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A Broad-Spectrum Synthesis of Tetravinylethylenes 
Kelsey L. Horvath,[a] Christopher G. Newton,[a] Kimberley A. Roper,[a] Jas S. Ward[a] and  
Michael S. Sherburn*[a] 
Abstract: The first general synthesis of compounds of the 
tetravinylethylene (TVE) family is reported. Ramirez-type dibromo-
olefination of readily accessible penta-1,4-dien-3-ones generates 
3,3-dibromo[3]dendralenes, which undergo twofold Negishi, Suzuki-
Miyaura or Mizoroki-Heck reactions with a wide variety of olefinic 
coupling partners. This route delivers a broad range of 
unsymmetrically–substituted tetravinylethylenes with up to three 
different alkenyl substituents attached to the central C=C bond.  The 
extensive scope of the approach is demonstrated by the preparation 
of the first higher order oligo-alkenic through-conjugated/cross-
conjugated hybrid compounds. An unsymmetrically-substituted TVE 
is shown to undergo a domino electrocyclization-cycloaddition with 
high site-selectivity and diastereoselectivity, thereby demonstrating 
the substantial synthetic potential of substituted TVEs for controlled, 
rapid structural complexity generation. 

Tetravinylethylene (TVE) is one of the smallest structures 
exhibiting both through-conjugation and cross-conjugation 
(Scheme 1). Specifically, the structure comprises intersecting 
pairs of (E)-1,3,5-hexatrienes, (Z)-1,3,5-hexatrienes and 2-
methylene-1,4-pentadienes ([3]dendralenes). Nothing is known 
about the impact of substitution upon the behavior of TVEs and 
how this might be exploited. Furthermore, related structures 
containing more than five C=C units have not been reported in 
the literature. The first synthesis of TVE, a landmark contribution 
from the classical era of unsaturated hydrocarbon chemistry, 
was reported by Skattebøl and co-workers in the 1960s.1-3 We 
recently disclosed the first preparatively useful approach to TVE, 
a one-step multi-gram scale synthesis, and demonstrated that 
the hydrocarbon is bench-stable when stored as a neat liquid.4,5 
The one-step synthesis of TVE (Scheme 1, 1a) utilized a Pd(0)-
catalyzed fourfold Stille cross-coupling sequence between 
tetrachloro-ethylene 2 and vinyltributylstannane 3a. In addition to 
the parent TVE, five symmetrically-substituted TVEs 1b were 
similarly prepared using substituted alkenyltributylstannanes 3b 
in the exhaustive Stille cross-coupling process.4,5  

As a starting point for future synthetic applications, the parent 
TVE has been shown to rapidly generate multi-cyclic systems.4,5 

Additionally, the hybrid through/cross-conjugated structure of the 
TVE unit represents the smallest organic four-directional branch 
point in a possible conducting molecular wire.6 To realize the 
potential of the TVE family in target synthesis and materials 
applications, synthetic access to unsymmetrically-substituted 
systems must be granted. Until now, no unsymmetrically-
substituted TVEs have been reported. Our previous synthetic 
approach (Scheme 1), in common with all other substituted TVE 

syntheses reported in the literature,7 is only suited to the 
attachment of four identical substituted alkenyl-groups to the 
central C=C core. 

 

Scheme 1. The existing synthetic route to TVEs with its limitations, and the 
new, broad scope synthesis. 

Herein we report a broad-reaching solution, delivering the first 
29 unsymmetrically substituted TVEs carrying up to three 
different substituents (Scheme 1, bottom). We also report the 
first compounds exhibiting extended π-systems based upon TVE 
subunits. Moreover, we establish the synthetic potential of these 
unsymmetrically-substituted TVEs, by way of a one-pot, site-
selective and diastereoselective domino pericyclic sequence that 
generates three C–C bonds and six contiguous stereocenters. 
The new synthetic approach (Scheme 1, bottom) involves the 
conversion of penta-1,4-dien-3-ones 4 (readily accessed through 
twofold aldol-type condensations) into 3,3-dibromo-
[3]dendralenes 5, which in turn undergo a range of twofold 
cross-couplings to furnish diversely-substituted tetravinyl-
ethylenes 6.  

Twelve substituted penta-1,4-dien-3-ones 4 were prepared, by 
way of sequential Claisen-Schmidt condensations8 (see SI for 
details). There are only three examples of Ramirez dibromo-
olefinations of penta-1,4-dien-3-ones 4 in the literature9-11 and, in 
our hands, low yields were obtained under standard Ramirez 
reaction conditions.12 Gratifyingly, in the majority of cases, the 
modified protocol introduced by Lautens and co-workers13 
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furnished workable yields, and twelve substituted 3,3-
dibromo[3]dendralenes14 5 were prepared in this manner (Table 
1).  

 

Table 1. Lautens-modified Ramirez dibromo-olefination of penta-1,4-dien-3-
ones 4 permits the first general synthesis of 3,3-dibromo[3]dendralenes 5.  

Unlike some other dendralenic structures, which exhibit a 
propensity to dimerize and polymerize,15 3,3-
dibromo[3]dendralenes 5 are generally white or yellow 
crystalline solids that can be stored neat without appreciable 
decomposition, and are easily handled using standard laboratory 
techniques. 

While there are many examples of cross-coupling reactions of 
1,1-dibromoalkenes in the literature,16 there is only one example 
of a cross-coupling of a 3,3-dibromo[3]dendralene, involving the 
Sonogashira sp2–sp coupling of a cyclic system with 
trimethylsilylacetylene.10  In light of the lack of precedent, both 
for sp2–sp2 cross-couplings and also for reactions of acyclic 
systems, we were delighted to find that twofold Negishi reactions 
of 3,3-dibromo[3]dendralenes 5 with vinylzinc bromide proceed 
well using [Pd(dppf)Cl2] as pre-catalyst to form the first 
unsymmetrical TVEs 6 (Table 2).  

 

Table 2. Twofold Negishi cross-coupling of 3,3-dibromo[3]dendralenes 5 with 
vinylzinc bromide furnishes the first unsymmetrical tetravinylethylenes 6. 

3,3-Dibromo[3]dendralenes comprising the same (5a-g) or 
different (5h-l) alkenyl substituents performed equally well, to 
generate the first examples of TVEs possessing two or three 
different alkenyl groups about the central C=C bond. TVEs 
bearing carbocyclic aromatic substituents with different 
electronic characteristics (6j-l) and the first TVEs carrying 
heterocyclic aromatic substituents (6f-i) are included in this 
selection. 

Twofold cross-couplings of 3,3-dibromo[3]dendralenes 5 are 
by no means limited to the introduction of a pair of unsubstituted 
vinyl groups: in fact, alkenyl groups bearing substituents at any 
position are tolerated. The syntheses of eighteen of these more 
highly substituted TVEs are summarized in Table 3. Double 
Negishi couplings of 3,3-dibromo[3]dendralene 5a with 2-
propenyl-, (E)-styrenyl- and (2-methylprop-1-en-1-yl)zinc 
bromides furnished six novel tetra- and hexa-substituted TVEs 
6n-s. Cross-couplings other than Negishi reactions are also 
successful, as demonstrated by the products of double Suzuki-
Miyaura17 and Mizoroki-Heck18 processes, 6t-v (3 examples) 
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and 6w-ae (9 examples), respectively. These results establish 
the wide scope of the 3,3-dibromo[3]dendralene cross-coupling 
approach to TVE synthesis and its broad tolerance of 
substitution upon the incoming alkenyl-groups.  

 

Table 3. Twofold Negishi, Suzuki-Miyaura or Mizoroki-Heck reactions grant 
access to unsymmetrical, multi-substituted tetravinylethylenes. aX-ray crystal 
structures of these four TVEs22 are in the SI. 

Following the trend previously seen,4,5 the 25 new TVEs 
depicted in Tables 2 and 3 are bench-stable substances. No 
special equipment or methods are required when manipulating 
these compounds: they survive storage neat at ambient 
temperature for several weeks. The lack of susceptibility of this 
new family of π-bond rich systems towards uncatalyzed Diels-
Alder dimerization and autoxidation (typical of related cross-
conjugated15 and through-conjugated19 polyenic systems) bodes 
well for future applications. 

Access to unsymmetrically-substituted TVEs promotes new 
opportunities in rapid structure complexity generation, and an 
interesting question of diene site selection in [4+2]cycloadditions 
of polyenes (Scheme 2). Heating diphenyl-di-(1-naphthyl)-TVE 
6aa in benzene brings about a disrotatory electrocyclization to 
generate cyclic [4]dendralene14 7, with a cis-disposition between 
the two cyclohexadiene substituents. When performed in the 
presence of dienophile N-tert-butylmaleimide 8, a subsequent 
endo-mode cycloaddition occurs, with approach to the less 
sterically encumbered π-diastereoface of [4]dendralene 7. The 
two non-equivalent semi-cyclic dienes of [4]dendralene 7 
(highlighted in different colors in Scheme 2) are expected to be 
more reactive than the cyclohexadiene site,5 and the phenyl-
substituted diene  is preferred over the 1-naphthyl-substituted 
site. Overall, this operationally trivial domino sequence 
generates densely-functionalized decalin 9, with three new C–C 
bonds, six contiguous stereocenters, and a cyclic [3]dendralene 
subunit that invites additional synthetic manipulation.20 

 

 

Scheme 2. Stereoselective domino [6π]electrocyclization/[4+2]cycloaddition of 
TVE 6ad proceeds with diene site selectivity to generate multicyclic product 9. 
H atoms not attached to stereocenters are omitted from the X-ray crystal 
structure22,23 for clarity. 

PhPh

Me Me

R2R1

MeMe MeMe

6m, 79%

BrMg
alkenyl Grignard reagent (3.5 mol equiv)
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Scheme 3. First preparation of higher order acyclic C=C-based π-frameworks related to TVE. The new π-systems are highlighted in green. Ethyl groups are 
truncated in the X-ray crystal structure22,23 for clarity. 

The robust nature of the new pentaene-based TVE compounds, 
combined with their ease of synthesis, prompted the question of 
whether larger structures with unprecedented acyclic π-
frameworks were within reach. The successful extension of 
these methods to the syntheses of hexaenes 14 and 15, and 
heptaenes 13, 16 and 17 are depicted in Scheme 3. Dibromo-
tetraene 10, dibromo-pentaene 11 and tetrabromo-triene 12, 
prepared through Lautens-modified Ramirez dibromo-olefination 
reactions of commercially available ketonic precursors (see SI), 
underwent twofold or fourfold Negishi or Mizoroki-Heck 
couplings to furnish the bench-stable polyenic products. The UV 
absorption spectrum of heptaene 17 exhibits features 
attributable to the longest through-conjugated subunit (see SI). 
The solid state molecular structure of tetra-ester 17, obtained 
from single crystal X-ray analysis, is consistent with this 
observation, revealing an essentially in-plane 2,4,6,8,10-
dodecapentaenoate unit (Scheme 3). Acyclic, hybrid cross-
conjugated/through-conjugated C=C structures are very poorly 
represented in the literature.21 The structures depicted in 
Scheme 3 represent the first examples of substances of this 
type.  

In summary, we have described the first general synthetic 
approach to TVEs and related through/cross-conjugated acyclic 
C=C-based systems. This work reports 34 new TVEs and 
related structures, including the first examples exhibiting 
unsymmetrical substitution patterns, extended through-
conjugation and/or cross-conjugation.  The synthetic approach is 
robust, involving twofold Negishi, Suzuki-Miyaura or Mizoroki-
Heck couplings of acyclic 3,3-dibromo[3]dendralenes. The new 
structures are bench stable compounds that undergo 
operationally simple, selective, complexity-generating  domino 
sequences. The acyclic C=C-bond-rich structures described 
herein are representatives of a sizeable region of structural 
space that was previously inaccessible but is now available for 
exploration and investigation. Applications in target synthesis 
and in conducting materials will follow.  
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Master key for TVE. The first 
general synthesis of 
tetravinylethylenes (TVEs) involves 
the preparation and cross-coupling 
of dibromo-[3]dendralenes. Their 
value in controlled, rapid structural 
complexity generation is 
demonstrated. The first higher order 
acyclic oligo-alkenic through-
conjugated/cross-conjugated hybrid 
compounds are also reported.  
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