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Abbreviations: Ab, antibody; AD, Alzheimer's disease ; CNS, central nervous system; Ctrl, 

control; GCSF, granulocyte-colony stimulating factor; ICAM-1, intercellular Adhesion 

Molecule 1; ICV, intracerebroventricular; IL-17, Interleukin-17; IN, intranasal; KC, 

keratinocyte chemoattractant; MCP-5, monocyte chemotactic protein 5; MPO, 

myeloperoxidase; RT, room temperature; SDF-1, stromal cell-derived factor 1; Th, T helper; 

TNF,  tumor necrosis factor. 

 

 

Abstract 

Background and Purpose: Alzheimer's disease (AD) is a common neurodegenerative 

disease characterized by a neuroinflammatory state and to date, there is no cure and its 

treatment represents a large unmet clinical need. The involvement of T helper 17 cells in the 

pathogenesis of AD-related neuroinflammation has been reported in several studies, however 

the role of the main cytokine, IL-17, has not been well addressed. Herein, we investigate the 

effects of IL-17 neutralizing antibody (IL-17Ab) injected by intracerebroventricular (ICV) or 

intranasal (IN) routes on amyloid-β-induced neuroinflammation and memory impairment in 

mice. 

Experimental Approach: Amyloid-β (Aβ)1–42 was injected into cerebral ventricle of adult 

CD1 mice. These mice received IL-17Ab via ICV either at 1 hour prior to Aβ1–42 injection or 

IN 5 and 12 days after Aβ1–42 injection. After 7- and 14-days of Aβ1-42 administration, we 

evaluated olfactory, spatial and working memory and performed biochemical analyses on 

whole brain and specific brain areas. 

Key Results: Remarkably, ICV pre-treatment with IL-17Ab remarkably reduced Aβ1–42-

induced neurodegeneration, improved memory function and prevented the increase of pro-

inflammatory mediators in a dose dependent manner at 7- and 14-days. Similarly, the double 

IN administration of IL-17Ab after Aβ1–42 injection reduced neurodegeneration, memory 

decline and the levels of pro-inflammatory mediators and cytokines. 

Conclusion and Implications: These findings suggest that IL-17Ab reduces 

neuroinflammation and behavioral symptoms induced by Aβ. The efficacy of IL-17Ab IN 
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administration in reducing Aβ1–42 neurodegeneration points to a possible future therapeutic 

approach in patients with AD. 

 

Keywords: Alzheimer, Immunotherapy, Intranasal, IL-17, Neuroinflammation. 

 

Introduction 

Alzheimer's disease (AD) is a neurodegenerative disorder and one of the most common forms 

of dementia worldwide (Liu et al., 2017). Pathologically, it is characterized by the deposition 

of extracellular amyloid-β (Aβ) in the brain causing neuronal death in the neocortex and 

hippocampus leading to irreversible cognitive impairment and behavioral alterations (Taylor 

et al., 2002). 

A large body of experimental evidence supports the view that amyloid plaques are (Taylor et 

al., 2002) key to driving AD pathogenesis through activation of both innate and adaptative 

immune pathways (Hardy & Selkoe, 2002). The ensued neuroinflammatory response sustains 

the production and release of neurotoxic and inflammatory mediators (Schwartz & 

Deczkowska, 2016; Su et al., 2016) through the activation of microglia and astrocytes, 

causing neuronal cell death (Meda et al., 1995; Zuroff et al., 2017) and the release of 

inflammatory neurotransmitters and reactive oxygen species (Tansey et al., 2007).  

The release of mediators leads to recruitment of additional monocytes and lymphocytes 

through the blood brain barrier, thus promoting their proliferation, and resulting in further 

release of inflammatory factors (Das & Basu, 2008). Inflammatory markers have been 

detected not only in the brain but also in the bodily fluids of AD patients, reflecting a 

systemic neuropathological change (Bagyinszky et al., 2017). 

T lymphocytes are particularly involved in the inflammatory response associated with AD. It 

has been shown that activated T cells can easily cross the blood brain barrier contributing to 

the ongoing inflammatory repertoire and disease pathogenesis (Togo et al., 2002). In this 

context, several studies reported the importance of T helper (Th) 17 cells and Th17-derived 

pro-inflammatory cytokines such as IL-17, IL-21, IL-22, IL-23, GM-CSF and IFN-γ in the 

pathogenesis of AD (Saresella et al., 2011) and in other neurological disorders such as 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4865
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4982
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4987
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4988
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4978
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4942
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4968
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multiple sclerosis and Parkinson's disease (Miossec & Kolls, 2012; Tahmasebinia & 

Pourgholaminejad, 2017) 

Increased levels of Th17 transcription factor RORγt, in addition to IL-17 and IL-22, have 

been found in the brain of AD animal models (Zhang et al., 2013; Zhang et al., 2015) and the 

increase of Th17/IL-17A axis is sustained by Aβ-induced oxidative stress (Solleiro-

Villavicencio & Rivas-Arancibia, 2017). Furthermore, Zenaro et al. (2015) showed a role for 

neutrophils in AD-like pathogenesis and cognitive impairment through the release of 

neutrophil extracellular traps and IL-17 into the brain, suggesting that the inhibition of 

neutrophil trafficking and related neuro-inflammatory onset may be beneficial in this 

pathology. Therefore, the increased level of IL-17 and the activation of its signal transduction 

pathway seem to be involved in neurodegeneration and memory impairment, typical of AD 

(Diaz et al., 2012; Yin et al., 2009). Moreover, a growing number of studies suggest the 

involvement of IL-17 in the negative regulation of adult hippocampal neurogenesis (Liu et 

al., 2014), neuronal differentiation and injury (Wang et al., 2009).  

Given the well-known contribution of neuroinflammation in AD and the stringent 

involvement of the pro-inflammatory cytokine IL-17, we decided to examined whether the 

IL-17 neutralizing antibody via intracerebroventricular (ICV) or intranasal (IN) routes could 

ameliorate amyloid-β-induced neuroinflammation and memory impairment. 

 

Materials and Methods 

Reagents 

Recombinant mouse IL-17 (also known as IL-17A) neutralizing antibody (IL-17Ab, 

monoclonal rat IgG2A, clone 50104), its related isotype control (IgG2A, clone 54447) and 

proteome profiler mouse cytokine Array Kits (cat. ARY006) were purchased from R&D 

System (Milan, Italy). Aβ1–42 (cat. 1428) and Aβ42-1 (cat. 3391) amyloids peptides were 

purchased from Tocris (Milan, Italy). For western blot analysis, the primary antibodies mouse 

monoclonal anti-β Amyloid (MOAB-2) were obtained from Novus Biologicals (Milan, Italy). 

Mouse monoclonal anti-actin was obtained from Sigma–Aldrich Co. (Milan, Italy). The 

HRP-conjugated IgG secondary antibodies (anti-mouse) were purchased from Dako 

(Copenhagen, Denmark). For immunofluorescence analysis, the rabbit polyclonal anti-Glial 

Fibrillary Acid Protein (GFAP) (cat. Z0334) was obtained from Dako Cytomation 
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(Copenhagen, Denmark) and rabbit anti-ionized calcium binding adapter molecule (Iba-1) 

(cat. 019-19741) was purchased from Wako Chemicals (Neuss, Germany). The secondary 

antibody donkey anti-rabbit IgG Alexa Fluor 488 (cat. A21206) was purchased from 

Invitrogen (USA). The Aβ1-42 and S100B kit were purchased from BioVendor (Rome, Italy). 

Unless otherwise stated, all the other reagents were from Carlo Erba (Milan, Italy).  

Animals 

CD-1 male mice (10–14 weeks of age, 25–30 g of weight) were purchased from Charles 

River (Milan, Italy) and kept in an animal care facility under controlled temperature, 

humidity and on a 12 h:12 h light:dark cycle, with ad libitum access to water and standard 

laboratory chow diet.  All experimental procedures were carried out in compliance with the 

international and national law and policies (EU Directive 2010/63/EU for animal 

experiments, ARRIVE guidelines and the Basel declaration including the 3Rs concept) 

(Kilkenny et al., 2010; McGrath & Lilley, 2015) and approved by Italian Ministry of Health. 

All procedures were carried out to minimize the number of animals used (n=6 per group) and 

their suffering.  

In vivo animal model and drugs administration 

Mice were randomly divided into 13 experimental groups, as schematically reported in Table 

1, counterbalancing body weight variation across groups. For the in vivo model, we used a 

well-established method consisting of a direct Aβ injection as recently described (Maione et 

al., 2018a). Briefly, before the injection, Aβ1–42 protein was dissolved in PBS (1μg μl
-1

) in 

tubes that were sealed and incubated for 1 day at 37 °C to allow peptide assembly state. 

Anesthetized mice (mixture of N2O and O2 70:30 w v
-1 

containing 2% isoflurane) were 

injected with aggregated Aβ1–42 peptide (3μg 3μl
-1

) or its inactive control peptide Aβ42-1 (3μg 

3μl
-1

) into cerebral ventricle at a rate of 1μl min
-1

, using a micro-syringe (10μl, Hamilton) 

according to the procedure previously described (Maione et al., 2018a). The needle was 

removed after 3 min using three intermediate steps with 1-min inter-step delay to minimize 

backflow. Another experimental group (Ctrl) included mice that received the surgery 

procedure and Aβ peptide vehicle injection. After surgery and Abs administration, mice were 

placed on a thermal pad until they awakened. All procedures were performed with strict 

aseptic manipulation. Hamilton syringe used for ICV injections was repeatedly washed with 

distilled water followed by flushing with 1 mg ml
-1

 bovine serum albumin solution, in order 

to avoid non-specific binding of peptides to glass. To evaluate IL-17Ab protection profile 
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against Aβ1–42 peptide-induced amyloidosis, we used two routes of injection: a single ICV 

administration of IL-17Ab (0.01-1μg 3μl
-1

) and its related isotype control IgG2A administered 

at a maximum dose (1μg 3μl
-1

), 1h prior to the Aβ1–42 injection, or IN administration of IL-

17Ab (0.01-1μg 10μl
-1

) and its related isotype control IgG2A administered at highest dose 

(1μg 10μl
-1

), at 5 and 12 days post peptide injection (Fig 1). Taking into account several 

previously published reports (Southam et al., 2002; Pires et al., 2009), we performed IL-

17Ab IN administration considering the effects of volume, body position and anesthesia. 

Behavioral studies 

At 7- and 14-days post Aβ1-42 administration, mice were tested for novel object recognition, 

olfactory discrimination, Y-maze and Morris water maze (Fig 1). All tests were performed 

between 9 am and 2 pm in an experimental room with sound isolation and dim light. The 

animals were carried to the test room for at least 1 hour for acclimation. Behavior was 

monitored using a video camera positioned above the apparatus and the videos analyzed in a 

blinded fashion using video tracking software (Any-maze, Stoelting, Wood Dale, IL, USA). 

Novel object recognition (NOR) 

The NOR task exploits a mouse’s natural tendency to explore a novel object after previous 

exposure to two identical objects. Mice were habituated for 10 minutes into the arena to 

reduce anxiety associated with the novel arena (plastic arena 30 x 30 x 50 cm). After this 

habituation stage, mice were ready to perform the task, which was conducted using two trials 

(familiarization trial [T1] and a test trial [T2]) separated by 30 minutes. During T1, mice 

were allowed to explore for 10 minutes two identical objects (plastic screw-top tubes) 

secured to the floor using a small amount of Blu Tack in habituated arenas. For T2, one 

identical object from T1 was replaced with a novel object (small green flask) and mice were 

allowed to freely explore for 5 minutes. T1 and T2 were recorded using a video camera and 

analyzed for the time spent interacting with the novel object. All arenas were cleaned with 

80% ethanol prior the test. Novel object exploration was calculated in T2 by (T novel x 

100)/(T novel + T identical) with exploration defined as the nose being less than 1 cm from 

the object when facing the object or actively engaging with the object by sniffing or paw 

touching. Climbing on the object was not considered exploratory. 

Y-maze task 
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Spontaneous alternation is a measure of spatial working memory. Such short-term working 

memory was assessed by recording spontaneous alternation behavior during a single session 

in the Y-maze (made with three arms, 40 cm long, 120
○
C separate) positioned at the exact 

same location for all procedures. Each mouse was placed at the end of one arm and allowed 

to move freely through the maze during a 5 min session. The series of arm entries were 

visually recorded. An arm choice was considered only when both fore paws and hind paws 

fully entered into the arm. The Y-maze was cleaned after each test with 80% ethanol to 

minimize odor cues. Alternation was defined as a successive entrance onto the three different 

arms. The number of correct entrance sequences (e.g., ABC, BCA) was defined as the 

number of actual alternations. The number of total possible alternations was therefore the 

total number of arm entries minus two, and the percentage of alternation was calculated as 

actual alternations/total alternations x 100 (D'Agostino et al., 2012). 

Morris water maze 

To assess spatial memory function, mice were tested by Morris water maze which consisted 

of a circular pool (diameter 170 cm, height 60 cm) with a transparent platform (10 cm in 

diameter), submerged under the water surface (1.5 cm). The water temperature of 24±1 °C, 

light intensity and external visual cues in the room were rigorously reproduced. Swimming 

was recorded using a camera capture and analyzed using video tracking software (Any-maze, 

Stoelting, Wood Dale, IL, USA) that divided the pool into four equal quadrants. The platform 

position remained stable during 4 days in one of the four quadrants. Training phase consisted 

of four swims per day for 4 days, with about a 15-min inter-trial time. Each of the four 

starting positions was used in randomized order. Each trial was started by placing a mouse 

into the pool, facing the wall of the tank and terminated as soon as the animal reach the 

platform with a cut-off of 60 s. After the test, each mouse was kept warm for an hour and 

then returned to their home cage. Average of the four trials for each mouse and then the 

average for each group to give a single path length and escape latency expressed as mean ± 

SEM, was calculated for each training day. A probe test was also performed 1 h after the last 

swim on day 4. The platform was removed and each animal was allowed a free 60 s swim. 

The time spent in the quadrant where the platform was previously placed, was determined. A 

higher percentage of time spent in the platform quadrant is interpreted as a higher level of 

memory retention. All tests were conducted in the morning. 

 

Olfactory discrimination 
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The task was based on the fact that mice prefer places with their own odor (familiar 

compartments) instead of places with unfamiliar odors. In this test, mice had access to 2 

adjacent identical chambers separated by an intermediate zone. One chamber contained 

familiar bedding from its home cage over the last 48 hours (familiar) whereas the other 

contained fresh bedding (non-familiar). Mice were placed individually into the intermediate 

zone and allowed to freely explore each chamber for 10 minutes. Rodents are capable of 

discriminating familiar versus non-familiar chambers since they prefer their odor to no odor 

at all (D’Agostino et al., 2012). The time spent in each chamber was recorded and analyzed. 

An olfactory discrimination index was generated according to the following formula: T 

familiar/(T familiar + T non-familiar), where T equal time and/or 0.5 as final value were 

considered as no preference. 

Cytokines and Chemokines protein array 

All mice were euthanized and brains immediately removed. Total brain, prefrontal cortex and 

hippocampus (half of the brain was used for cytokine/chemokine analysis and the half for 

further dissection and related analysis) were collected into a 2.0 ml tube for an immediate 

preservation in liquid nitrogen and a successive storage at -80
○
C. The isolated tissues were 

homogenized in ice-chilled Tris–HCl buffer (20 mM, pH 7.4) containing 0.32 M sucrose, 1 

mM EDTA, 1 mM EGTA, 1 mM PMSF, 1 mM sodium orthovanadate and one protease 

inhibitor tablet per 50 ml of buffer. Protein concentration was determined by the BioRad 

protein assay kit (BioRad, Italy). Equal volumes (1.5 ml) of the homogenates were then 

incubated with the pre-coated proteome profiler array membranes according to the 

manufacturer’s instructions. Dot plots were detected by using the enhanced 

chemiluminescence (ECL) detection kit and Image Quant 400 GE Healthcare software (GE 

Healthcare, Italy) and successively quantified using GS 800 imaging densitometer software 

(Biorad, Italy). 

Western blot analysis  

Whole brain tissue homogenates (35 μg of protein) were subjected to SDS-PAGE (10% gel) 

using standard protocols as previously described (Blaine Stine et al., 2011; Maione et al., 

2018a). The proteins were transferred to PVDF membranes in the transfer buffer [25 mM 

Tris–HCl (pH 7.4) containing 192 mM glycine and 20% v/v methanol] at 400 mA for 2 h. 

The membranes were saturated by incubation for 2 h with non-fat dry milk (5% wt/v) in PBS 

supplemented with 0.1% (v/v) Tween 20 (PBS-T) for 2 h at RT and then incubated with 
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1:1000 dilution of anti-β Amyloid or with 1:2000 dilution of anti-actin (after stripping) over-

night at 4
○
C and then washed 3 times with PBS-T. Blots were incubated with a 1:3000 

dilution of horseradish peroxidase-conjugated secondary antibody for 2 h at RT, washed 3 

times with PBS-T. Protein bands were detected by using the enhanced chemiluminescence 

(ECL) detection kit and Image Quant 400 GE Healthcare software (GE Healthcare, Italy). 

Protein bands were quantified using GS 800 imaging densitometer software (Biorad, Italy) 

and normalized with respective actin.  

ELISA assay  

Enzyme-linked immunosorbent assay for Aβ1-42 and S100B was carried out on brain 

homogenates. Briefly, 100 µl of tissue supernatants, diluted standards, quality controls and 

dilution buffer (blank) were added to a pre-coated plate with monoclonal anti-Aβ1-42 or 

S100B for 2 h. After washing, 100 µl of biotin labeled antibody was added for 1 h. The plate 

was washed and 100 µl of streptavidin-HRP conjugate was added and the plate was incubated 

for a further 30 min period in the dark. The addition of 100 µl of the substrate and stop 

solution represented the last steps before the reading of absorbance (measured at 450 nm) on 

a microplate reader. Antigen levels in the samples were determined using a standard curve of 

Aβ1-42 or S100B and expressed as μg ml
-1

. 

Immunofluorescence analysis  

Immunofluorescence was performed by the free-floating method. Briefly, mice were trans-

cardially perfused with phosphate buffered saline (PBS) pH 7.4 solution followed by 4% 

paraformaldehyde. Brains were removed from the skull and fixed overnight in the 4% 

paraformaldehyde solution at 4°C. After being transferred in 30% sucrose solution, brains 

were cut into 25 µm sections using a cryostat microtome (Leica, Wetzlar, Germany) 

throughout the hippocampus. Slices were blocked for 1 h in 0.1% bovine serum albumin 

(BSA) solution and then incubated overnight at 4°C with primary antibody for the microglial 

cell marker Iba-1 (1:1000) or astrocytes cell marker GFAP (1:1000). The day after, sections 

were washed and incubated for 1 h with secondary antibody solution (donkey anti-rabbit IgG 

Alexa Fluor 488; 1:1000). Slices were washed, mounted onto glass slides and cover-slipped 

with Vectashield mounting medium (Vector Laboratories, Burlingame, CA), and images 

taken by Leica DM RB microscope using the Leica Application Suite software V.4.1.0 and 

photographed at 20X magnification. For quantification analysis, from each section containing 
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the hippocampus (bregma level -1.82mm) activated astrocytes and microglia were counted 

from chosen equal area and analyzed with Image J software (NIH, Bethesda, MD, USA).  

Myeloperoxidase assay 

Leukocyte myeloperoxidase (MPO) activity was assessed by measuring the H2O2-dependet 

oxidation of 3,3’,5,5’-tetramethylbenzidine (TMB) as previously reported (Maione et al., 

2009). Tissues (total brain) were homogenized for 35 sec in a solution composed of 

hexadecyltrimethylammonium bromide (HTAB; 0.5% w v
-1

) in 50 mM sodium phosphate 

buffer pH 5.4. After homogenization, samples were centrifuged (4000 g) for 20 min and the 

supernatant used for the assay. Aliquots of 20 µl were incubated with 160 μl of TMB and 20 

μl of H2O2 (in 80 mM phosphate buffer, pH 5.4) in 96-well plates. Plates were incubated for 

5 min at RT and optical density was read at 620 nm using a plate-reader (Biorad, Italy). 

Assay were performed in duplicates and normalized for protein content. 

Statistical analysis 

The results obtained were expressed as the mean ± SEM. Statistical analysis were performed 

by using one-way ANOVA followed by Bonferroni or Dunnett's post-test when comparing 

more than two groups. GraphPad Prism 6.0 software (San Diego, CA, USA) was used for 

analysis. Data were considered statistically significant when a value of P≤0.05 was achieved. 

The data and statistical analysis comply with the recommendations on experimental design, 

analysis (Curtis et al., 2015) and data sharing and presentation in preclinical pharmacology 

(George et al., 2017; Alexander et al., 2018). 

 

  

 

Nomenclature of Targets and Ligands  

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 

http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS 

Guide to PHARMACOLOGY (Harding et al., 2018), and are permanently archived in the 

Concise Guide to PHARMACOLOGY 2017/18 (Alexander et al., 2017). 

 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2789
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Results 

IL-17Ab alleviates the Aβ1-42-induced olfactory and object recognition impairment in a 

dose dependent manner 

Consistent with the demonstration that olfactory dysfunction occurs at the early stage of 

amyloid-β-induced pathology, the administration of Aβ1-42 (3μg 3μl
-1

 ICV) significantly 

decreased the capability of mice to discriminate new and familiar odors when tested 7- and 

14-days later (Fig 2A-B) compared to Ctrl and Aβ42-1 groups. Interestingly, administration of 

different doses of IL-17Ab injected both ICV (0.01-1μg 3μl
-1

) and IN (0.01-1μg 10μl
-1

) was 

shown to attenuate the olfactory dysfunction significantly in a dose and time dependent 

manner, both at 7- and 14-days following Aβ1-42-administration.  

The administration of Aβ1-42 significantly reduced the delta time in the NOR test at day 7 and 

more significantly at day 14 (Fig 2C-D). Prior single ICV (0.01-1μg 3μl
-1

) injection of IL-

17Ab significantly attenuated the Aβ1-42 related impairment in the NOR task in a dose and 

time-dependent manner compared to Ctrl and Aβ42-1 groups (Fig 2C-D). The injection of IL-

17Ab IN, at different doses (0.01-1μg 10μl
-1

) on day 5, after Aβ1-42 induced-impairment had 

no effect on day 7, while after the second IN administration on day 12, the higher dose was 

shown to reduce the impairment in the NOR test at day 14. IL-17Ab alone and IL-17Ab 

isotype control administered via ICV and IN did not alter both olfactory and object 

recognition impairment (Fig 2). 

IL-17Ab ameliorates Aβ1-42-induced spatial and working memory decline 

Based on previous results, we selected the most active doses (1μg for both ICV and IN 

administration) of IL-17Ab to test spatial and working memory by the Morris water maze and 

Y-maze test. Aβ1-42 (3μg 3μl
-1 

per mouse, ICV) injection induced an increase of escape 

latency in Morris water maze, specifically during the second day of the training phase, while 

the acquisition of the platform position was faster in mice treated with IN injection of IL-

17Ab (Fig 3A). All groups showed the same average speed (Fig 3B). Two different cohorts 

of mice were subjected to the probe test at 7 or 14 day following Aβ1-42 injection (Fig 3C-D). 

The time that Aβ1-42 injected mice spent in the target quadrant was significantly shorter on 
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both day 7 and 14 compared to Ctrl and Aβ42-1 groups. On day 7, no significant improvement 

was observed regarding the time spent in the target quadrant in mice treated with the active 

doses of IL-17Ab by ICV while the IN route significantly increased the time spent in the 

target quadrant, compared to mice that received only Aβ1-42 (Fig 3C). On day 14, the active 

doses of IL-17Ab, administered both ICV and IN, significantly increased the time spent in the 

target quadrant (Fig 3D). No significant effects were observed in IL-17Ab administered ICV 

or IN alone, Aβ42-1 and IL-17Ab isotype control groups (Fig 3). These results were also 

confirmed by the track plots on day 7 and 14 presented in Fig 3E.  

Percent of correct alternations in the Y-maze test was then analyzed on day 7- and 14-days 

after Aβ1-42 injection (Fig 4). Single prior ICV (1μg 3μl
-1

) administration and double 

administration of IL-17Ab IN (1μg 10μl
-1

) after the Aβ1-42 significantly attenuated the 

impairment of spontaneous alternation induced by Aβ1-42 on both day 7 and day 14, in equal 

manner (Fig 4A-C). Aβ1-42 and IL-17Ab treatments did not affect the total number of arm 

entries at these dosages (Fig 4B-D). No significant effects were observed in Aβ42-1, IL-17Ab 

administered ICV or IN alone and in IL-17Ab isotype control groups (Fig 4). 

Effect of IL-17Ab administration on Aβ1-42, S100B and myeloperoxidase levels 

We began our biochemical analysis by confirming the behavioural findings with the 

association of Aβ1-42 level in the brain. As expected, Aβ1-42 was significantly higher in the AD 

group compared to control, while its level was significantly lower in IL-17Ab ICV and IL-

17Ab IN treated-group (Fig 5A). This correlation failed to reach significance in Aβ42-1, IL-

17Ab administered ICV or IN alone and in IL-17Ab isotype control groups. These results 

were supported by the simultaneously presence of Aβ monomers and large oligomers (most 

likely dimers and tetramers), at both 7- and 14-days post model induction, in mice injected 

with fibrillated Aβ peptide compare to not-fibrillated-injected mice (Supplementary Fig 1).  

Based on these findings, we decided to examine S100B levels in total brain homogenates by 

S100B ELISA. As shown in Fig 5B at day 14, Aβ1-42 (3μg 3μl
-1

) induced a significant 

increase in S100B levels compared to Ctrl and Aβ42-1 groups. Single ICV administration of 

IL-17Ab prior the Aβ1-42 (1μg 3μl
-1

), in addition to repeated administration of IL-17Ab by IN 

route (1μg 10μl
-1

), significantly attenuated S100B levels compared to Aβ1-42 treated mice. No 

differences in S100B levels were detected between ICV and IN groups, suggesting that both 

routes had similar positive effects.  
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We went onto monitor inflammatory leukocyte infiltration, at day 14 post Aβ1-42, by 

measuring MPO activity in brain homogenates. We found a significant increase in MPO 

activity in Aβ1-42 injected mice compared to Ctrl and Aβ42-1 groups respectively. The 

administration of IL-17Ab by ICV (1μg 3μl
-1

) did not restore MPO activity that was 

significantly reduced by IL-17Ab injected IN (1μg 10μl
-1

) (Fig 5C). No significant effects 

were observed in IL-17Ab administered ICV or IN alone and in IL-17Ab isotype control 

groups, in terms of S100B levels and MPO activity (Fig 5B-C). 

 

Effect of IL-17Ab administration on Aβ1-42-induced neuroinflammatory activity 

Given that Aβ1-42 injection induces neuroinflammation we investigated the molecular 

mechanisms behind the neuroprotective effect of IL-17Ab, by examining both ICV and IN 

alone (and also their effect prior or after the injection of Aβ1-42 induced impairment) on 

microglial and astrocyte inflammatory responses. To confirm of activation of neural cells, we 

measured expression of GFAP (a marker of astrocyte activation) and Iba-1 (a marker of 

microglia cell activation) in the hippocampus for different experimental groups 14 days post 

Aβ1-42 injection. As expected, Aβ1-42 injected mice showed a significant increase in the 

expression of both GFAP and Iba-1 (Fig 6D and Fig 6J) when compared to Ctrl (Fig 6A and 

Fig 6G). Interestingly, both ICV (1μg 3μl
-1

) and IN (1μg 10μl
-1

) injection of IL-17Ab 

significantly reduced astrocyte and microglial proliferative response and activation compared 

to mice that received only Aβ1-42 (Fig 6E-F and Fig 6K-L). GFAP and Iba-1 staining in 

animals receiving IL17Ab alone injected ICV or IN was similar to the Ctrl group (Fig 6B-C 

and Fig 6H-I). 

Modulation of pro-inflammatory cyto-chemokines by IL-17Ab 

Informed by previous results, we also compared the cytokine and chemokine profiles from 

total brain homogenates of selected groups which were also used for the histological analysis. 

A similar analysis was performed on homogenates obtained from the hippocampus and 

prefrontal cortex. As shown in Fig 7, Aβ1-42-treated mice (Fig 7E) displayed a marked 

increase in pro-inflammatory cytokines and chemokines (reference standards shown in 7A) 

compared to Ctrl group (Fig 7B). In particular, we observed a significant increase in the 

expression of classical pro-inflammatory cyto-chemokines such as IL-1α, IL-1β, IL-1r, IL-6, 

IL-17, MIP-1α/β and TNF-α (Fig 7H-J). In line with our in vivo evidence, we observed a 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4973
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4974
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1734
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4998
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=756
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5074
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reversion of this pro-inflammatory onset in IL-17Ab ICV-treated mice (Fig 7F) which 

became more evident after IL-17Ab IN treatment (Fig 7D). In particular, IN treatment 

induced a significant decrease in terms of IL-1β, IL-17, KC and MIP-2 compared to IL-17Ab 

ICV treatment (Fig 7H-J).  

Interestingly, analyzing the inflammatory profile from homogenized hippocampus (Fig 8A-

G) and prefrontal cortex (Fig 8H-N) tissues, we found a different scenario. In the 

hippocampus, Aβ1-42-treated mice presented an increase in ICAM, SDF-1 and, in particular, 

in IL-17 (Fig 8E) compared to Ctrl (Fig 8B) that were reverted after ICV and IN IL-17Ab 

administration (Fig 8O). In the prefrontal cortex we observed a striking difference only in 

terms of IL-17 expression in Aβ1-42 group (Fig 8L) that was modulated after IL-17Ab ICV 

(Figure 8M) and IN (Fig 8N) treated mice. Cyto-chemokines expression in animals receiving 

IL-17Ab alone injected ICV or IN was similar to Ctrl group in whole brain (Fig 7C-D), 

hippocampus (Fig 8C-D) and prefrontal cortex (Fig 8J-K).  

Discussion and Conclusion 

Inflammation comprises a large set of diseases that trigger a wide variety of human disorders. 

Neurological inflammation and autoimmune disorders are an example of immune-mediated 

inflammation (Newcombe et al., 2018). In local inflammation milieu the concentration of 

pro-inflammatory cytokines e.g. IL-1, IL-2, IL-6, IL-12, IFN-γ, TNF-α, IL-17 and IL-23 or of 

the other inflammatory mediators increases (Kempuraj et al., 2017). Th1 and Th17 cells are 

the main cellular mediators responsible for immune-mediated damage that polarize to the site 

of inflammation in presence of noxious/inflammatory stimuli (D'Acquisto et al., 2010). 

Many studies have suggested a relationship between inflammation severity and Th17 cell-

mediated immune responses (Rostami & Ciric, 2013). The role of Th17 cells has been 

highlighted in several autoimmune disorders including, MS, Inflammatory Bowel Disease 

(IBD), Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE) as well as in 

neurological disorders including fronto-temporal dementia, PD, AD and schizophrenia (Liu et 

al., 2014).  

AD is the most common and most studied neurodegenerative disorder. It has become a 

critical issue to human health, especially in aging societies, and therefore it is a research 

hotspot in the global scientific community (Newcombe et al, 2018). It is a multifactorial 

disorder primarily characterized by amyloid plaques deposition in the brain leading to 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=819
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=812
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6757
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4465
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irreversible cognitive impairment and neuroinflammation that mainly involves hippocampus 

and cortex districts (D'Amelio et al., 2018). Although Th17 cells have been acknowledged as 

crucial mediators of AD, the effector cytokine IL-17 responsible for their pathogenicity still 

remains poorly defined and very little is known on its path-physiological role in CNS regions 

(hippocampus and prefrontal cortex) normally compromised in this disease.  

In this study we demonstrate that the neutralization of IL-17 cytokine results in substantial 

functional recovery of amyloid-β-induced neuroinflammation and memory impairment. 

Moreover, we report that IL-17Ab administration (both ICV and IN) can reverse reactive 

gliosis and neuroinflammation as indicated ex vivo by the reduction of Aβ1-42, GFAP, Iba-1, 

S100B and MPO as well as by the inhibition of typical pro-inflammatory cyto-chemokines in 

total brain, and more specifically hippocampal and prefrontal cortex regions. 

In particular, we show that neutralization of IL-17 by a single ICV administration ameliorates 

amyloid-β-like symptoms (in terms of olfactory dysfunction, spatial and working memory) 

both after 7- and 14-days, similarly to what observed after a double IL-17Ab IN 

administration at day 5 and 12. The difference in terms of time of administration is justified 

by previous published observations that found a significant increase of Th17 cytokines 

following 7 days from amyloid-β injection (Zhang et al., 2013; Zhang et al., 2015). 

Moreover, very robust effects were observed when the antibody was administered at dose of 

1μg μl
-1

 compared to the isotype control or antibody itself, consistent with previous in vivo 

reports (Mi et al., 2011; Fisher et al., 2015; Szabo et al., 2017). It is known that a major, yet 

unmet, objective of neuroprotective/anti-neurodegenerative treatments is to arrest or to slow 

down the fast progression of cognitive impairments. Contingently, behavioral experiments 

showed that the Aβ-dependent impairment in terms of spatial learning, reference memory and 

olfactory memory was dose-dependently prevented and reverted by IL-17Ab treatments. 

Due to the particular anatomical features of the nasal cavity, IN administration has been 

explored as a means of preferential drug delivery to the brain, even though a fraction of the 

drug may be absorbed by the systemic circulation (Fortuna et al., 2014). The route of 

administration used in our work (IN) ensures high brain concentration levels of IL-17Ab 

reaching the olfactory bulb and strongly suggests that the antibody was directly transferred to 

the brain via the olfactory neuronal pathway, circumventing the blood brain barrier. To this 

aim and accordingly to rigorous published papers (Southam et al., 2002; Pires et al., 2009), 
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we have also performed our administration considering the effects of volume, time, body 

position and anesthesia. 

Next, we began our biochemical investigation by confirming the well-replicated behavioural 

findings with the association of Aβ1-42 level in whole brain, as pathology index. As expected, 

Aβ1-42 was significantly higher in the AD group compared with the control group, while its 

level was significantly lower in IL-17Ab ICV and IL-17Ab IN treated-group. In addition, our 

biochemical investigation also revealed that IL-17Abs (both ICV and IN) significantly 

attenuated the production of S100B, a glial-derived protein that is secreted from astrocytes. 

At low concentrations it is considered a neurotrophic factor and neuronal survival protein 

during the development of the nervous system (Van Eldik & Wainwright, 2003). Conversely, 

when overproduced by activated glia, it becomes pathological and influences disease 

progression by acting as pro-inflammatory cytokine, contributing to the exacerbation of 

neuroinflammation and neuronal dysfunction. In fact, there is compelling clinical evidence 

that implicate S100B as a component of the neuroinflammatory cycle that drives AD 

pathogenesis (Mrak & Griffin, 2005). In this context, it is relevant to highlight that S100B 

levels are increased in activated astrocytes in the brain regions most severely affected by AD, 

and its levels correlate with neuritic plaque progression. Additionally, S100B production can 

be stimulated by mediators associated with AD, including β-amyloid and pro-inflammatory 

cytokines (Van Eldik & Wainwright, 2003). Collectively, this highlights the crucial role of 

S100B in AD onset and progression and the relevant effects of IL-17Abs in reducing its 

expression in mouse whole brain. At confirmation of the amelioration of the inflammatory 

scenario by IL-17 neutralizing antibodies, we also observed, by the aim of 

immunofluorescence techniques, that GFAP and Iba-1 expression (as index of astrocytes and 

microglia activation, Gu et al., 2015; Liddelow et al., 2017) were markedly reduced after IL-

17 Abs treatments. 

The vasculature of the blood-brain barrier allows only relatively few leukocytes to enter and 

survey the healthy central nervous system (CNS) (Lefkowitz & Lefkowitz, 2008). However, 

during pathological CNS inflammation (including AD), the number of leukocytes adhering to 

and penetrating the CNS vasculature increases (Crawford et al., 2001; Russo et al., 2018). 

Considering that the enzyme myeloperoxidase (MPO) is a heme-protein abundant in 

circulating phagocytes, tissue neutrophils, and some populations of tissue macrophages but 

also highly expressed in AD brain, where it co-localized with amyloid plaques (Reynolds et 

al., 1999), its abnormal expression and modulation could represent another important aspect 
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to be considered in amyloid-related disorders. Our results show that the expression levels of 

the oxidant producing enzyme MPO is modulated by IL-17Ab both after ICV and IN 

administration. 

In line with previous studies (Xia & Hyman, 1999; Rostasy et al., 2003; Walker et al., 2017), 

we also found increased expression of different pro-inflammatory mediators (IL-1α, IL-1β, 

IL-16, KC, MIP-1, IL-17 and TNF-α) in the total brain of Aβ-treated mice compared to 

control mice (cytokines and chemokines that are found associated with AD pathological 

changes). Interestingly, we demonstrate, for the first time, a significant reduction of these 

pro-inflammatory cascades after both ICV and IN administration of IL-17Ab. Furthermore, 

the comparison of the inflammatory profile from hippocampus and prefrontal cortex tissues 

presented a distinctive induction and modulation of ICAM, SDF-1 and IL-17 in Aβ1-42-treated 

group compared to Ctrl with a complete abrogation of IL-17 in both regions after IL-17Ab 

treatment and a significant reduction of ICAM and SDF-1 only in the hippocampus. This 

difference could be in part correlated with previous observations that have demonstrated that 

systemic Th17/IL-17 response appears prior to hippocampal neurodegeneration compare to 

other CNS districts (Solleiro-Villavicencio & Rivas-Arancibia, 2017). 

Endothelial intercellular adhesion molecule-1 (ICAM) does not only mediate firm adhesion 

of leukocytes to vascular beds but also triggers signalling cascades within the endothelial cell, 

which play a crucial role in modulating subsequent leukocytes diapedesis in CNS, especially 

during inflammatory conditions (Adamson et al., 1999). Furthermore, a number of recent 

reports document that drugs interfering with endothelial ICAM-1 signalling, efficiently 

reduce leukocyte migration both in vitro and in animal models of CNS inflammation 

(Turowski et al., 2005). In this scenario, SDF-1 (also known as chemokine CXCL12) could 

also play a crucial role. While SDF-1 is constitutively expressed in the CNS, its role during 

neuroinflammation still remains unclear. Several reports have shown that SDF-1 moderates 

remyelination and synaptic plasticity (Merino et al., 2015) and, contextually, its 

pharmacological inhibition (Azizi et al., 2014) alleviates the release of inflammatory 

mediators in both sciatic nerve injury and bone cancer models (Shen et al., 2014) as well as 

N-methyl-d-aspartate receptor (NMDAR)-mediated neurotoxicity (Sanchez et al., 2016).  

Taken together, it seems that neutralization of IL-17 could substantially restrain release of 

synergistic cytokines, and thus, expression of inflammatory mediators, which sustain 

eventual progression of CNS damage. This scenario is in accordance with our previous 
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studies where we have demonstrated and emphasized the role of IL-17 as a cytokine that 

sustains rather than induces inflammation. (Maione et al., 2009; Maione et al., 2018b).  

In conclusion, the experimental findings reported here confirm and extend previous evidence 

showing that IL-17 is a detrimental factor for AD, where this distinctive cytokine (especially 

for its selective expression in the hippocampus and prefrontal cortex) could represent a key 

factor for the “self-amplifying” neuroinflammatory onset typical of amyloid-β--related 

disease. Under this perspective, future studies will focus on IL-17 brain physiopathology as 

determinant of the developmental neurotoxicity of widely-diffused CNS-related diseases. 
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Table 1. Schematic representation of in vivo experimental groups and drugs administration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exp. 

Group 

Group name Aβ42–1 

ICV 

Aβ1-42 

ICV 

IgG2A 

ICV 

IgG2A 

IN 

IL-17Ab 

ICV 

 

IL-17Ab  

IN 

I Ctrl - - - - - - 

II IL-17Ab ICV - - - - 1μg 3μl
-1

 - 

III IL-17Ab IN - - - - - 1μg 10μl
-1

 

IV Aβ
42–1

 3μg 3μl
-1

 - - - - - 

V Aβ
1–42

 - 3μg 3μl
-1

 - - - - 

VI Aβ
1–42

+IgG2A  - 3μg 3μl
-1

 1μg 3μl
-1

 - - - 

VII Aβ
1–42 

+IL-17Ab ICV - 3μg 3μl
-1

 - - 0.01μg 3μl
-1

 - 

VIII Aβ
1–42 

+IL-17Ab ICV - 3μg 3μl
-1

 - - 0.1μg 3μl
-1

 - 

IX Aβ
1–42 

+IL-17Ab ICV - 3μg 3μl
-1

 - - 1μg 3μl
-1

 - 

X Aβ
1–42 

+IgG2A - 3μg 3μl
-1

 - 1μg 10μl
-1

 -  

XI Aβ
1–42 

+IL-17Ab IN - 3μg 3μl
-1

 - - - 0.01μg 10μl
-1

 

XII Aβ
1–42 

+IL-17Ab IN - 3μg 3μl
-1

 - - - 0.1μg 10μl
-1

 

XIII Aβ
1–42 

+IL-17Ab IN - 3μg 3μl
-1

 - - - 1μg 10μl
-1
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Figure 1. Experimental flow chart for the in vivo model, behavioral studies and biochemical 

and molecular analysis with acute and sub-chronic treatment of IL-17Ab. 
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Figure 2. Effect of IL-17Ab ICV and IN-treated mice on (A-B) olfactory discrimination at 7-

(A) and 14-(B) days and (C-D) on novel object recognition at 7-(C) and 14-(D) days. Data 

were expressed as mean ± SEM. Comparisons by one-way ANOVA with Dunnett's post hoc 

test; 
# #

P≤0.01, 
# # # #

P≤0.0001 vs  Ctrl-treated group;  *P≤0.05, **P≤0.01, ***P≤0.001, 

****P≤0.0001 indicate significance of treatment vs  Aβ1 – 4 2  peptide-treated group (N=6 

per group).  
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Figure 3. Escape latency (A) and average speed (B) during training phase in the MWM test. 

Time spent in the target quadrant of the probe test at 7-(C) and 14-(D) days. (E) Schematic 

plots of probe test at 7- and 14-days for all experimental groups. Data were expressed as 

mean ± SEM. Comparisons were by one-way ANOVA with Bonferroni's post hoc test; 

# #
P≤0.01 vs  Ctrl-treated group;  *P≤0.05, **P≤0.01 indicate significance of treatment 

vs  Aβ1 – 4 2  peptide-treated group (N=6 per group).  
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Figure 4. Percent of correct alternations (A-C) and total arm entries (B-D) in the Y-maze 

test. Data were expressed as mean ± SEM. Comparisons were by one-way ANOVA with 

Bonferroni’s post hoc test; 
# ## #

P≤0.0001 vs  Ctrl-treated group;  **P≤0.01, 

****P≤0.0001 indicate significance of treatment vs  Aβ1 – 4 2  peptide-treated group (N=6 

per group).  
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Figure 5. Effect of IL-17Ab on the production of (A) Aβ1 – 4 2  (detected by ELISA assay and 

expressed as µg ml
-1

), release of (B) S100B protein (detected by ELISA assay and expressed 

as µg ml
-1

) and (C) MPO activity (detected by enzymatic assay and expressed as mg tissue
-1

) 

in total brain homogenates. Data were expressed as mean ± SEM. Comparisons were by one-

way ANOVA with Dunnett's post hoc test; 
## # #

P≤0.0001 vs  Ctrl -treated group;  

*P≤0.05, **P≤0.01, ***P≤0.001 indicate significance of treatment vs  Aβ1 – 4 2  peptide-

treated group (N=6 per group).  
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Figure 6. Representative immunofluorescence staining for GFAP and Iba-1 in the 

hippocampus of (A-G) Ctrl, (B-H) IL-17Ab ICV, (C-I) IL-17Ab IN, (D-J) Aβ1–42, (E-K) 

Aβ1–42 + IL-17Ab ICV or (F-L) IL-17Ab IN-treated mice (scale bar 100µm). Quantitative 

analysis of (M) GFAP and (N) Iba-1 positive cells. Values are expressed as percent mean (± 

SEM) of positive cells of n=6 mice in the hippocampus of Ctrl mice. Comparisons were by 

one-way ANOVA with Bonferroni’s post hoc test; 
####

P≤0.001 vs Ctrl-treated group; 

*P≤0.05, **P≤0.01, ***P≤0.001 indicate significance of treatment vs Aβ1–42 peptide-treated 

group. 
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Figure 7. Inflammatory fluids obtained from total brain homogenates of (B) Ctrl, (C) 

IL-17Ab ICV, (D) IL-17Ab IN, (E) Aβ1 – 4 2 ,  (F) Aβ1 – 4 2  + IL-17Ab ICV or (G) 

IL-17Ab IN-treated mice were assessed using (A) a Proteome Profiler cytokine array 

panel (in red modulated cytokines). Mean changes (± SEM) of positive spots of three 

separate experiments with n=6 mice, were expressed as INT/mm
2
 of densitometric values (H-

J). Comparisons were by one-way ANOVA with Dunnett's post hoc test; 
#
P≤0.05, 

# #
P≤0.01, 

# # #
P≤0.001 vs  Ctrl-treated group;  *P≤0.05, **P≤0.01, ***P≤0.001 indicate 

significance of treatment vs  Aβ1 – 4 2  peptide-treated group.  

 



 

 
This article is protected by copyright. All rights reserved. 

 

Figure 8. Inflammatory fluids obtained from (A-G) hippocampus and (H-N) 

prefrontal cortex homogenates of (B and  I) Ctrl,  (C and  J) IL-17Ab ICV, (D 

and  K) IL-17Ab IN, (E and L) Aβ1 – 4 2 ,  (F and  M) Aβ1 – 4 2  + IL-17Ab ICV or (G 

and  N) IL-17Ab IN-treated mice were assessed using (A and H) a Proteome Profiler 

cytokine array (in red modulated cytokines). Mean changes (± SEM) of positive spots of 

three separate experiments with n=6 mice, were expressed as INT/mm
2
 of densitometric 

values for both hippocampus (O) and prefrontal cortex (P). Comparisons were by one-way 

ANOVA with Dunnett's post hoc test; 
#
P≤0.05, 

# # # #
P≤0.0001 vs  Ctrl-treated group;  

*P≤0.05, **P≤0.01, ****P≤0.0001 indicate significance of treatment vs  Aβ1 – 4 2  peptide-

treated group.  

 


