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Abstract
Obesity has become a world-wide pandemic and is considered a major risk factor for 
various diseases. Despite this, recent intriguing clinical observations have been made 
suggesting that being overweight has some advantages. Overweight and some obese 
patients were reported to have significantly lower all-cause mortality, described as the 
‘obesity paradox’. This phenomenon resulted in increased research aimed at 
investigating the influence of adipose tissue on outcomes of various clinical states 
including critical illness. In this review, we summarise research findings on the effect 
burn injury and trauma-related critical illness have on adipose tissue and discuss 
potential mechanisms by which adipose tissue influences outcomes in burn and other 
critically ill patients. Burn injury and critical illness influence adipose tissue functionally 
and morphologically, with circulating levels of fat derived hormones, adipokines, altered 
in patients following injury and/or critical illness. As adipokines regulate a variety of 
processes including inflammation and metabolism, this disruption in the adipokine axis 
may explain the obesity paradox phenomenon observed in critically ill patients. We 
conclude that further research on the influence of individual adipokines on prognosis in 
burn and critically ill patients and the mechanisms involved is required to increase 
understanding of their therapeutic potential.

Highlights
 The Obesity Paradox has been reported in critically ill populations.
 Burn injury and critical illness affect adipose tissue morphologically and 

functionally.
 Adipokines exert anti- and pro-inflammatory effects influencing patient outcomes.
 Current scar reduction treatments utilising adipose tissue potentially mediate 

their effects through release of adipokines.
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Abbreviations
APACHE Acute Physiological Assessment and Chronic Health Evaluation
CRP C-Reactive Protein
FFA Free Fatty Acids
HMG-CoA Hydroxymethyl Glutaryl Coenzyme A
IL Interleukin
RCT Randomised Controlled Trial
SAPS Simplified Acute Physiology Score
SOFA Sequential Organ Failure Assessment
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Obesity is a complex multifactorial condition that affects over a third of the world’s 
population [1]. With increasing prevalence of overweight and obese individuals [2, 3], 
obesity is being described as a global pandemic [4] as obesity greatly impacts the 
individual’s health status and quality of life[5, 6] being a major risk factor for various 
pathologies including cancer, cardiovascular disease, diabetes and osteoarthritis [7]. 

In this context a recent and intriguing observation is that all-cause mortality is reported 
to be significantly lower in overweight and some obese patients [8]. This phenomenon, 
where outcomes are paradoxically better in overweight and obese patients compared to 
normal weight individuals, is described as the ‘obesity paradox’ and is the subject of 
increasing interest in scientific and medical communities [9-12]. The underlying 
mechanisms behind this phenomenon remain poorly understood and this is particularly 
the case in critically ill populations where the data on the obesity paradox are limited.

This review aims to summarise the observations suggesting the presence of the obesity 
paradox in critically ill patients, including burns and to discuss potential mechanisms 
that may explain the difference in outcomes between normal weight, overweight and 
obese patients, focusing primarily on hormones secreted by adipose tissue 
(adipokines). 

Adipose Tissue in Burns and Critical Illness
Adipose tissue is one of the largest organs in the human body. Importantly, it is no 
longer deemed an inert tissue that serves the roles of thermal/mechanical insulation 
protecting internal organs from external stimuli (such as cold and shock) or as an 
energy storage modality. Since the discovery in 1994 of leptin, an adipokine or adipose-
derived hormone capable of controlling body energy balance [13], adipose tissue is now 
recognised as endocrine organ able to influence metabolism and inflammatory status. 
As a result extensive research has been carried out investigating potential roles of 
adipokines in various clinical conditions including autoimmune and inflammatory 
disorders and connective tissue diseases [14], metabolic disorders [15, 16], 
cardiovascular and neurovascular diseases [17], and cancer [18, 19].

Despite increasing interest in adipose tissues’ role in clinical pathologies, its role in the 
context of critical illness including burns and trauma remains to be fully elucidated. With 
thousands of critically ill patients admitted to intensive care units every year [20] some 
interesting observations have been made. Patients requiring prolonged critical care 
were reported to lose lean body mass while adipose tissue mass remained preserved or 
even increased [21, 22]. Furthermore, although morbid obesity (BMI ≥ 40 kg/m2) is an 
independent risk factor for mortality in critically ill patients [23], improved survival rates 
were observed among overweight (BMI 25-30 kg/m2) and obese (BMI 30-40 kg/m2) 
patients compared to normal BMI patients during critical illness [23-26]. These 
paradoxical findings have stimulated research in to the interplay between critical illness 
and adipose tissue and their influence on patient outcomes. Moreover the profound 
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inflammatory and metabolic response to burn and trauma related critical illness suggest 
a potential involvement for adipose tissue and adipokines.

Critical illness following injury is a multifactorial heterogeneous disorder characterised 
by an overwhelming pro-inflammatory response accompanied by a compensatory anti-
inflammatory reaction and subsequent immunosuppression [27, 28].This classical 
paradigm also applies to severe forms of critical illness such as burns, the pathology of 
which we have described previously [29, 30]. The human response to burn injury 
includes a so-called ‘genomic storm’[31], consistent with simultaneous increased 
systemic inflammation, innate immune activation and anti-inflammatory response [32, 
33], as well as suppression of adaptive immunity[31]. In addition, burn patients and 
others with severe critical illness suffer from a prolonged hypermetabolic, hypercatabolic 
response [33, 34].

The metabolic response following thermal injury is characterised as a two phase 
response: the ‘ebb’ phase within 48 hours where metabolism, cardiac output and 
oxygen consumption are reduced, followed by the ‘flow’ phase at approximately 120 
hours post-injury where these parameters increase and plateau [35]. This metabolic 
response includes: peripheral lipolysis and free fatty acid (FFA) [36] oxidation leading to 
an acute, global and complex increase in FFA levels[37]; systemic induction of 
endoplasmic reticulum (ER) stress and unfolded protein response [38]; up to 6-fold 
increase in breakdown rates of skeletal muscle protein[39]; elevation in resting energy 
expenditure up to 140%[40] that can be prolonged [33].

Burns and other severe critical illnesses have been reported to influence adipose tissue 
morphologically and functionally.  Saraf et al reported the impact of severe burn injury 
on subcutaneous white adipose tissue in children and observed  significantly reduced 
adipocyte size, increased collagen deposition and cell mitochondria content, increased 
immune cells such macrophages, as well as increased inflammatory cytokine 
production [41]. These morphological changes suggest “browning” of subcutaneous 
adipose tissue following thermal injury, a finding which was confirmed biochemically and 
functionally. Sidossis et al reported significantly increased mitochondrial density and 
mitochondrial respiratory capacity, as well as an 80-fold increase in the expression of 
uncoupling protein 1 (UCP1), a molecule abundantly observed in brown adipose tissue 
depots [42], in burn patients compared to healthy controls [43]. In addition, Patsouris et 
al reported similar findings including significantly increased mitochondrial mass and 
adipose tissue browning markers in burn patients [44].  This could be a compensatory 
mechanism since brown adipose tissue is known to induce thermogenesis, modulate 
energy expenditure and exert local tissue effects such as stimulating angiogenesis and 
influencing macrophage polarization [45]. Similar morphological and metabolic activity 
alterations of adipose tissue have been reported in critically ill patients[46, 47]. A 
functional aspect of adipose tissue is its endocrine role through the production of 
adipokines and these may mediate many of the effects seen in burns and critical illness.
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Overview of Adipokines and their Biological Effects
There are approximately 600 identified hormones secreted by adipose tissue [48], 
providing a rich source of potential novel biomarkers  and therapeutic targets for the 
management of various pathologies. In this review, we will focus on Adiponectin, 
Ghrelin, Leptin, Resistin and Visfatin as the best characterised adipokines. 

Adiponectin is released exclusively from white adipose tissue[49], and is the most 
abundant adipose-specific adipokine, with expression in subcutaneous fat being greater 
than visceral fat [50]. Adiponectin has anti-inflammatory effects [51]. Ghrelin is an 
orexigenic hormone that is an endogenous ligand to growth hormone and was initially 
thought to be produced mainly by the stomach [52], but has subsequently been 
identified in other tissues including adipose tissue [53]. Ghrelin signaling is associated 
with adiposity, changes in fat distribution and mobilisation, independent of growth 
hormone and dietary intake[54, 55]. Leptin is primarily secreted by subcutaneous white 
adipose tissue, the amount of leptin secreted into the circulation is proportional to 
adipose tissue mass and nutritional status[51]. Leptin exhibits structural similarities to 
cytokines [56] and is pro-inflammatory [57]. Resistin is also a pro-inflammatory 
adipokine expressed by adipocytes and other tissues including skeletal muscle [58, 59]. 
Visfatin, also called pre-B-cell colony enhancing factor, is primarily secreted by 
adipocytes in visceral white adipose tissue and exhibits pro-inflammatory effects [60]. 

Relevant to this review, adipokines have been reported to influence skin and adipose 
tissue. Adiponectin and ghrelin have been observed to exert anti-inflammatory and anti-
fibrotic effects on skin [61-63] and were reported to enhance wound healing rates [64, 
65]. Similarly, leptin has been observed to enhance human epidermal keratinocyte and 
epithelial cell proliferation, differentiation and migration, as well as promote 
angiogenesis within dermal connective tissues [66]. However, leptin was also found to 
be overexpressed in hypertrophic and keloid scars [67]. This could be due to increased 
pro-inflammatory cytokine release associated with leptin, as seen in inflammatory skin 
conditions [68]. Visfatin has been reported to enhance chemokine and antimicrobial 
peptide production in human keratinocytes [69, 70], as well as exhibit anti-fibrotic 
properties[71].

Adiponectin and leptin have been reported to induce browning of adipose tissue [72, 73] 
and adiponectin promotes adipogenesis as well as increasing lipid accumulation and 
insulin responsiveness of adipocytes [74]. In contrast, leptin inhibits insulin-dependent 
glucose uptake and lipogenesis and reverses insulin-induced lipolysis [75]. Ghrelin 
stimulates adipogenesis and glucose uptake, as well as inhibiting lipolysis, apoptosis 
and autophagy of adipocytes [76, 77]. Resistin and visfatin enhance pro-inflammatory 
cytokine expression in adipose tissue including TNF-α and IL-6 [78, 79]. Similarly, 
resistin and visfatin induce insulin resistance in adipocytes [79, 80]. The influence of 
these adipokines is not limited to skin and adipose tissue. The beneficial and 
detrimental effects of these adipokines on various cell types and tissues are 
summarized in Figure 1 and the reader is also referred to recent reviews for further 
detail [17, 81-88].
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Figure 1. Effects of adipokines on various tissues and organs

Adipokine changes in burns and critically ill patients 
Several studies have demonstrated acute reductions in circulating adiponectin levels in 
critical illness and/or injury including burns, sepsis and trauma [89-95]. In addition, an 
inverse association was reported between serum adiponectin levels and severity of 
illness as measured by C-Reactive Protein (CRP), Simplified Acute Physiology Score 
(SAPS) II and Sequential Organ Failure Assessment (SOFA) scores [91, 92, 95]. 
Similar findings were observed in patients with acute pancreatitis, where adiponectin 
levels in the blood were negatively associated with severity of disease and incidence of 
tissue necrosis [93]. Furthermore, adiponectin levels progressively increase with patient 
recovery [91, 94]. Although the above findings indicate that decreased serum 
adiponectin levels may lead to poor outcomes, other research has reported different 
findings. Circulating adiponectin levels in severely ill patients did not correlate with 
inflammatory markers including Interleukin (IL) -6, IL-10 and Tumour Necrosis Factor 
(TNF)-α [89, 96, 97] and clinical scores including Acute Physiologic Assessment and 
Chronic Health Evaluation (APACHE) II score and SOFA [96, 98, 99]. Furthermore, 
higher blood adiponectin levels were associated with increased risk of mortality during 
critical illness[100-103].

Only two studies have investigated circulating ghrelin levels in critical illness. Wade et al 
reported significantly reduced ghrelin levels in severely burned patients correlating with 
metabolic/caloric needs.  No other associations with other parameters such as injury 
severity and inflammatory status were observed [89]. Santacruz et al also observed 
significantly reduced plasma ghrelin levels in critically ill patients but saw no correlations 
with feeding status [104].

Leptin levels in the blood have been reported to be elevated in critical illness [105-108]. 
Furthermore, leptin was positively associated with pro-inflammatory status of severely ill 
patients, as measured by CRP, IL-6, sTNFR1 and TNF-α [106, 108-111]. Additionally, 
other studies have reported that serum-soluble leptin receptor (SLR) in patients 
correlated with inflammatory response and illness severity as measured by IL-6, lactate, 
procalcitonin and APACHE II score [112, 113]. Interestingly, elevated levels of leptin 
were observed in survivors of acute sepsis [105], while increased SLR levels in critically 
ill patients were associated with increased mortality [112]. However, other studies have 
reported different findings. Blood leptin levels in severely ill patients were similar or 
reduced compared to healthy volunteers [89, 94, 95, 109, 112, 114] and no associations 
were found between circulating leptin levels and inflammatory status, illness severity, or 
mortality in critical illness [94, 95, 107, 109, 111, 112, 114]. 

In contrast to the heterogeneity of results reported on the impact adiponectin, ghrelin 
and leptin on critical illness outcomes, the influence of resistin and visfatin on outcomes 
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of severely ill patients is consistent in the literature. Critically ill patients exhibit 
significantly elevated circulating levels of resistin [89, 95, 98, 99, 111, 115-120] and 
visfatin [111, 121-127]. Additionally, both resistin and visfatin significantly correlated 
with pro-inflammatory responses (including CRP, IL-6, IL-8  and TNF-α), and worse 
clinical severity scores (including APACHE II, Glasgow Coma score, multiple organ 
dysfunction score, SAPS II and SOFA)[89, 95, 98, 99, 111, 115-119, 121-127]. 
Furthermore, high resistin and visfatin levels in blood were associated with poor 
outcomes including mortality [116, 117, 122-126].

A systematic review examining the evidence for adipokines having an influence on 
critical care patients has been published recently [128]. It concludes that although 
strong observations were reported indicating the influence of adipokines on the 
prognosis of critical illness, additional larger studies that incorporate more diverse 
cohorts (such as age, gender, BMI, ethnic groups and different pathologies) is required 
to better understand the relationship between adipokines and critical illness. This is 
essential in order to validate the potential clinical value and utility of adipokines as 
diagnostic and/or prognostic biomarkers, as well their potential as therapeutic targets in 
critical illness including burn and trauma. Furthermore, studies to date have investigated 
the association of adipokines with critical illness in the acute setting only. This focus on 
the acute setting has further limited the translation of adipokines in clinical settings. 
Importantly, since medical care advancements have improved survival rates after critical 
trauma [129-131], greater emphasis is now placed on the  prevention and treatment of 
potentially debilitating long-term sequelae experienced by survivors of severe illness 
including chronic critical illness [132-134], prolonged pathophysiological responses[33] 
and scarring [135]. 

Conclusions
Several studies have reported changes in the serum levels of specific adipokines and 
their role in the regulation of a range of biological responses to injury including 
inflammation, metabolic dysregulation and wound healing is emerging. However a 
robust characterisation of the impact of such changes in individual adipokines on patient 
outcomes, especially in burns patients, is lacking. Large clinical and scientific studies 
are required to establish the mechanisms by which adipose tissue may influence patient 
outcomes and translate the research into clinical practice to improve short and long-
term outcomes of burn and critically ill patients.
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 The Obesity Paradox has been reported in critically ill populations.
 Burn injury and critical illness affect adipose tissue morphologically and 
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 Adipokines exert anti- and pro-inflammatory effects influencing patient 

outcomes.
 Current validated medical treatments utilize adipose tissue and potentially 

adipokines.
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Abstract
Obesity has become a world-wide pandemic and is considered a major risk factor for 
various diseases. Despite this, recent intriguing clinical observations have been made 
suggesting that being overweight has some advantages. Overweight and some obese 
patients were reported to have significantly lower all-cause mortality, described as the 
‘obesity paradox’. This phenomenon resulted in increased research aimed at 
investigating the influence of adipose tissue on outcomes of various clinical states 
including critical illness. In this review, we summarise research findings on the effect 
burn injury and trauma-related critical illness have on adipose tissue and discuss 
potential mechanisms by which adipose tissue influences outcomes in burn and other 
critically ill patients. Burn injury and critical illness influence adipose tissue functionally 
and morphologically, with circulating levels of fat derived hormones, adipokines, altered 
in patients following injury and/or critical illness. As adipokines regulate a variety of 
processes including inflammation and metabolism, this disruption in the adipokine axis 
may explain the obesity paradox phenomenon observed in critically ill patients. We 
conclude that further research on the influence of individual adipokines on prognosis in 
burn and critically ill patients and the mechanisms involved is required to increase 
understanding of their therapeutic potential.

Highlights
 The Obesity Paradox has been reported in critically ill populations.
 Burn injury and critical illness affect adipose tissue morphologically and 

functionally.
 Adipokines exert anti- and pro-inflammatory effects influencing patient outcomes.
 Current scar reduction treatments utilising adipose tissue potentially mediate 

their effects through release of adipokines.

Keywords
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Obesity is a complex multifactorial condition that affects over a third of the world’s 
population [1]. With increasing prevalence of overweight and obese individuals [2, 3], 
obesity is being described as a global pandemic [4] as obesity greatly impacts the 
individual’s health status and quality of life[5, 6] being a major risk factor for various 
pathologies including cancer, cardiovascular disease, diabetes and osteoarthritis [7]. 

In this context a recent and intriguing observation is that all-cause mortality is reported 
to be significantly lower in overweight and some obese patients [8]. This phenomenon, 
where outcomes are paradoxically better in overweight and obese patients compared to 
normal weight individuals, is described as the ‘obesity paradox’ and is the subject of 
increasing interest in scientific and medical communities [9-12]. The underlying 
mechanisms behind this phenomenon remain poorly understood and this is particularly 
the case in critically ill populations where the data on the obesity paradox are limited.

This review aims to summarise the observations suggesting the presence of the obesity 
paradox in critically ill patients, including burns and to discuss potential mechanisms 
that may explain the difference in outcomes between normal weight, overweight and 
obese patients, focusing primarily on hormones secreted by adipose tissue 
(adipokines). 

Adipose Tissue in Burns and Critical Illness
Adipose tissue is one of the largest organs in the human body. Importantly, it is no 
longer deemed an inert tissue that serves the roles of thermal/mechanical insulation 
protecting internal organs from external stimuli (such as cold and shock) or as an 
energy storage modality. Since the discovery in 1994 of leptin, an adipokine or adipose-
derived hormone capable of controlling body energy balance [13], adipose tissue is now 
recognised as endocrine organ able to influence metabolism and inflammatory status. 
As a result extensive research has been carried out investigating potential roles of 
adipokines in various clinical conditions including autoimmune and inflammatory 
disorders and connective tissue diseases [14], metabolic disorders [15, 16], 
cardiovascular and neurovascular diseases [17], and cancer [18, 19].

Despite increasing interest in adipose tissues’ role in clinical pathologies, its role in the 
context of critical illness including burns and trauma remains to be fully elucidated. With 
thousands of critically ill patients admitted to intensive care units every year [20] some 
interesting observations have been made. Patients requiring prolonged critical care 
were reported to lose lean body mass while adipose tissue mass remained preserved or 
even increased [21, 22]. Furthermore, although morbid obesity (BMI ≥ 40 kg/m2) is an 
independent risk factor for mortality in critically ill patients [23], improved survival rates 
were observed among overweight (BMI 25-30 kg/m2) and obese (BMI 30-40 kg/m2) 
patients compared to normal BMI patients during critical illness [23-26]. These 
paradoxical findings have stimulated research in to the interplay between critical illness 
and adipose tissue and their influence on patient outcomes. Moreover the profound 
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inflammatory and metabolic response to burn and trauma related critical illness suggest 
a potential involvement for adipose tissue and adipokines.

Critical illness following injury is a multifactorial heterogeneous disorder characterised 
by an overwhelming pro-inflammatory response accompanied by a compensatory anti-
inflammatory reaction and subsequent immunosuppression [27, 28].This classical 
paradigm also applies to severe forms of critical illness such as burns, the pathology of 
which we have described previously [29, 30]. The human response to burn injury 
includes a so-called ‘genomic storm’[31], consistent with simultaneous increased 
systemic inflammation, innate immune activation and anti-inflammatory response [32, 
33], as well as suppression of adaptive immunity[31]. In addition, burn patients and 
others with severe critical illness suffer from a prolonged hypermetabolic, hypercatabolic 
response [33, 34].

The metabolic response following thermal injury is characterised as a two phase 
response: the ‘ebb’ phase within 48 hours where metabolism, cardiac output and 
oxygen consumption are reduced, followed by the ‘flow’ phase at approximately 120 
hours post-injury where these parameters increase and plateau [35]. This metabolic 
response includes: peripheral lipolysis and free fatty acid (FFA) [36] oxidation leading to 
an acute, global and complex increase in FFA levels[37]; systemic induction of 
endoplasmic reticulum (ER) stress and unfolded protein response [38]; up to 6-fold 
increase in breakdown rates of skeletal muscle protein[39]; elevation in resting energy 
expenditure up to 140%[40] that can be prolonged [33].

Burns and other severe critical illnesses have been reported to influence adipose tissue 
morphologically and functionally.  Saraf et al reported the impact of severe burn injury 
on subcutaneous white adipose tissue in children and observed  significantly reduced 
adipocyte size, increased collagen deposition and cell mitochondria content, increased 
immune cells such macrophages, as well as increased inflammatory cytokine 
production [41]. These morphological changes suggest “browning” of subcutaneous 
adipose tissue following thermal injury, a finding which was confirmed biochemically and 
functionally. Sidossis et al reported significantly increased mitochondrial density and 
mitochondrial respiratory capacity, as well as an 80-fold increase in the expression of 
uncoupling protein 1 (UCP1), a molecule abundantly observed in brown adipose tissue 
depots [42], in burn patients compared to healthy controls [43]. In addition, Patsouris et 
al reported similar findings including significantly increased mitochondrial mass and 
adipose tissue browning markers in burn patients [44].  This could be a compensatory 
mechanism since brown adipose tissue is known to induce thermogenesis, modulate 
energy expenditure and exert local tissue effects such as stimulating angiogenesis and 
influencing macrophage polarization [45]. Similar morphological and metabolic activity 
alterations of adipose tissue have been reported in critically ill patients[46, 47]. A 
functional aspect of adipose tissue is its endocrine role through the production of 
adipokines and these may mediate many of the effects seen in burns and critical illness.
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Overview of Adipokines and their Biological Effects
There are approximately 600 identified hormones secreted by adipose tissue [48], 
providing a rich source of potential novel biomarkers  and therapeutic targets for the 
management of various pathologies. In this review, we will focus on Adiponectin, 
Ghrelin, Leptin, Resistin and Visfatin as the best characterised adipokines. 

Adiponectin is released exclusively from white adipose tissue[49], and is the most 
abundant adipose-specific adipokine, with expression in subcutaneous fat being greater 
than visceral fat [50]. Adiponectin has anti-inflammatory effects [51]. Ghrelin is an 
orexigenic hormone that is an endogenous ligand to growth hormone and was initially 
thought to be produced mainly by the stomach [52], but has subsequently been 
identified in other tissues including adipose tissue [53]. Ghrelin signaling is associated 
with adiposity, changes in fat distribution and mobilisation, independent of growth 
hormone and dietary intake[54, 55]. Leptin is primarily secreted by subcutaneous white 
adipose tissue, the amount of leptin secreted into the circulation is proportional to 
adipose tissue mass and nutritional status[51]. Leptin exhibits structural similarities to 
cytokines [56] and is pro-inflammatory [57]. Resistin is also a pro-inflammatory 
adipokine expressed by adipocytes and other tissues including skeletal muscle [58, 59]. 
Visfatin, also called pre-B-cell colony enhancing factor, is primarily secreted by 
adipocytes in visceral white adipose tissue and exhibits pro-inflammatory effects [60]. 

Relevant to this review, adipokines have been reported to influence skin and adipose 
tissue. Adiponectin and ghrelin have been observed to exert anti-inflammatory and anti-
fibrotic effects on skin [61-63] and were reported to enhance wound healing rates [64, 
65]. Similarly, leptin has been observed to enhance human epidermal keratinocyte and 
epithelial cell proliferation, differentiation and migration, as well as promote 
angiogenesis within dermal connective tissues [66]. However, leptin was also found to 
be overexpressed in hypertrophic and keloid scars [67]. This could be due to increased 
pro-inflammatory cytokine release associated with leptin, as seen in inflammatory skin 
conditions [68]. Visfatin has been reported to enhance chemokine and antimicrobial 
peptide production in human keratinocytes [69, 70], as well as exhibit anti-fibrotic 
properties[71].

Adiponectin and leptin have been reported to induce browning of adipose tissue [72, 73] 
and adiponectin promotes adipogenesis as well as increasing lipid accumulation and 
insulin responsiveness of adipocytes [74]. In contrast, leptin inhibits insulin-dependent 
glucose uptake and lipogenesis and reverses insulin-induced lipolysis [75]. Ghrelin 
stimulates adipogenesis and glucose uptake, as well as inhibiting lipolysis, apoptosis 
and autophagy of adipocytes [76, 77]. Resistin and visfatin enhance pro-inflammatory 
cytokine expression in adipose tissue including TNF-α and IL-6 [78, 79]. Similarly, 
resistin and visfatin induce insulin resistance in adipocytes [79, 80]. The influence of 
these adipokines is not limited to skin and adipose tissue. The beneficial and 
detrimental effects of these adipokines on various cell types and tissues are 
summarized in Figure 1 and the reader is also referred to recent reviews for further 
detail [17, 81-88].
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Figure 1. Effects of adipokines on various tissues and organs

Adipokine changes in burns and critically ill patients 
Several studies have demonstrated acute reductions in circulating adiponectin levels in 
critical illness and/or injury including burns, sepsis and trauma [89-95]. In addition, an 
inverse association was reported between serum adiponectin levels and severity of 
illness as measured by C-Reactive Protein (CRP), Simplified Acute Physiology Score 
(SAPS) II and Sequential Organ Failure Assessment (SOFA) scores [91, 92, 95]. 
Similar findings were observed in patients with acute pancreatitis, where adiponectin 
levels in the blood were negatively associated with severity of disease and incidence of 
tissue necrosis [93]. Furthermore, adiponectin levels progressively increase with patient 
recovery [91, 94]. Although the above findings indicate that decreased serum 
adiponectin levels may lead to poor outcomes, other research has reported different 
findings. Circulating adiponectin levels in severely ill patients did not correlate with 
inflammatory markers including Interleukin (IL) -6, IL-10 and Tumour Necrosis Factor 
(TNF)-α [89, 96, 97] and clinical scores including Acute Physiologic Assessment and 
Chronic Health Evaluation (APACHE) II score and SOFA [96, 98, 99]. Furthermore, 
higher blood adiponectin levels were associated with increased risk of mortality during 
critical illness[100-103].

Only two studies have investigated circulating ghrelin levels in critical illness. Wade et al 
reported significantly reduced ghrelin levels in severely burned patients correlating with 
metabolic/caloric needs.  No other associations with other parameters such as injury 
severity and inflammatory status were observed [89]. Santacruz et al also observed 
significantly reduced plasma ghrelin levels in critically ill patients but saw no correlations 
with feeding status [104].

Leptin levels in the blood have been reported to be elevated in critical illness [105-108]. 
Furthermore, leptin was positively associated with pro-inflammatory status of severely ill 
patients, as measured by CRP, IL-6, sTNFR1 and TNF-α [106, 108-111]. Additionally, 
other studies have reported that serum-soluble leptin receptor (SLR) in patients 
correlated with inflammatory response and illness severity as measured by IL-6, lactate, 
procalcitonin and APACHE II score [112, 113]. Interestingly, elevated levels of leptin 
were observed in survivors of acute sepsis [105], while increased SLR levels in critically 
ill patients were associated with increased mortality [112]. However, other studies have 
reported different findings. Blood leptin levels in severely ill patients were similar or 
reduced compared to healthy volunteers [89, 94, 95, 109, 112, 114] and no associations 
were found between circulating leptin levels and inflammatory status, illness severity, or 
mortality in critical illness [94, 95, 107, 109, 111, 112, 114]. 

In contrast to the heterogeneity of results reported on the impact adiponectin, ghrelin 
and leptin on critical illness outcomes, the influence of resistin and visfatin on outcomes 
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of severely ill patients is consistent in the literature. Critically ill patients exhibit 
significantly elevated circulating levels of resistin [89, 95, 98, 99, 111, 115-120] and 
visfatin [111, 121-127]. Additionally, both resistin and visfatin significantly correlated 
with pro-inflammatory responses (including CRP, IL-6, IL-8  and TNF-α), and worse 
clinical severity scores (including APACHE II, Glasgow Coma score, multiple organ 
dysfunction score, SAPS II and SOFA)[89, 95, 98, 99, 111, 115-119, 121-127]. 
Furthermore, high resistin and visfatin levels in blood were associated with poor 
outcomes including mortality [116, 117, 122-126].

A systematic review examining the evidence for adipokines having an influence on 
critical care patients has been published recently [128]. It concludes that although 
strong observations were reported indicating the influence of adipokines on the 
prognosis of critical illness, additional larger studies that incorporate more diverse 
cohorts (such as age, gender, BMI, ethnic groups and different pathologies) is required 
to better understand the relationship between adipokines and critical illness. This is 
essential in order to validate the potential clinical value and utility of adipokines as 
diagnostic and/or prognostic biomarkers, as well their potential as therapeutic targets in 
critical illness including burn and trauma. Furthermore, studies to date have investigated 
the association of adipokines with critical illness in the acute setting only. This focus on 
the acute setting has further limited the translation of adipokines in clinical settings. 
Importantly, since medical care advancements have improved survival rates after critical 
trauma [129-131], greater emphasis is now placed on the  prevention and treatment of 
potentially debilitating long-term sequelae experienced by survivors of severe illness 
including chronic critical illness [132-134], prolonged pathophysiological responses[33] 
and scarring [135]. 

Conclusions
Several studies have reported changes in the serum levels of specific adipokines and 
their role in the regulation of a range of biological responses to injury including 
inflammation, metabolic dysregulation and wound healing is emerging. However a 
robust characterisation of the impact of such changes in individual adipokines on patient 
outcomes, especially in burns patients, is lacking. Large clinical and scientific studies 
are required to establish the mechanisms by which adipose tissue may influence patient 
outcomes and translate the research into clinical practice to improve short and long-
term outcomes of burn and critically ill patients.
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