeine are shown 

in Tables 1 and 2. 

 

Table 1. Physicochemical Properties of Compounds12 

 Azoxystrobin Benflumetol Caffeine 

Formula C22H17N3O5 C30H32Cl3NO C8H10N4O2 

Density (g/cm³) 1.33  1.252 1.23 

Melting point (°C) 116 °C 129-131°C 238 

PubChem CID 3034285 6437380 2519 

Molar mass (g/mol) 403.394 528.942 194.194 

                        

 

 

 

 

 

 

https://www.google.co.uk/search?q=azoxystrobin+density&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCoqz7E00tLMKLfST87PyUlNLsnMz9NPzkjNzUxOzIlPzs8tyC_NSym2SknNK84sqQQAe6OwITkAAAA&sa=X&ved=0ahUKEwifwue-refbAhWI6RQKHSpBDgwQ6BMIvQEoADAX
https://www.google.co.uk/search?q=azoxystrobin+melting+point&sa=X&ved=0ahUKEwifwue-refbAhWI6RQKHSpBDgwQ6BMIwAEoADAY
https://www.google.co.uk/search?q=azoxystrobin+pubchem+cid&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCoqz7E00tLMKLfST87PyUlNLsnMz9NPzkjNzUxOzIlPzs8tyC_NSym2KihNAokCAPk-32w5AAAA&sa=X&ved=0ahUKEwifwue-refbAhWI6RQKHSpBDgwQ6BMIwwEoADAZ
https://www.google.co.uk/search?q=azoxystrobin+molar+mass&sa=X&ved=0ahUKEwifwue-refbAhWI6RQKHSpBDgwQ6BMIxgEoADAa


    

Table 2. Detailed Information on the Experimental Materials Used in This Work 

Chemicals Source initial mass 

fraction 

purity 

purification 

Method 

final mass 

fraction 

purity 

analytical  

method 

Azoxystrobin Syngenta, Huddersfield 

Works, UK 

0.99 CO2 extraction - DSC 

Benflumetol Haiboyuan Chemical 

Company, China 

0.98 CO2 extraction - - 

Caffeine Sigma-Aldrich, UK 0.99 CO2 extraction - - 

- Indicates no measurement 

 

2.2. Equipment and Methods  

2.2.1 Pre-solubility measurements  

The measurements were carried out in a SS316L Parr reactor
 
(W6886-01, Parr 

Instrument Co, USA) as shown in Figure 3. It was equipped with two in-line sapphire 

windows, heating/cooling jacket and a magnetic stirrer with a working range up to 345 

bar from 283K to 373K. The pressure was recorded using a transducer (Druck PTX 

1400) with a dedicated display to within 0.1 bar, and the temperature was recorded and 

maintained to within 0.1K using a Tecam circulator (C-40) and J-type thermocouple. 

The vessel formed part of the experimental rig which is shown in Figure 4. 



Figure 3. View and Internal Structure of Pressure Reactor (drawings from Parr 

Instrument Company, USA) 

Figure 4. Apparatus for measuring solubility in compressed CO2 
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Figure 5. (a) The sample pans and the cover       (b) Assembled pan and cover 

 

Before the SPMM method be applied, it was necessary to know the actual vessel 

volume rather than rely on the one quoted by the manufacture. This enables the actual 

amount of CO2 used in a measurement to be obtained over the CO2 density range. This 

volume included the items inside the vessel, the vessel overheads and the window and 

gauge recesses. The internal volume was obtained by placing the sample pan and cover 

(see Figure 5) into the vessel, pumping in CO2 with V1, V4 closed and V2, V3 opened, 

increasing the pressure and temperature to a constant desired value. The CO2 was then 

depressurized across a micro-metering valve V4 (Hoke, 1315G4Y) and the gas volume 

measured at ambient conditions by passing the expanded stream through a wet-gas 

meter (Model DM3A 0.25 dm
3
 per rev., Alexander Wright). The total mass of CO2 was 

calculated from the ideal gas equation of state and the vessel volume calculated from 

the density of CO2
 
taken from NIST Chemistry Web Book

13
 at the pressure and 

temperature condition. The vessel volume results are shown in Figure 6. These 

measurements were carried out in the range from 78 to 245 bar and 295K to 323K at 

different combinations of temperature and pressure. The average vessel volume was 

found to be 61 ml with a STDEV of 3.22%.  



 

Figure 6. The results of the reactor volume measurement 

 

The minimum time for the system to reach equilibrium for a given pressure and 

temperature was also determined. This is a key operation datum for the static method. 

Only when the processing time is in excess of the minimum equilibrium time, can 

correct solubility data be obtained. This time was found by measuring the loading of 

azoxystrobin in CO2 at a typical working condition (100 bar, 313K and 130 rpm stirring 

speed) until consistent data were obtained. 

Figure 7 shows that the sample loading in the CO2 increases rapidly with time in the 

first 3 hours and reaches a value of almost 0.03 g/kg at 3 hours. The average loading 

showed little fluctuation from 3 to 17 hours and showed a very limited increase, which 

was within the experimental error given in the results section. Consequently, 3 hours 

was considered satisfactory to attain equilibrium; however for assurance, a minimum of 

4 hours was used for the solubility measurements. 

 



 

Figure 7. Time to reach equilibrium solubility 

 

2.2.2 The static precise mass measuring procedure.  

A precise Mettler balance (Mettler MT5, Mettler Ltd., Switzerland) with had an 

accuracy of 0.001 mg was used to determine the masses of the sample.  A known mass 

of sample was weighed into the sample panwhich was placed inside the pressure vessel. 

The sample pan was then covered by the pan cover. The pan and pan cover (Fig. 5a) 

were made in-house and have diameters of 15 and 22 mm, respectively. 

The pan cover is 12 mm in height and has arches on its sides to allow CO2 to diffuse 

in and out as shown in Fig. 5b. For solubility measurements, pure CO2 was pumped into 

the reactor and after 4 hours stirring CO2 became saturated with the solute. The stirrer 

was turned off and the CO2 vented and measured using the wet gas meter. The pan 

containing sample that had not been solubilised was removed from the vessel and 

weighed. The mass loss from the sample was calculated by difference, and hence the 

solubility. The beauty of the SPMM method is that during depressurisation most of the 

dissolved sample will precipitate in the vessel, however, the special pan cover allows 

the dissolved sample to precipitate on top of it, but prevents the precipitated particles 

returning into the sample pan. The SPMM method was validated by comparing the 

solubility of caffeine in CO2 with data commonly available in the literature. 

 

 



2.2.3 Solubility-Density correlation. 

The Chrastil and MST models were used to fit the experimental data. Chrastil’s 

model relates the solubility of solutes directly to the density of a compressed gas 

solvent and avoids the complexity of equations of state
10

. On the basis of the theory that 

the solute and gas solvent molecules associate to form a solvato complex, and 

combined with the entropy of the components, the following equation can be derived:  

b
T

a
kS  )ln()ln(           (1) 

where S is the solute concentration in the solvent gas (kg/m
3
), ρ is the density of the 

gas (kg/m
3
), k is an association constant which is characteristic for a given gas and 

solute and is independent of both temperature and pressure, a is dependent on the heat 

of solvation and vaporization of the solute, and b is dependent on the molecular masses 

of the solute and solvent and on the melting points of the solute. Chrastil observed that 

a log-log plot of S against ρ for a given isotherm resulted in a linear relationship with a 

slope of k. At different temperatures, the isothermal plots should be parallel to one 

another. 

The MST model developed by Mendez-Santiago and Teja
11

, is a simplified 

correlation to solid solubility data based on the theory of dilute solutions. It is one of 

the most used semi-empirical models. Like the Chrastil model, it based on simple 

error minimization and uses only available independent variables like pressure, 

temperature and density of the pure solvent. It represents the solubility in terms of 

temperature, pressure and density as: 

       (2) 

Where y is the solubility in mol/mol, P is the pressure in MPa, ρ is the density of the 

compressed gas, T is the temperature in K and a, b and k are the temperature independent 

constants. Thus a plot of Tln(Py) - aT vs. ρ would be linear with all the isotherms 

collapsing on to a single straight line. 

 

 

 



3. RESULTS AND DISCUSSION 

3.1 Caffeine solubility in supercritical CO2 

The SPMM approach was validated by comparing solubility data of caffeine in CO2 at 

40
o
C from 85 to 140 bar with those commonly found in the literature

14-21
. Figure 8 

shows that the data obtained is comparable to the literature data and the error is 

acceptable. The literature cited used a range of techniques to measure the solubility 

which included both dynamic and static approaches coupled with UV-Vis 

spectrophotometry and supercritical fluid chromatography analyses. Our approach 

shows that solubility data can be obtained without the need for chromatographic and 

spectrometric equipment. 

 
 

Figure 8. Solubility of caffeine in CO2 measured by the SPMM method and plotted 

with literature data. 

 

 

 

 



 

Table 3. Solubility (S) of Caffeine in CO2 at 40°C Measured by SPMM Method 

(mg Caffeine/kg CO2) 

P (bar) Solubility (mg/kg) ur(S) CO2 Density
13

 (mol/m
3
) 

85 89 0.84 8040 

110 359 0.21 15527 

140 628 0.16 17339 

Standard uncertainties u are = u(T) = 0.1 K , u = u(P) = 0.01 MPa, ur(S) values are displayed in 

each pressure row. 

 

3.2 Azoxystrobin Solubility in Sub- and Supercritical Carbon Dioxide 

The solubility of azoxystrobin in compressed CO2 was measured using the SPMM 

method between 100 to 250 bar and 301K to 323K and the results are shown in Table 2 

and Figure 9. The measurements were repeated up to 5 times and the variance was no 

greater than 8.8 %. It can be seen that although the solubility is very low, it shows the 

same tendency to that of other CO2/solute systems. For a given temperature, the 

solubility increases with an increase of pressure and there exists a cross-over point at 

around 125 bar. Below the cross-over pressure, the solubility decreases with an 

increase in temperature, whereas above this pressure the opposite effect occurs; 

solubility increases with temperature. This agrees with the general rule of solute 

solubility at elevated pressure where CO2 density and solute vapour pressure compete 

against each other. At lower pressures where the effect of CO2 density dominates, the 

higher the CO2 density the higher the solubility of the azoxystrobin in CO2. At higher 

pressures, the vapour pressure of the solute has a greater effect and hence a higher 

temperature leads to higher the solubility. 

 

 

 

 



Table 3. Solubility (S) Data of Azoxystrobin in Carbon Dioxide (mg Azoxystrobin/kg CO2) 

 

P 

(bar) 

301 (K) 313 (K) 323 (K) 

S  

(mg/kg) 

ur 

(S) 

CO2 

density
13

 

(mol/m
3
) 

S  

(mg/kg) 

ur 

(S) 

CO2 density
13

 

(mol/m
3
) 

S  

(mg/kg) 

ur 

(S) 

CO2 

density
13

 

(mol/m
3
) 

100 61 0.18 18007 32 0.16 14354 13 0.85 8788 

150 133 0.14 19540 147 0.10 17753 209 0.17 15930 

200 231 0.15 20469 281 0.15 19100 446 0.14 17841 

250 385 0.23 21161 527 0.10 19999 664 0.27 18971  

Standard uncertainties u are = u(T) = 0.1 K, u = u(P) = 0.01 MPa, ur(S) values are displayed in each pressure 

row.  

 

 

 

Figure 9. Azoxystrobin solubility in compressed CO2 measured with SPMM 

technique. The lines show best fit to the experimental data. 

 

3.3 Benflumetol Solubility in Supercritical Carbon Dioxide  

The solubility of benflumetol in compressed CO2 was measured using the SPMM 

method between 80 to 180 bar and 308K to 323K and the results are shown in Table 4 

and Figure 10. The solubility of benflumetol has the similar tendency to that of 

azoxystrobin, and there exists a cross-over point at around 100 bar. That is to say that 

below this pressure, CO2 density dominated the solubility of benflumetol; the higher 

the CO2 density the higher the solubility of benflumetol in CO2. Above this pressure, 



temperature becomes the critical factor that influences the solubility of benflumetol 

leading the higher the solubilities at higher temperature. 

 

 

Table 4. Solubility (S) of Benflumetol in Carbon Dioxide (mg Benflumetol/ kg CO2） 

P 

(bar) 

308 (K) 313 (K) 323 (K) 

S 
ur 

(S) 

CO2 

density
13

 
S 

ur 

(S) 

CO2 

density
13

 
S 

ur 

(S) 

CO2 

density
13

 

(mg/kg)  (mol/m
3
) (mg/kg)  (mol/m

3
) (mg/kg)  (mol/m

3
) 

80 1.3 0.23 9912 1.0 0.10 6351 0.8 0.13 4993 

100 3.0 0.17 16243 1.9 0.21 14287 2.6 0.15 8788 

120 4.7 0.15 17460 3.0 0.17 16346 5.6 0.13 13340 

140 4.5 0.13 18234 6.9 0.10 17371 8.1 0.15 15308 

160 5.0 0.14 18816 7.4 0.12 18085 10.3 0.15 16434 

180 5.7 0.12 19288 8.4 0.11 18641 19.7 0.12 17226 

Standard uncertainties u are = u(T) = 0.1 K , u = u(P) = 0.01 MPa, ur(S) values are displayed in each 

pressure row. 

 

 

 

Figure 10. Benflumetol solubility in compressed CO2 measured using SPMM 

technique. The lines show best fit to the experimental data. 

 

 

 



3.4 Solubility-Density correlation.  

Using CO2 densities from NIST
13

, equations 1 and 2 were fitted to the solubility data 

of azoxystrobin and benflumetol by minimizing the average deviation between the 

experimental and calculated values for the isotherms simultaneously by adjusting the 

fitting constants a, b, and k. k is adjustable parameters that can be obtained by fitting the 

least-squares method to experimental data. The outputted values for azoxystrobin and 

benflumetol are shown in Table 5. Figures 11 and 12 show the fitted data plots. The 

association constant k is not an integer, as most solvato complexes are not 

stoichiometric. It gives an average equilibrium association number, which is a 

characteristic constant for a given gas and solute. It is clear in Figure 11 that at CO2 

densities greater than 629 kg/m
3
 (ln() = 6.44) the experimental data of azoxystrobin 

agree well with the Chrastil model. The point at 384 kg/m
3 
(ln() = 5.95) is out of range 

as the model can only give a reasonable prediction of solubilities at temperature 

conditions where solvent density has a predominant effect
22

. The average deviation 

between the experimental and calculated solubility data was calculated to be 11.02 %. 

The experimental data agree even better with the MST model than those modelled by 

the Chrastil model over the entire test range and the average deviation between the 

experimental and calculated solubility data using the MST model was 5.01 %. 

 For benflumetol, the outputted values from the Chrastil and MST models and the 

subsequent plots are shown in Table 5 and Figure 12. The value of the association 

constant k in the Chrastil equation is greater for azoxystrobin than that of benflumetol 

due to the presence of CO2-philic sites on the azoxystrobin molecule. The presence of 

ether and carbonyl groups enhances CO2-philicity by providing sites for specific 

interactions with CO2 and therefore leads to a higher CO2 solubility
23,24

 The Average 

Absolute Relative Deviation values of the Chrastil and MST models are 3.63% and 

3.52%, respectively within the range of the experimental method. In general, it can be 

seen that there are correlations between the solubility of azoxystrobin and benflumetol 

in supercritical CO2 and its pressure and temperature. It is therefore meaningful to 

predict the solubilities of azoxystrobin and benflumetol at different temperatures and 

pressures using these models. 



 

Table 5. Values of Chrastil and MST Model Parameters and Average Absolute 

Deviation (AAD) for Azoxystrobin and Benflumetol Data 

Sample Model Name equation k a b AAD (%) 

Azoxystrobin 

Chrastil 
 

9.975 -7478.8 44.522 11.02 

MST 

 

0.223 27.9 -15250 5.01 

Benflumetol 

Chrastil 
 

1.045 -5488.5 -1.136 3.63 

MST 
 

753.569 31.220 9709.342 3.52 

 

 

Figure 11. Experimental data (Azoxystrobin) fitted with the Chrastil (left) and MST 

(right) models  

 

 

Figure 12. Experimental data (Benflumetol) fitted with the Chrastil model（left）and 

MST model (right) 



 

4. CONCLUSIONS 

The SPMM method offers a simple and reliable approach to measure very low 

solubilities of solutes in compressed CO2 as validated by comparing solubility data of 

caffeine with those found in the literature. The special pan cover prevents the dissolved 

sample from returning to the sample pan upon depressurisation. This approach 

eliminates sampling errors encountered when recovering samples that have extremely 

low masses and avoids the use of spectrophotometric equipment to measure solubility. 

The solubilities of azoxystrobin and benflutemol were successfully determined using 

the technique and provide data for the solubility of components in supercritical CO2. 
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