UNIVERSITYOF

Correlated long-range mixed-harmonic fluctuations measured in pp, $\mathrm{p}+\mathrm{Pb}$ and low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions with the ATLAS detector

ATLAS Collaboration; Newman, Paul

DOI:
10.1016/j.physletb.2018.11.065

License:
Creative Commons: Attribution (CC BY)

Document Version

Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

ATLAS Collaboration \& Newman, P 2019, 'Correlated long-range mixed-harmonic fluctuations measured in pp, $\mathrm{p}+\mathrm{Pb}$ and low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions with the ATLAS detector', Physics Letters B, vol. 789, pp. 444-471. https://doi.org/10.1016/j.physletb.2018.11.065

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

Checked for eligibility 31/01/2019
https://doi.org/10.1016/j.physletb.2018.11.065

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

> -Users may freely distribute the URL that is used to identify this publication.
> -Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
> -User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
> -Users may not further distribute the material nor use it for the purposes of commercial gain.
> Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
> When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Correlated long-range mixed-harmonic fluctuations measured in $p p$, $p+\mathrm{Pb}$ and low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions with the ATLAS detector

The ATLAS Collaboration *

A R T I C L E I N F O

Article history:

Received 6 July 2018
Received in revised form 7 October 2018
Accepted 13 November 2018
Available online 2 January 2019
Editor: D.F. Geesaman

Abstract

Correlations of two flow harmonics v_{n} and v_{m} via three- and four-particle cumulants are measured in $13 \mathrm{TeV} p p, 5.02 \mathrm{TeV} p+\mathrm{Pb}$, and 2.76 TeV peripheral $\mathrm{Pb}+\mathrm{Pb}$ collisions with the ATLAS detector at the LHC. The goal is to understand the multi-particle nature of the long-range collective phenomenon in these collision systems. The large non-flow background from dijet production present in the standard cumulant method is suppressed using a method of subevent cumulants involving two, three and four subevents separated in pseudorapidity. The results show a negative correlation between v_{2} and v_{3} and a positive correlation between v_{2} and v_{4} for all collision systems and over the full multiplicity range. However, the magnitudes of the correlations are found to depend on the event multiplicity, the choice of transverse momentum range and collision system. The relative correlation strength, obtained by normalisation of the cumulants with the $\left\langle v_{n}^{2}\right\rangle$ from a two-particle correlation analysis, is similar in the three collision systems and depends weakly on the event multiplicity and transverse momentum. These results based on the subevent methods provide strong evidence of a similar long-range multi-particle collectivity in $p p, p+\mathrm{Pb}$ and peripheral $\mathrm{Pb}+\mathrm{Pb}$ collisions.

© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP ${ }^{3}$.

1. Introduction

One of the goals in the studies of azimuthal correlations in high-energy nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) is to understand the multi-parton dynamics of QCD in the strongly coupled nonperturbative regime [1]. Measurements of azimuthal correlations in small collision systems, such as $p p, p+\mathrm{A}$ or $d+\mathrm{A}$ collisions, have revealed the ridge phenomenon [2-6]: enhanced production of particle pairs at small azimuthal angle separation, $\Delta \phi$, extended over a wide range of pseudorapidity separation, $\Delta \eta$. The azimuthal structure has been related to harmonic modulation of particle densities, characterised by a Fourier expansion, $\mathrm{d} N / \mathrm{d} \phi \propto 1+2 \sum_{n=1}^{\infty} v_{n} \cos n\left(\phi-\Phi_{n}\right)$, where v_{n} and Φ_{n} represent the magnitude and the event-plane angle of the n th-order flow harmonic. They are also conveniently represented by the flow vector: $\boldsymbol{V}_{n}=v_{n} e^{\operatorname{in} \Phi_{n}}$. The v_{n} are known to depend on the collision system, but have weak dependence on collision energies [6,7]. The ridge reflects multi-parton dynamics early in the collision and has generated significant interest in the high-energy physics community. A key question is whether the long-range multi-particle collectivity reflects initial momentum correlation from gluon sat-

[^0]uration effects [8], or a final-state hydrodynamic response to the initial transverse collision geometry [9].

Further insight into the ridge phenomenon is obtained via a multi-particle correlation technique, known as cumulants, involving three or more particles [10-12]. The multi-particle cumulants probe the event-by-event fluctuation of a single flow harmonic v_{n}, as well as the correlated fluctuations between two flow harmonics, v_{n} and v_{m}. These event-by-event fluctuations are often represented by probability density distributions $p\left(v_{n}\right)$ and $p\left(v_{n}, v_{m}\right)$, respectively. For instance, the four-particle cumulants $c_{n}\{4\}=\left\langle v_{n}^{4}\right\rangle-2\left\langle v_{n}^{2}\right\rangle^{2}$ constrain the width of $p\left(v_{n}\right)$ [10], while the four-particle symmetric cumulants $\mathrm{sc}_{n, m}\{4\}=\left\langle v_{n}^{2} v_{m}^{2}\right\rangle-\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle$ quantify the lowest-order correlation between v_{n} and v_{m} [12]. The three-particle asymmetric cumulants such as $\operatorname{ac}_{n}\{3\}=\left\langle\boldsymbol{V}_{n}^{2} \boldsymbol{V}_{2 n}^{*}\right\rangle=$ $\left\langle v_{n}^{2} v_{2 n} \cos 2 n\left(\Phi_{n}-\Phi_{2 n}\right)\right\rangle[5,13]$ are sensitive to correlations involving both the flow magnitude v_{n} and flow phase Φ_{n}.

One of the challenges in the study of azimuthal correlations in small collision systems is how to distinguish the long-range ridge from "non-flow" correlations involving only a few particles, such as resonance decays, jets, or dijets. For two-particle correlations, the non-flow contribution is commonly suppressed by requiring a large $\Delta \eta$ gap between the two particles in each pair and a peripheral subtraction procedure [3-5,7,14,15]. For multi-particle cumulants, the non-flow contributions can be suppressed by requiring correlation between particles from different subevents separated in η,
while preserving the genuine long-range multi-particle correlations associated with the ridge. Here each subevent is a collection of particles in a given η range. This so-called "subevent method" has been demonstrated to measure reliably $c_{n}\{4\}$ and $\mathrm{sc}_{n, m}\{4\}[13$, 16]. In contrast, $c_{n}\{4\}$ and $\mathrm{sc}_{n, m}\{4\}$ based on the standard cumulant method are contaminated by non-flow correlations over the full multiplicity range in $p p$ collisions and the low multiplicity region in $p+\mathrm{A}$ collisions [16]. In small collision systems, measurements have been performed for $c_{n}\{4\}$ with both the standard [15, 17] and subevent methods [18], and for $s c_{n, m}\{4\}$ with the standard method [19]. The subevent method has not yet been used to measure $\mathrm{sc}_{n, m}\{4\}$, and no measurements of $\mathrm{ac}_{n}\{3\}$ have ever been attempted in small collision systems.

This Letter presents measurements of $\mathrm{sc}_{2,3}\{4\}, \mathrm{sc}_{2,4}\{4\}$ and $\mathrm{ac}_{2}\{3\}$ in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}, p+\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV and low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$. They are obtained using two-, three- and four-subevent cumulant methods and are compared with results from the standard cumulant method. The cumulants are normalised by the $\left\langle v_{n}^{2}\right\rangle$ obtained from a two-particle correlation analysis [7] to quantify their relative correlation strength. The measurements suggest that the results obtained with the standard method are strongly contaminated by correlations from non-flow sources. The results obtained with the three-subevent method or the four-subevent method provide new evidence of long-range three- or four-particle azimuthal correlations.

The Letter is organised as follows. Details of the ATLAS detector, the trigger system, datasets, as well as event and track selections are provided in Sections 2 to 4 . Section 5 describes the standard and subevent cumulant methods used in this analysis. The analysis procedure and systematic uncertainties are described in Sections 6 and 7, respectively. The measured cumulants are presented in Section 8. A summary is given in Section 9.

2. Detector and trigger

The ATLAS detector [20] provides nearly full solid-angle coverage around the collision point with tracking detectors, calorimeters, and muon chambers, and is well suited for measurement of multi-particle correlations over a large pseudorapidity range. ${ }^{1}$ The measurements were performed using primarily the inner detector (ID), minimum-bias trigger scintillators (MBTS) and the zerodegree calorimeters (ZDC). The ID detects charged particles within $|\eta|<2.5$ using a combination of a silicon pixel detector, a silicon microstrip detector (SCT), and a straw-tube transition radiation tracker, all immersed in a 2 T axial magnetic field [21]. An additional pixel layer, the "insertable B-layer" (IBL) [22] is installed between the Run-1 (2010-2013) and Run-2 (2015-2018) periods. The MBTS detects charged particles within $2.1 \lesssim|\eta| \lesssim 3.9$ using two hodoscopes of counters positioned at $z= \pm 3.6 \mathrm{~m}$. The ZDC, used only in $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ collisions, are positioned at $\pm 140 \mathrm{~m}$ from the collision point, and detect neutral particles, primarily neutrons and photons, with $|\eta|>8.3$.

The ATLAS trigger system [23,24] consists of a first-level (L1) trigger implemented using a combination of dedicated electronics and programmable logic, and a high-level trigger (HLT) implemented in processors. The HLT reconstructs charged-particle tracks

[^1]Table 1
The list of datasets used in this analysis.

	$\mathrm{Pb}+\mathrm{Pb}$	$p+\mathrm{Pb}$	$p p$
Integrated luminosity	$7 \mu \mathrm{bb}^{-1}(2010)$	$28 \mathrm{nb}^{-1}(2013)$	$0.07 \mathrm{pb}^{-1}(2015)$
(year)		$0.3 \mathrm{nb}^{-1}(2016)$	$0.84 \mathrm{pb}^{-1}(2016)$

using methods similar to those applied in the offline analysis. The HLT enables the high-multiplicity track triggers (HMT) to select events according to the number of tracks having $p_{\mathrm{T}}>0.4 \mathrm{GeV}$ matched to the primary vertex, $N_{\mathrm{ch}}^{\mathrm{HLT}}$. The different HMT triggers apply additional requirements on either the total transverse energy $\left(E_{\mathrm{T}}\right)$ in the calorimeters or the number of hits in the MBTS found by the L1 trigger, as well as on $N_{\mathrm{ch}}^{\mathrm{HLT}}$ by the HLT trigger. The $p p$ and $p+\mathrm{Pb}$ data were collected using combinations of the minimum-bias and HMT triggers. The minimum-bias trigger required either a hit in at least one MBTS counter, or a hit in at least one MBTS counter on each side, or at least one reconstructed track at the HLT seeded by a random trigger at L1. More detailed information about the triggers used for the $p p$ and $p+\mathrm{Pb}$ data and their performance can be found in Refs. [7,25] and Refs. [5,26], respectively.

3. Datasets and Monte Carlo simulations

This analysis is based on ATLAS datasets corresponding to integrated luminosities of $0.9 \mathrm{pb}^{-1}$ of $p p$ data recorded at $\sqrt{s}=$ $13 \mathrm{TeV}, 28 \mathrm{nb}^{-1}$ of $p+\mathrm{Pb}$ data recorded at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, and $7 \mu \mathrm{~b}^{-1}$ of $\mathrm{Pb}+\mathrm{Pb}$ data at $\sqrt{S_{\mathrm{NN}}}=2.76 \mathrm{TeV}$. The $2.76 \mathrm{TeV} \mathrm{Pb}+\mathrm{Pb}$ data were collected in 2010 . The $p+\mathrm{Pb}$ data were mainly collected in 2013, but also include $0.3 \mathrm{nb}^{-1}$ of data collected in 2016, which increase the number of events at moderate multiplicity (see Section 4). During both $p+\mathrm{Pb}$ runs, the LHC was configured to provide a 4 TeV proton beam and a 1.57 TeV per-nucleon Pb beam, which produced collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$, with a rapidity shift of 0.465 of the nucleon-nucleon centre-of-mass frame towards the proton beam direction relative to the ATLAS rest frame. The direction of the Pb beam is always defined to have negative pseudorapidity. The $13 \mathrm{TeV} p p$ data were collected during several special runs of the LHC with low pile-up in 2015 and 2016. A summary of the datasets used in this analysis is shown in Table 1.

The track reconstruction efficiency was determined using simulated Monte Carlo (MC) event samples (Section 4). The $p p$ events were simulated with the PYthia8 MC event generator [27] using the A2 set of tuned parameters with MSTW2008LO parton distribution functions [28]. The HJJING event generator [29] was used to produce $\mathrm{Pb}+\mathrm{Pb}$ and $p+\mathrm{Pb}$ collisions with the same energy and the same boost of the centre-of-mass system as in the data. The detector response was simulated using Geant4 $[30,31]$ with detector conditions matching those during the data-taking. The simulated events and data events are reconstructed with the same algorithms. The MC sample for $\mathrm{Pb}+\mathrm{Pb}$ events in the multiplicity region of interest is very small, and so the track reconstruction efficiency for $\mathrm{Pb}+\mathrm{Pb}$ was taken from the larger $p+\mathrm{Pb}$ sample reconstructed with the same reconstruction algorithm. The efficiency in $p+\mathrm{Pb}$ events was found to be consistent with the efficiency from the $\mathrm{Pb}+\mathrm{Pb} \mathrm{MC}$ simulation [17].

4. Event and track selection

The offline event selection for the $p p$ and $p+\mathrm{Pb}$ data requires at least one reconstructed vertex with its longitudinal position satisfying $\left|z_{\mathrm{vtx}}\right|<100 \mathrm{~mm}$ relative to the nominal interaction point. The vertex is required to have at least two associated tracks with $p_{\mathrm{T}}>0.4 \mathrm{GeV}$. The mean number of collisions per bunch crossing, μ, was $0.002-0.8$ for the 13 TeV pp data, 0.03 for the 2013
$p+\mathrm{Pb}$ data, and $0.001-0.006$ for the $2016 p+\mathrm{Pb}$ data. In order to suppress additional interactions in the same bunch crossing (referred to as pile-up) in $p p$ collisions, events containing additional vertices with at least four associated tracks are rejected. In $p+\mathrm{Pb}$ collisions, events with more than one good vertex, defined as any vertex for which the scalar sum of the p_{T} of the associated tracks is greater than 5 GeV , are rejected. The remaining pile-up events are further suppressed by using the signal in the ZDC in the direction of the Pb beam. This signal is calibrated to the number of detected neutrons, N_{n}, by using the location of the peak corresponding to a single neutron. The distribution of N_{n} in events with pile-up is broader than that for the events without pile-up. Hence a simple requirement on the ZDC signal distribution is used to further suppress events with pile-up, while retaining more than 98% of events without pile-up. The impact of residual pile-up, at the level of $\lesssim 10^{-3}$, is studied by comparing the results obtained from data with different μ values.

The offline event selection for the $\mathrm{Pb}+\mathrm{Pb}$ data requires $\left|z_{\mathrm{vtx}}\right|<$ 100 mm . The selection also requires a time difference $|\Delta t|<3 \mathrm{~ns}$ between signals in the MBTS trigger counters on either side of the interaction point to suppress non-collision backgrounds. A coincidence between the ZDC signals at forward and backward pseudorapidity is required to reject a variety of background processes, while maintaining high efficiency for inelastic processes. The fraction of events with more than one interaction after applying these selection criteria is less than 10^{-4}.

Charged-particle tracks and collision vertices are reconstructed using algorithms optimised for improved performance for Run-2. In order to compare directly with the $p p$ and $p+\mathrm{Pb}$ systems using event selections based on the multiplicity of the collisions, a subset of data from low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions, collected during the 2010 LHC heavy-ion run with a minimum-bias trigger, was analysed using the same track reconstruction algorithm as that used for $p+\mathrm{Pb}$ collisions. For the $\mathrm{Pb}+\mathrm{Pb}$ and $2013 p+\mathrm{Pb}$ analyses, tracks are required to have a p_{T}-dependent minimum number of hits in the SCT. The transverse $\left(d_{0}\right)$ and longitudinal $\left(z_{0} \sin \theta\right)$ impact parameters of the track relative to the vertex are required to be less than 1.5 mm . Additional requirements $\left|d_{0}\right| / \sigma_{d_{0}}<3$ and $\left|z_{0} \sin \theta\right| / \sigma_{z_{0}}<3$ are imposed, where $\sigma_{d_{0}}$ and $\sigma_{z_{0}}$ are the uncertainties of the transverse and longitudinal impact parameter values, respectively. A more detailed description of the track selection for the $2010 \mathrm{~Pb}+\mathrm{Pb}$ data and $2013 p+\mathrm{Pb}$ data can be found in Refs. [5,17].

For all the data taken since the start of Run-2, the track selection criteria make use of the IBL, as described in Refs. [14,25]. For the $p p$ and $2016 p+\mathrm{Pb}$ analyses, the tracks are required to satisfy $\left|d_{0}^{\mathrm{BL}}\right|<1.5 \mathrm{~mm}$ and $\left|z_{0} \sin \theta\right|<1.5 \mathrm{~mm}$, where d_{0}^{BL} is the transverse impact parameter of the track relative to the beam line (BL).

The cumulants are calculated using tracks passing the above selection requirements, and having $|\eta|<2.5$ and $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ or $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$. These two p_{T} ranges are chosen because they were often used in the previous ridge measurements at the LHC $[6,7,14,15,17]$. However, to count the number of reconstructed charged particles for event-class definition (denoted by $\left.N_{\mathrm{ch}}^{\text {rec }}\right)$, tracks with $p_{\mathrm{T}}>0.4 \mathrm{GeV}$ and $|\eta|<2.5$ are used for compatibility with the requirements in the HLT selections described above. Due to different trigger requirements, most of the $p+\mathrm{Pb}$ events with $N_{\mathrm{cc}}^{\text {rec }}>150$ are provided by the 2013 dataset, while the 2016 dataset provides most of the events at lower $N_{\text {ch }}^{\text {rec }}$.

The efficiency of the combined track reconstruction and track selection requirements is estimated using MC samples reconstructed with the same algorithms and selection requirements as in data. Efficiencies, $\epsilon\left(\eta, p_{\mathrm{T}}\right)$, are evaluated as a function of track $\eta, p_{\text {T }}$ and the number of reconstructed charged-particle tracks, but averaged over the full range in azimuth. The efficiencies are simi-
lar for events with the same multiplicity. For all collision systems, the efficiency increases by about 4% as track p_{T} increases from 0.3 GeV to 0.6 GeV . Above 0.6 GeV , the efficiency is independent of p_{T} and reaches 86% (72\%) for Run- $1 p p$ and $p+\mathrm{Pb}$, and 83% (70%) for $\mathrm{Pb}+\mathrm{Pb}$ and Run-2 $p+\mathrm{Pb}$ collisions, at $\eta \approx 0(|\eta|>2)$. The efficiency is independent of the event multiplicity for $N_{\text {ch }}^{\text {rec }}>40$. For lower-multiplicity events the efficiency is smaller by up to 3% due to broader d_{0} and $z_{0} \sin \theta$ distributions [17].

The fraction of falsely reconstructed charged-particle tracks is also estimated and found to be negligibly small in all datasets. This fraction decreases with increasing track p_{T}, and even at the lowest transverse momenta of 0.3 GeV it is below 1% of the total number of tracks. Therefore, there is no correction for the presence of such tracks in the analysis.

In the simulated events, the reconstruction efficiency reduces the measured charged-particle multiplicity relative to the generated multiplicity for primary charged particles. A correction factor b is used to correct $N_{\mathrm{ch}}^{\text {rec }}$ to obtain the efficiency-corrected average number of charged particles per event, $\left\langle N_{\mathrm{ch}}\right\rangle=b\left\langle N_{\mathrm{ch}}^{\mathrm{rec}}\right\rangle$. The value of the correction factor is obtained from the MC samples described above, and is found to be nearly independent of $N_{c h}^{\text {rec }}$ in the range used in this analysis, $N_{\mathrm{ch}}^{\mathrm{rec}}<400$. Its value and the associated uncertainties are $b=1.29 \pm 0.05$ for the $\mathrm{Pb}+\mathrm{Pb}$ and 2013 $p+\mathrm{Pb}$ collisions and $b=1.18 \pm 0.05$ for Run $-2 p+\mathrm{Pb}$ and $p p$ collisions [32]. Both $\operatorname{sc}_{n, m}\{4\}$ and $\mathrm{ac}_{2}\{3\}$ are then studied as a function of $\left\langle N_{\mathrm{ch}}\right\rangle$.

5. Cumulant method

The multi-particle cumulant method [10] has the advantage of directly reducing non-flow correlations from jets and dijets. The mathematical framework for the standard cumulant is based on the Q-cumulants discussed in Refs. [11,12,33]. It was extended recently to the case of subevent cumulants in Refs. [13,16]. These methods are briefly summarised below.

5.1. Cumulants in the standard method

The standard cumulant method calculates k-particle azimuthal correlations, $\langle\{k\}\rangle$, in one event using a complex number notation [11,12]:
$\left\langle\{2\}_{n}\right\rangle=\left\langle\mathrm{e}^{\mathrm{i} n\left(\phi_{1}-\phi_{2}\right)}\right\rangle, \quad\left\langle\{3\}_{n}\right\rangle=\left\langle\mathrm{e}^{\mathrm{i} n\left(\phi_{1}+\phi_{2}-2 \phi_{3}\right)}\right\rangle$,
$\left\langle\{4\}_{n, m}\right\rangle=\left\langle\mathrm{e}^{\mathrm{in}\left(\phi_{1}-\phi_{2}\right)+\mathrm{im}\left(\phi_{3}-\phi_{4}\right)}\right\rangle$,
where " \rangle " denotes a single-event average over all pairs, triplets or quadruplets, respectively. The averages from Eq. (1) can be expressed in terms of per-particle normalised flow vectors $\boldsymbol{q}_{n ; l}$ with $l=1,2 \ldots$ in each event [11]:
$\boldsymbol{q}_{n ; l} \equiv \sum_{j} w_{j}^{l} \mathrm{e}^{\mathrm{i} n \phi_{j}} / \sum_{j} w_{j}^{l}$,
where the sum runs over all tracks in the event and w_{j} is a weight assigned to the j th track. This weight is constructed to correct for both detector non-uniformity and tracking inefficiency as explained in Section 6.

The multi-particle asymmetric and symmetric cumulants are obtained from $\langle\{k\}\rangle$ as:
$\operatorname{ac}_{n}\{3\}=\left\langle\left\langle\{3\}_{n}\right\rangle\right\rangle, \quad \operatorname{sc}_{n, m}\{4\}=\left\langle\left\langle\{4\}_{n, m}\right\rangle-\left\langle\left\langle\{2\}_{n}\right\rangle\right\rangle\left\langle\left\langle\{2\}_{m}\right\rangle\right\rangle\right.$,
where " $\langle\rangle$ " represents a weighted average of $\langle\{k\}\rangle$ over an event ensemble with similar $N_{\text {ch }}^{\text {rec }}$. One averages first over all distinct
pairs, triplets or quadruplets in one event to obtain $\left\langle\{2\}_{n}\right\rangle,\left\langle\{2\}_{m}\right\rangle$, $\left\langle\{3\}_{n}\right\rangle$ and $\left\langle\{4\}_{n, m}\right\rangle$. Then the obtained values are averaged over an event ensemble with similar $N_{\mathrm{ch}}^{\text {rec }}$ to obtain $\mathrm{sc}_{n, m}\{4\}$ and $\mathrm{ac}_{n}\{3\}$. In the absence of non-flow correlations, $\mathrm{sc}_{n, m}\{4\}$ and $\mathrm{ac}_{n}\{3\}$ measure the correlation between v_{n} and v_{m} or between v_{n} and $v_{2 n}$:

$$
\begin{align*}
\mathrm{ac}_{n}\{3\} & =\left\langle\mathbf{V}_{n}^{2} \mathbf{V}_{2 n}^{*}\right\rangle=\left\langle v_{n}^{2} v_{2 n} \cos 2 n\left(\Phi_{n}-\Phi_{2 n}\right)\right\rangle, \tag{4}\\
\mathrm{sc}_{n, m}\{4\} & =\left\langle v_{n}^{2} v_{m}^{2}\right\rangle-\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle, \tag{5}
\end{align*}
$$

where the averages are taken over the events. This analysis measures three types of cumulants defined in Eq. (3): $\mathrm{sc}_{2,3}\{4\}, \mathrm{sc}_{2,4}\{4\}$ and $\mathrm{ac}_{2}\{3\}$.

5.2. Cumulants in the subevent method

In the standard cumulant method described above, all k-particle multiplets involved in $\left\langle\{k\}_{n}\right\rangle$ and $\left\langle\{k\}_{n, m}\right\rangle$ are selected using tracks in the entire ID acceptance of $|\eta|<\eta_{\max }=2.5$. To suppress further the non-flow correlations that typically involve a few particles within a localised region in η, the tracks are divided into several subevents, each covering a unique η interval. The multi-particle correlations are then constructed by only correlating tracks between different subevents.

In the two-subevent cumulant method, the tracks are divided into two subevents, labelled by a and b, according to $-\eta_{\max }<$ $\eta_{a}<0$ and $0 \leq \eta_{b}<\eta_{\text {max }}$. The per-event k-particle azimuthal correlations are evaluated as:
$\left\langle\{2\}_{n}\right\rangle_{a \mid b}=\left\langle\mathrm{e}^{\mathrm{in}\left(\phi_{1}^{a}-\phi_{2}^{b}\right)}\right\rangle,\left\langle\{3\}_{n}\right\rangle_{2 a \mid b}=\left\langle\mathrm{e}^{\mathrm{i} n\left(\phi_{1}^{a}+\phi_{2}^{a}-2 \phi_{3}^{b}\right)}\right\rangle$,
$\left\langle\{4\}_{n, m}\right\rangle_{2 a \mid 2 b}=\left\langle\mathrm{e}^{\mathrm{in}\left(\phi_{1}^{a}-\phi_{2}^{b}\right)+\mathrm{im}\left(\phi_{3}^{a}-\phi_{4}^{b}\right)}\right\rangle$,
where the superscript or subscript $a(b)$ indicates tracks chosen from the subevent $a(b)$. Here the three- and four-particle cumulants are defined as:
$\mathrm{ac}_{n}^{2 a \mid b}\{3\}=\left\langle\left\langle\{3\}_{n}\right\rangle\right\rangle_{2 a \mid b}$,
$\mathrm{sc}_{n, m}^{2 a \mid 2 b}\{4\}=\left\langle\left\langle\{4\}_{n, m}\right\rangle_{2 a \mid 2 b}-\left\langle\left\langle\{2\}_{n}\right\rangle\right\rangle_{a \mid b}\left\langle\left\langle\{2\}_{m}\right\rangle\right\rangle_{a \mid b}\right.$.
The two-subevent method suppresses correlations within a single jet (intra-jet correlations), since particles from one jet usually fall in one subevent.

In the three-subevent cumulant method, tracks in each event are divided into three subevents a, b and c, each covering one third of the η range, $-\eta_{\max }<\eta_{a}<-\eta_{\max } / 3,\left|\eta_{b}\right| \leq \eta_{\max } / 3$ and $\eta_{\max } / 3<\eta_{c}<\eta_{\text {max }}$. The multi-particle azimuthal correlations and cumulants are then evaluated as:
$\left\langle\{3\}_{n}\right\rangle_{a, b \mid c}=\left\langle\mathrm{e}^{\mathrm{in}\left(\phi_{1}^{a}+\phi_{2}^{b}-2 \phi_{3}^{c}\right)}\right\rangle$,
$\left\langle\{4\}_{n, m}\right\rangle_{a, b \mid 2 c}=\left\langle\mathrm{e}^{\mathrm{in}\left(\phi_{1}^{a}-\phi_{2}^{c}\right)+\mathrm{i} m\left(\phi_{3}^{b}-\phi_{4}^{c}\right)}\right\rangle$,
and
$\mathrm{ac}_{n}^{a, b \mid c}\{3\}=\left\langle\left\langle\{3\}_{n}\right\rangle\right\rangle_{a, b \mid c}$,
$\mathrm{sc}_{n, m}^{a, b \mid 2 c}\{4\}=\left\langle\left\langle\{4\}_{n, m}\right\rangle_{a, b \mid 2 c}-\left\langle\left\langle\{2\}_{n}\right\rangle\right\rangle_{a \mid c}\left\langle\left\langle\{2\}_{m}\right\rangle_{b \mid c}\right.\right.$.
Since a dijet event usually produces particles in at most two subevents, the three-subevent method efficiently suppresses the non-flow contribution from inter-jet correlations associated with dijets. To maximise the statistical precision, the η range for subevent a is swapped with that for subevent b or c, and the results are averaged to obtain the final values.

The four-subevent cumulant method is only relevant for the symmetric cumulants $s c_{n, m}\{4\}$. Tracks in each event are divided into four subevents a, b, c, and d, each covering one quarter of the η range: $-\eta_{\max }<\eta_{a}<-\eta_{\max } / 2,-\eta_{\max } / 2 \leq \eta_{b}<0,0 \leq \eta_{c}<$ $\eta_{\text {max }} / 2$, and $\eta_{\text {max }} / 2 \leq \eta_{d}<\eta_{\text {max }}$. The multi-particle azimuthal correlations and cumulants are then evaluated as:

$$
\begin{align*}
& \left\langle\{4\}_{n, m}\right\rangle_{a, b \mid c, d}=\left\langle\mathrm{e}^{\mathrm{in}\left(\phi_{1}^{a}-\phi_{2}^{c}\right)+\mathrm{im}\left(\phi_{3}^{b}-\phi_{4}^{d}\right)}\right\rangle \tag{9}\\
& \mathrm{sc}_{n, m}^{a, b \mid c, d}\{4\}=\left\langle\left\langle\{4\}_{n, m}\right\rangle_{a, b \mid c, d}-\left\langle\left\langle\{2\}_{n}\right\rangle\right\rangle_{a \mid c}\left\langle\left\langle\{2\}_{m}\right\rangle_{b \mid d}\right.\right.
\end{align*}
$$

The four-subevent method based on Eqs. (9) and (10) should further suppress the residual non-flow contributions, for instance when each of the two jets from the dijet falls across the boundary between two neighbouring subevents. To maximise the statistical precision, the η ranges for the four subevents are swapped with each other, and the results are averaged to obtain the final values.

5.3. Normalised cumulants

Although the cumulants reflect the nature of the correlation between v_{n} and v_{m}, their magnitudes also depend on the square of single flow harmonics v_{n}^{2} and v_{m}^{2}, see Eq. (4). The dependence on the single flow harmonics can be scaled out via the normalised cumulants [34,35]:

$$
\begin{align*}
\mathrm{nsc}_{2,3}\{4\} & =\frac{\mathrm{sc}_{2,3}\{4\}}{v_{2}\{2\}^{2} v_{3}\{2\}^{2}}=\frac{\left\langle v_{2}^{2} v_{3}^{2}\right\rangle}{\left\langle v_{2}^{2}\right\rangle\left\langle v_{3}^{2}\right\rangle}-1, \tag{11}\\
\mathrm{nsc}_{2,4}\{4\} & =\frac{\mathrm{sc}_{2,4}\{4\}}{v_{2}\{2\}^{2} v_{4}\{2\}^{2}}=\frac{\left\langle v_{2}^{2} v_{4}^{2}\right\rangle}{\left\langle v_{2}^{2}\right\rangle\left\langle v_{4}^{2}\right\rangle}-1, \tag{12}\\
\operatorname{nac}_{2}\{3\} & =\frac{\mathrm{ac}_{2}\{3\}}{\sqrt{\left(2 v_{2}\{2\}^{4}+c_{2}\{4\}\right) c_{4}\{2\}}} \\
& =\frac{\left\langle v_{2}^{2} v_{4} \cos 4\left(\Phi_{2}-\Phi_{4}\right)\right\rangle}{\sqrt{\left\langle v_{2}^{4}\right\rangle\left\langle v_{4}^{2}\right\rangle}}, \tag{13}
\end{align*}
$$

where the $v_{n}\{2\}^{2}=\left\langle v_{n}^{2}\right\rangle$ are flow harmonics obtained using a twoparticle correlation method based on a peripheral subtraction technique [7,14], and $c_{2}\{4\}=\left\langle v_{2}^{4}\right\rangle-2\left\langle v_{2}^{2}\right\rangle^{2}$ are four-particle cumulant results from Refs. [17,18]. This definition for $\operatorname{nac}_{2}\{3\}$ is motivated by Ref. [36].

6. Analysis procedure

The measurement of the $\mathrm{sc}_{n, m}\{4\}$ and $\mathrm{ac}_{2}\{3\}$ follows the same analysis procedure as for the four-particle cumulants $c_{n}\{4\}$ in Ref. [18]. The multi-particle cumulants are calculated in three steps using charged particles with $|\eta|<2.5$. In the first step, $\left\langle\{2\}_{n}\right\rangle$, $\left\langle\{3\}_{n}\right\rangle$ and $\left\langle\{4\}_{n, m}\right\rangle$ from Eqs. (1), (6), (7) and (9) are calculated for each event from particles in one of two different $p_{\text {T }}$ ranges, $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ and $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$. The numbers of reconstructed charged particles in these p_{T} ranges are denoted by $N_{\mathrm{ch}}^{\text {sel1 }}$ and $N_{\mathrm{ch}}^{\text {sel2 }}$, respectively.

In the second step, the correlators $\langle\{k\}\rangle$ for $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ $\left(0.5<p_{\mathrm{T}}<5 \mathrm{GeV}\right)$ are averaged over events with the same $N_{\mathrm{ch}}^{\text {sel1 }}$ $\left(N_{\mathrm{ch}}^{\text {sel2 }}\right.$) to obtain $\left\langle\langle\{k\}\rangle\right.$, and then $\mathrm{sc}_{2,3}\{4\}, \mathrm{sc}_{2,4}\{4\}$ and $\mathrm{ac}_{2}\{3\}$. The $\mathrm{sc}_{2,3}\{4\}, \mathrm{sc}_{2,4}\{4\}$ and $\mathrm{ac}_{2}\{3\}$ values are then averaged in broader multiplicity ranges of the event ensemble, weighted by number of events, to obtain statistically significant results.

In the third step, the $\mathrm{sc}_{2,3}\{4\}, \mathrm{sc}_{2,4}\{4\}$ and $\mathrm{ac}_{2}\{3\}$ values obtained for a given $N_{\mathrm{ch}}^{\text {sel }}$ or $N_{\mathrm{ch}}^{\text {sel2 }}$ are mapped to $\left\langle N_{\mathrm{ch}}^{\text {rec }}\right\rangle$, the average number of reconstructed charged particles with $p_{\mathrm{T}}>0.4 \mathrm{GeV}$.

The mapping procedure is necessary so that $\mathrm{sc}_{2,3}\{4\}, \mathrm{sc}_{2,4}\{4\}$ and $\mathrm{ac}_{2}\{3\}$ obtained for the two different p_{T} ranges can be compared using a common x-axis defined by $\left\langle N_{\mathrm{ch}}^{\mathrm{rec}}\right\rangle$. The $\left\langle N_{\mathrm{ch}}^{\mathrm{rec}}\right\rangle$ value is then converted to $\left\langle N_{\mathrm{ch}}\right\rangle$, the efficiency-corrected average number of charged particles with $p_{\mathrm{T}}>0.4 \mathrm{GeV}$, as discussed in Section 4.

In order to account for detector inefficiencies and non-uniformity, particle weights used in Eq. (2) are defined as:
$w\left(\phi, \eta, p_{\mathrm{T}}\right)=d(\phi, \eta) / \epsilon\left(\eta, p_{\mathrm{T}}\right)$.
The additional weight factor $d(\phi, \eta)$ accounts for non-uniformities in the azimuthal acceptance of the detector as a function of η. All reconstructed charged particles with $p_{\mathrm{T}}>0.3 \mathrm{GeV}$ are entered into a two-dimensional histogram $N(\phi, \eta)$, and the weight factor is then obtained as $d(\phi, \eta) \equiv\langle N(\eta)\rangle / N(\phi, \eta)$, where $\langle N(\eta)\rangle$ is the track density averaged over ϕ in the given η bin. This procedure removes most of the ϕ-dependent non-uniformity in the detector acceptance [17].

In order to calculate the normalised cumulants from Eqs. (11)-(13), the flow harmonics $v_{n}\{2\}$ are obtained from a "template fit" of two-particle $\Delta \phi$ correlation as described in Refs. [7,14]. The $v_{n}\{2\}$ values are calculated identically to the procedure used in the previous ATLAS publications [7,14], but are further corrected for a bias, which exists only if $v_{n}\{2\}$ changes with $N_{\mathrm{ch}}^{\mathrm{rec}}$. The details of the correction procedure are given in the Appendix A and are discussed briefly below.

The standard procedure of Refs. [7,14] first constructs a $\Delta \phi$ distribution for pairs of tracks with $|\Delta \eta|>2$: the per-trigger-particle yield $Y(\Delta \phi)$ for a given $N_{\text {ch }}^{\text {rec }}$ range. The dominating non-flow jet peak at $\Delta \phi \sim \pi$ is estimated using low-multiplicity events with $N_{\mathrm{ch}}^{\text {rec }}<20$ and separated via a template fit procedure, and the harmonic modulation of the remaining component is taken as the $v_{n}\{2\}^{2}$ [7]:
$Y(\Delta \phi)=F Y(\Delta \phi)^{\text {peri }}+G^{\mathrm{tmp}}\left(1+2 \sum_{n=2}^{\infty} v_{n}\{2, \mathrm{tmp}\}^{2} \cos n \Delta \phi\right)$,
where superscripts "peri" and "tmp" indicate quantities for the $N_{\mathrm{ch}}^{\text {rec }}<20$ event class and quantities after the template fit for the event class of interest, respectively. The scale factor F and pedestal $G^{\text {tmp }}$ are fixed by the fit, and $v_{n}\{2, \mathrm{tmp}\}$ are calculated from a Fourier transform. This procedure implicitly assumes that $v_{n}\{2\}$ is independent of $N_{\mathrm{ch}}^{\text {rec }}$, and requires a small correction if $v_{n}\{2\}$ does change with $N_{\mathrm{ch}}^{\mathrm{rec}}($ Appendix A$)$. In $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ collisions, this correction in the $N_{\mathrm{ch}}^{\text {rec }}>100$ region amounts to a $2-6 \%$ reduction for $v_{2}\{2, \mathrm{tmp}\}$ and a $4-9 \%$ reduction for $v_{3}\{2, \mathrm{tmp}\}$ and $v_{4}\{2, \mathrm{tmp}\}$. The correction is smaller for $v_{2}\{2, \mathrm{tmp}\}$ in $p p$ collisions as it is nearly independent of $N_{\mathrm{ch}}^{\mathrm{rec}}$ [7].

7. Systematic uncertainties

The evaluation of the systematic uncertainties follows closely the procedure established for the four-particle cumulants $c_{n}\{4\}$ and described in Ref. [18]. The main sources of systematic uncertainties are related to the detector azimuthal non-uniformity, track selection, track reconstruction efficiency, trigger efficiency and pile-up. Due to the relatively poor statistics and larger non-flow effects, the systematic uncertainties are typically larger in $p p$ collisions. The systematic uncertainties are also generally larger, in percentage, for four-particle cumulants $\mathrm{sc}_{n, m}\{4\}$ than for the three-particle cumulants $\mathrm{ac}_{2}\{3\}$, since the $\left|\mathrm{sc}_{n, m}\{4\}\right|$ values are much smaller than those for $\mathrm{ac}_{2}\{3\}$. The systematic uncertainties are generally similar among the two- and three- and four-subevent methods, but are different from those for the standard method, which is strongly
influenced by non-flow correlations. The following discussion focuses on the three-subevent method, which is the default method used to present the final results.

The effect of detector azimuthal non-uniformity is accounted for using the weight factor $d(\phi, \eta)$. The impact of the weighting procedure is studied by fixing the weight to unity and repeating the analysis. The results are mostly consistent with the nominal results. The corresponding uncertainties for $\mathrm{sc}_{n, m}\{4\}$ vary in the range of $0-4 \%, 0-2 \%$ and $1-2 \%$ in $p p, p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ collisions, respectively. The uncertainties for $\mathrm{ac}_{2}\{3\}$ vary in the range of $0-2 \%$ in $p p$ collisions, and $0-1 \%$ in $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ collisions, respectively.

The systematic uncertainty associated with the track selection is estimated by tightening the $\left|d_{0}\right|$ and $\left|z_{0} \sin \theta\right|$ requirements. They are each varied from the default requirement of less than 1.5 mm to less than 1 mm . In $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ collisions, the requirement on the significance of impact parameters, $\left|d_{0}\right| / \sigma_{d_{0}}$ and $\left|z_{0} \sin \theta\right| / \sigma_{z_{0}}$ are also varied from less than 3 to less than 2 . For each variation, the tracking efficiency is re-evaluated and the analysis is repeated. For $\mathrm{ac}_{2}\{3\}$, which has a large flow signal, the differences from the nominal results are observed to be less than 2% for all collision systems. For $s c_{n, m}\{4\}$, for which the signal is small, the differences from the nominal results are found to be in the range of $2-10 \%$ in $p p$ collisions, $2-7 \%$ in $p+\mathrm{Pb}$ collisions and $2-4 \%$ in $\mathrm{Pb}+\mathrm{Pb}$ collisions. The differences are smaller for results obtained for $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ than those obtained for $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$.

Previous measurements indicate that the azimuthal correlations (both the flow and non-flow components) have a strong dependence on p_{T}, but a relatively weak dependence on η [5,7]. Therefore, p_{T}-dependent systematic effects in the track reconstruction efficiency could affect the cumulant values. The uncertainty in the track reconstruction efficiency is mainly due to differences in the detector conditions and material description between the simulation and the data. The efficiency uncertainty varies between 1% and 4%, depending on track η and p_{T} [7,17]. Its impact on multiparticle cumulants is evaluated by repeating the analysis with the tracking efficiency varied up and down by its corresponding uncertainty as a function of track p_{T}. For the standard cumulant method, which is more sensitive to jets and dijets, the evaluated uncertainty amounts to $2-6 \%$ in $p p$ collisions and less than 2% in $p+\mathrm{Pb}$ collisions for $\left\langle N_{\mathrm{ch}}\right\rangle>100$. For the subevent methods, the evaluated uncertainty is typically less than 3% for most of the $\left\langle N_{\mathrm{ch}}\right\rangle$ ranges.

Most events in $p p$ and $p+\mathrm{Pb}$ collisions are collected with the HMT triggers with several online $N_{\text {ch }}^{\text {rec }}$ thresholds. In order to estimate the possible bias due to trigger inefficiency as a function of $\left\langle N_{\mathrm{ch}}\right\rangle$, the offline $N_{\mathrm{ch}}^{\text {rec }}$ requirements are changed such that the HMT trigger efficiency is at least 50% or 80%. The results are obtained independently for each variation. These results are found to be consistent with each other for the subevent methods, and show some differences for the standard cumulant method in the low $\left\langle N_{\mathrm{ch}}\right\rangle$ region. The nominal analysis is performed using the 50% efficiency selection and the differences between the nominal results and those from the 80% efficiency selection are included in the systematic uncertainty. The changes for $p p$ collisions are in the range of $5-15 \%$ for $\mathrm{sc}_{2,3}\{4\}, 2-8 \%$ for $\mathrm{sc}_{2,4}\{4\}$ and $1-5 \%$ for $\mathrm{ac}_{2}\{3\}$. The ranges for $p+\mathrm{Pb}$ collisions are much smaller due to the much sharper turn-on of the trigger efficiency and larger signal: they are estimated to be $1-3 \%$ for $\mathrm{sc}_{2,3}\{4\}, 2-4 \%$ for $\mathrm{sc}_{2,4}\{4\}$ and $1-2 \%$ for $\mathrm{ac}_{2}\{3\}$.

In this analysis, a pile-up rejection criterion is applied to reject events containing additional vertices in $p p$ and $p+\mathrm{Pb}$ collisions. In order to check the impact of residual pile-up, the analysis is repeated without the pile-up rejection criterion. No differences are observed in $p+\mathrm{Pb}$ collisions, as is expected since the μ values in $p+\mathrm{Pb}$ are modest. For the $13 \mathrm{TeV} p p$ dataset, the differences with
and without pile-up rejection are in the range of $0-7 \%$ for $\mathrm{sc}_{2,3}\{4\}$, $2-15 \%$ for $\mathrm{sc}_{2,4}\{4\}$ and $2-3 \%$ for $\mathrm{ac}_{2}\{3\}$. As a cross-check, the $p p$ data are divided into two samples with approximately equal number of events based on the μ value: $\mu>0.4$ and $\mu<0.4$, and the results are compared. No systematic differences are observed between the two independent datasets.

The systematic uncertainties from different sources are added in quadrature to determine the total systematic uncertainty. In $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ collisions, the total uncertainties are in the range of $3-8 \%$ for $\mathrm{sc}_{2,3}\{4\}, 1-5 \%$ for $\mathrm{sc}_{2,4}\{4\}$ and $1-4 \%$ for $\mathrm{ac}_{2}\{3\}$. In $p p$ collisions, the total uncertainties are larger, mainly due to larger non-flow contribution, larger pile-up and the less sharp turn-on of the HMT triggers. They are in the ranges of $10-20 \%$ for $\mathrm{sc}_{2,3}\{4\}$, $10-20 \%$ for $\mathrm{sc}_{2,4}\{4\}$ and $2-5 \%$ for $\mathrm{ac}_{2}\{3\}$. The total systematic uncertainties are generally smaller than the statistical uncertainties.

The $v_{n}\{2\}$ values used to obtain normalised cumulants from Eqs. (11)-(13) are measured following the prescription of the previous ATLAS publications [7,14], resulting in very similar systematic uncertainties. The correction for the bias of the template fit procedure, as described in Section 6, reduces the sensitivity to the choice of the peripheral $N_{\mathrm{ch}}^{\text {rec }}$ bin. The uncertainties of normalised cumulants are obtained by propagation of the uncertainties from the original cumulants and $v_{n}\{2\}$, taking into account that the correlated systematic uncertainties partially cancel out.

8. Results

The results are presented in two parts. Section 8.1 presents a detailed comparison between the standard method and subevent methods to demonstrate the ability of the subevent methods to suppress non-flow correlations. Section 8.2 compares the cumulants among $p p, p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ collisions to provide insight into the common nature of collectivity in these systems.

8.1. Comparison between standard and subevent methods

The top row of Fig. 1 compares the $\mathrm{sc}_{2,3}\{4\}$ values obtained from the standard, two-, three- and four-subevent methods from $p p$ collisions in $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ (left panel) and $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ (right panel). The values from the standard method are positive over the full $\left\langle N_{\mathrm{ch}}\right\rangle$ range, and are larger at lower $\left\langle N_{\mathrm{ch}}\right\rangle$ or in the higher p_{T} range. This behaviour suggests that the $\mathrm{sc}_{2,3}\{4\}$ values from the standard method in $p p$ collisions, including those from Ref. [19], are strongly influenced by non-flow effects in all $\left\langle N_{\mathrm{ch}}\right\rangle$ and p_{T} ranges [16]. In contrast, the values from the subevent methods are negative over the full $\left\langle N_{\mathrm{ch}}\right\rangle$ range, and they are slightly more negative at lowest $\left\langle N_{\mathrm{ch}}\right\rangle$ and also more negative at higher p_{T}. The results are consistent among the various subevent methods for $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$. For the high p_{T} region of $0.5<$ $p_{\mathrm{T}}<5 \mathrm{GeV}$, results from the two-subevent method are systematically lower than those from the three- and four-subevent methods, suggesting that the two-subevent method may be affected by negative non-flow contributions. Such negative non-flow correlation has been observed in a Pythia8 calculation [16].

The middle row of Fig. 1 shows $\mathrm{sc}_{2,3}\{4\}$ from $p+\mathrm{Pb}$ collisions. At $\left\langle N_{\mathrm{ch}}\right\rangle>140$, the values are negative and consistent among all four methods, reflecting genuine long-range collective correlations. At $\left\langle N_{\mathrm{ch}}\right\rangle<140$, the values are different between the standard method and the subevent methods. The $\mathrm{sc}_{2,3}\{4\}$ from the standard method changes sign around $\left\langle N_{\mathrm{ch}}\right\rangle \sim 80$ and remains positive at lower $\left\langle N_{\mathrm{ch}}\right\rangle$, reflecting the contribution from non-flow correlations. In contrast, the $\operatorname{sc}_{2,3}\{4\}$ from various subevent methods are negative and consistent with each other at $\left\langle N_{\mathrm{ch}}\right\rangle<140$, suggesting that they mainly reflect the genuine long-range correlations.

The bottom row of Fig. 1 shows $\mathrm{sc}_{2,3}\{4\}$ from $\mathrm{Pb}+\mathrm{Pb}$ collisions. The results are consistent among all four methods across most of the $\left\langle N_{\mathrm{ch}}\right\rangle$ range. In the low $\left\langle N_{\mathrm{ch}}\right\rangle$ region, where the non-flow contribution is expected to be significant, the uncertainties of the results are too large to distinguish between different methods.

The results for the symmetric cumulant $\mathrm{sc}_{2,4}\{4\}$ are presented in Fig. 2. The top row shows the $\mathrm{sc}_{2,4}\{4\}$ obtained from the standard, two-subevent, three-subevent and four-subevent methods from $p p$ collisions in $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ (left panel) and $0.5<$ $p_{\mathrm{T}}<5 \mathrm{GeV}$ (right panel). The values of $\mathrm{sc}_{2,4}\{4\}$ are positive for all four methods. However, the results from the standard method are much larger than those from the subevent methods and also exhibit a much stronger increase towards the lower $\left\langle N_{\mathrm{ch}}\right\rangle$ region. This behaviour is consistent with the expectation that the standard method is more affected by dijets. Significant differences are also observed between the two-subevent and three- or four-subevent methods at low $\left\langle N_{\text {ch }}\right\rangle$, but these differences decrease and disappear for $\left\langle N_{\mathrm{ch}}\right\rangle>100$. Within the statistical uncertainties of the measurement, no differences are observed between the three- and four-subevent methods. This comparison suggests that the twosubevent method may not be sufficient to reject non-flow correlations from dijets in $p p$ collisions, and methods with three or more subevents are required to suppress the non-flow contribution over the measured $\left\langle N_{\mathrm{ch}}\right\rangle$ range.

The middle row of Fig. 2 shows $\mathrm{sc}_{2,4}\{4\}$ from $p+\mathrm{Pb}$ collisions. Significant differences are observed between the standard method and the subevent methods over the full $\left\langle N_{\mathrm{ch}}\right\rangle$ range. However, no differences are observed among the various subevent methods. These results suggest that the standard method is contaminated by large contributions from non-flow correlations at low $\left\langle N_{\mathrm{ch}}\right\rangle$, and these contributions may not vanish even at large $\left\langle N_{\text {ch }}\right\rangle$ values. All subevent methods suggest an increase of $\mathrm{sc}_{2,4}\{4\}$ toward lower $\left\langle N_{\mathrm{ch}}\right\rangle$ for $\left\langle N_{\mathrm{ch}}\right\rangle<40$, which may reflect some residual nonflow correlations in this region.

The bottom row of Fig. 2 shows $\mathrm{sc}_{2,4}\{4\}$ from $\mathrm{Pb}+\mathrm{Pb}$ collisions. The $\mathrm{sc}_{2,4}\{4\}$ values increase gradually with $\left\langle N_{\mathrm{ch}}\right\rangle$ for all four methods. This increase reflects the known fact that the v_{2} increases with $\left\langle N_{\mathrm{ch}}\right\rangle$ in $\mathrm{Pb}+\mathrm{Pb}$ collisions [37]. The values from the standard method are systematically larger than those from the subevent methods, and this difference varies slowly with $\left\langle N_{\text {ch }}\right\rangle$, similar to the behaviour observed in $p+\mathrm{Pb}$ collisions in the high $\left\langle N_{\mathrm{ch}}\right\rangle$ region.

The results for the asymmetric cumulant $\mathrm{ac}_{2}\{3\}$ are presented in Fig. 3. The top row shows the results obtained from the standard, two-subevent, and three-subevent methods from $p p$ collisions in $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ (left panel) and $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ (right panel). The results are positive for all methods. The results from the standard method are much larger than those from the subevent methods, consistent with the expectation that the standard method is more affected by non-flow correlations from dijets. Significant differences are also observed between the two-subevent and three-subevent methods at low $\left\langle N_{\mathrm{ch}}\right\rangle$, but these differences decrease and disappear at $\left\langle N_{\mathrm{ch}}\right\rangle>100$. The $\mathrm{ac}_{2}\{3\}$ values from the three-subevent method show a slight increase for $\left\langle N_{\text {ch }}\right\rangle<40$ but are nearly constant for $\left\langle N_{\mathrm{ch}}\right\rangle>40$. This behaviour suggests that in the three-subevent method, the non-flow contribution may play some role at $\left\langle N_{\mathrm{ch}}\right\rangle<40$, but is negligible for $\left\langle N_{\mathrm{ch}}\right\rangle>40$. Therefore, the $\mathrm{ac}_{2}\{3\}$ from the three-subevent method supports the existence of a three-particle long-range collective flow that is nearly independent of $\left\langle N_{\mathrm{ch}}\right\rangle$ in $p p$ collisions, consistent with the $\left\langle N_{\text {ch }}\right\rangle$-independent behaviour of v_{2} and v_{4} observed previously in the two-particle correlation analysis [7].

The middle and bottom rows of Fig. 3 show $\mathrm{ac}_{2}\{3\}$ from $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ collisions, respectively. The $\mathrm{ac}_{2}\{3\}$ values from the standard method have a significant non-flow contribution up to

Fig. 1. The symmetric cumulant $\mathrm{sc}_{2,3}\{4\}$ as a function of $\left\langle N_{\mathrm{ch}}\right\rangle$ for $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ (left panels) and $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ (right panels) obtained for $p p$ collisions (top row), $p+\mathrm{Pb}$ collisions (middle row) and low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions (bottom row). In each panel, the $\mathrm{sc}_{2,3}\{4\}$ is obtained from the standard method (filled symbol), the two-subevent method (open circles), three-subevent method (open squares) and four-subevent method (open diamonds). The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively.
$\left\langle N_{\mathrm{ch}}\right\rangle \sim 200$ in $p+\mathrm{Pb}$ collisions and $\left\langle N_{\mathrm{ch}}\right\rangle \sim 80$ in $\mathrm{Pb}+\mathrm{Pb}$ collisions. In the subevent methods, the influence of non-flow contributions is very small for $\left\langle N_{\mathrm{ch}}\right\rangle>60$ in both collision systems, and therefore the $\left\langle N_{\mathrm{ch}}\right\rangle$ dependence of $\mathrm{ac}_{2}\{3\}$ reflects the $\left\langle N_{\mathrm{ch}}\right\rangle$ dependence of the v_{2} and v_{4}. The ac $\mathrm{ac}_{2}\{3\}$ values from the subevent methods increase with $\left\langle N_{\mathrm{ch}}\right\rangle$, and the increase is stronger in $\mathrm{Pb}+\mathrm{Pb}$ collisions. This is consistent with previous observations that v_{2} and v_{4} increase with $\left\langle N_{\mathrm{ch}}\right\rangle$ more strongly in $\mathrm{Pb}+\mathrm{Pb}$ than in $p+\mathrm{Pb}$ collisions [17].

The values of $\mathrm{sc}_{2,4}\{4\}$ and $\mathrm{ac}_{2}\{3\}$, which are both measures of correlations between v_{2} and v_{4}, show significant differences between the standard method and the subevent methods, as shown in Figs. 2 and 3. The $\left\langle N_{\mathrm{ch}}\right\rangle$ dependence of these differences decreases gradually with $\left\langle N_{\mathrm{ch}}\right\rangle$, and is consistent with an influence of non-flow that is expected to scale as $1 /\left\langle N_{\mathrm{ch}}\right\rangle$. However, these differences seem to persist for $\left\langle N_{\mathrm{ch}}\right\rangle>200$ in $p+\mathrm{Pb}$ collisions and for $\left\langle N_{\mathrm{ch}}\right\rangle>150$ in $\mathrm{Pb}+\mathrm{Pb}$ collisions, which is not compatible with the predicted behaviour of non-flow correlations. The differences at

Fig. 2. The symmetric cumulant $\mathrm{sc}_{2,4}\{4\}$ as a function of $\left\langle N_{\mathrm{ch}}\right\rangle$ for $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ (left panels) and $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ (right panels) obtained for $p p$ collisions (top row), $p+\mathrm{Pb}$ collisions (middle row) and low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions (bottom row). In each panel, the $\mathrm{sc}_{2,4}\{4\}$ is obtained from the standard method (filled symbol), two-subevent method (open circles), three-subevent method (open squares) and four-subevent method (open diamonds). The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively.
large $\left\langle N_{\mathrm{ch}}\right\rangle$ may arise from longitudinal flow decorrelations $[38,39]$, which have been measured by CMS [40] and ATLAS [41]. Decorrelation effects are found to be large for v_{4} and strongly correlated with v_{2}, and therefore they are expected to reduce the $\mathrm{sc}_{2,4}\{4\}$ and $\mathrm{ac}_{2}\{3\}$ in the subevent method. Therefore, the observed differences between the standard method and subevent method reflect the combined contribution from non-flow correlations, which dominates in the low $\left\langle N_{\mathrm{ch}}\right\rangle$ region, and decorrelation, which is more important at large $\left\langle N_{\mathrm{ch}}\right\rangle$ (see further discussion in the Appendix B).

The results presented above suggest that the three-subevent method is sufficient to suppress most of the non-flow effects. It is therefore used as the default method for the discussion below.

8.2. Comparison between collision systems

Fig. 4 shows a direct comparison of cumulants for the three collision systems. The three panels in the top row show the results for $\mathrm{sc}_{2,3}\{4\}, \mathrm{sc}_{2,4}\{4\}$ and $\mathrm{ac}_{2}\{3\}$, respectively, for $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$. These results support the existence of a negative correlation between v_{2} and v_{3} and a positive correlation between v_{2} and v_{4}.

Fig. 3. The asymmetric cumulant $\mathrm{ac}_{2}\{3\}$ as a function of $\left\langle N_{\mathrm{ch}}\right\rangle$ for $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ (left panels) and $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ (right panels) obtained for $p p$ collisions (top row), $p+\mathrm{Pb}$ collisions (middle row) and low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions (bottom row). In each panel, the $\mathrm{ac}_{2}\{3\}$ is obtained from the standard method (filled symbol), two-subevent method (open circles), and three-subevent method (open squares). The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively.

Such correlation patterns have previously been observed in large collision systems [42-44], but are now confirmed also in the small collision systems, once non-flow effects are adequately suppressed. In the multiplicity range covered by the $p p$ collisions, $\left\langle N_{\mathrm{ch}}\right\rangle<150$, the results for symmetric cumulants $\mathrm{sc}_{2,3}\{4\}$ and $\mathrm{sc}_{2,4}\{4\}$ are similar among the three systems. In the range $\left\langle N_{\mathrm{ch}}\right\rangle>150,\left|\mathrm{sc}_{2,3}\{4\}\right|$ and $\mathrm{sc}_{2,4}\{4\}$ are larger in $\mathrm{Pb}+\mathrm{Pb}$ than in $p+\mathrm{Pb}$ collisions. The results for $\mathrm{ac}_{2}\{3\}$ are similar among the three systems at $\left\langle N_{\mathrm{ch}}\right\rangle<100$, but they deviate from each other at higher $\left\langle N_{\text {ch }}\right\rangle$. The $p p$ data are approximately constant or decrease slightly with $\left\langle N_{\mathrm{ch}}\right\rangle$, while the $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ data show significant increases as a function of
$\left\langle N_{\text {ch }}\right\rangle$. The bottom row shows the results for the higher p_{T} range of $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$, where similar trends are observed.

Fig. 5 shows the results for normalised cumulants, $\mathrm{nsc}_{2,3}\{4\}$, $\mathrm{nsc}_{2,4}\{4\}$ and $\operatorname{nac}_{2}\{3\}$, compared among the three systems. The normalised cumulants generally show a much weaker $\left\langle N_{\mathrm{ch}}\right\rangle$ dependence at $\left\langle N_{\mathrm{ch}}\right\rangle>100$, where the statistical uncertainties are small. This behaviour implies that the strong $\left\langle N_{\mathrm{ch}}\right\rangle$ dependence of the $\mathrm{sc}_{n, m}\{4\}$ and $\mathrm{ac}_{2}\{3\}$ values reflects the $\left\langle N_{\mathrm{ch}}\right\rangle$ dependence of the v_{n} values, and these dependences are removed in the normalised cumulants. The normalised cumulants are also similar among different collision systems at large $\left\langle N_{\mathrm{ch}}\right\rangle$, although some differences

Fig. 4. The $\left\langle N_{\mathrm{ch}}\right\rangle$ dependence of $\mathrm{sc}_{2,3}\{4\}$ (left panels), $\mathrm{sc}_{2,4}\{4\}$ (middle panels) and $\mathrm{ac}_{2}\{3\}$ (right panels) in $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ (top row) and $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ (bottom row) obtained for $p p$ collisions (solid circles), $p+\mathrm{Pb}$ collisions (open circles) and low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions (open squares). The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively.
at the relative level of $20-30 \%$ are observed for smaller $\left\langle N_{\text {ch }}\right\rangle$. The only exception is $\mathrm{nsc}_{2,3}\{4\}$, whose values in the $p p$ collisions are very different from those in $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ collisions. In contrast, the $\mathrm{sc}_{2,3}\{4\}$ values in Fig. 4 are close among different systems. This suggests that the $\left\langle v_{3}^{2}\right\rangle$ values from the template fit method [7] may be significantly underestimated. As pointed out in Ref. [7] and emphasised in Appendix A, the template fit method, and other methods based on peripheral subtraction in general [5,15], tend to underestimate the odd flow harmonics, due to the presence of a large away-side peak at $\Delta \phi \sim \pi$ in the two-particle correlation function. The comparison of $\mathrm{sc}_{2,3}\{4\}$ and $\mathrm{nsc}_{2,3}\{4\}$ among different collision systems provides indirect evidence of this underestimation of $\left\langle v_{3}^{2}\right\rangle$.

Fig. 5 shows that the normalised cumulants are consistent between $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ and $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$. On the other hand, the magnitudes of the cumulants in Fig. 4 differ by a large factor between the two p_{T} ranges: about a factor of three for $\mathrm{sc}_{2,3}\{4\}$ and $\mathrm{sc}_{2,4}\{4\}$, and a factor of two for $\mathrm{ac}_{2}\{3\}$. These results suggest that the p_{T} dependence of $\mathrm{sc}_{2,3}\{4\}, \mathrm{sc}_{2,4}\{4\}$ and $\mathrm{ac}_{2}\{3\}$ largely reflects the p_{T} dependence of the v_{n} at the single-particle level.

9. Discussion

Three- and four-particle cumulants involving correlations between two harmonics of different order v_{n} and v_{m} are measured in $\sqrt{s}=13 \mathrm{TeV} p p, \sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV} p+\mathrm{Pb}$, and low-multiplicity $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV} \mathrm{Pb}+\mathrm{Pb}$ collisions with the ATLAS detector at the LHC, with total integrated luminosities of $0.9 \mathrm{pb}^{-1}, 28 \mathrm{nb}^{-1}$, and $7 \mathrm{\mu b}^{-1}$, respectively. The correlation between v_{n} and v_{m} is studied using four-particle symmetric cumulants, $\mathrm{sc}_{2,3}\{4\}$ and
$\mathrm{Sc}_{2,4}\{4\}$, and the three-particle asymmetric cumulant $\mathrm{ac}_{2}\{3\}$. The symmetric cumulants $\operatorname{sc}_{n, m}\{4\}=\left\langle v_{n}^{2} v_{m}^{2}\right\rangle-\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle$ probe the correlation of the flow magnitudes, while the asymmetric cumulant $\mathrm{ac}_{2}\{3\}=\left\langle v_{2}^{2} v_{4} \cos 4\left(\Phi_{2}-\Phi_{4}\right)\right\rangle$ is sensitive to correlations involving both the flow magnitude v_{n} and flow phase Φ_{n}. They are calculated using the standard cumulant method, as well as the two-, three- and four-subevent methods to suppress non-flow effects. The final results are presented as a function of the average number of charged particles with $p_{\mathrm{T}}>0.4 \mathrm{GeV},\left\langle N_{\mathrm{ch}}\right\rangle$.

Significant differences are observed between the standard method and the subevent methods over the full $\left\langle N_{\mathrm{ch}}\right\rangle$ range in $p p$ collisions, as well as over the low $\left\langle N_{\mathrm{ch}}\right\rangle$ range in $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ collisions. The differences are larger for particles at higher p_{T} or at smaller $\left\langle N_{\mathrm{ch}}\right\rangle$. When analysed with the standard method in $p p$ collisions, this behaviour is compatible with the dominance of the non-flow correlations rather than the long-range collective flow correlations. Systematic, but much smaller, differences are also observed in the low $\left\langle N_{\text {ch }}\right\rangle$ region between the two-subevent method and three- or four-subevent methods, which indicate that the two-subevent method may still be affected by correlations arising from jets. On the other hand no differences are observed between the three-subevent and four-subevent methods, within experimental uncertainties, suggesting that methods with three or more subevents are sufficient to reject non-flow correlations from jets. Therefore, the three-subevent method is used to present the main results in this analysis.

The three-subevent method provides a measurement of negative $s c_{2,3}\{4\}$ and positive $s c_{2,4}\{4\}$ and $\mathrm{ac}_{2}\{3\}$ over nearly the full $\left\langle N_{\mathrm{ch}}\right\rangle$ range and in all three collision systems. These results indicate a negative correlation between v_{2} and v_{3} and a positive

Fig. 5. The $\left\langle N_{\mathrm{ch}}\right\rangle$ dependence of $\operatorname{nsc}_{2,3}\{4\}$ (left panels), $\operatorname{nsc}_{2,4}\{4\}$ (middle panels) and nac ${ }_{2}\{3\}$ (right panels) in $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ (top row) and $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ (bottom row) obtained for $p p$ collisions (solid circles), $p+\mathrm{Pb}$ collisions (open circles) and low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions (open squares). The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively.
correlation between v_{2} and v_{4}. Such correlation patterns have previously been observed in large collision systems [42-44], but are now confirmed in small collision systems, once non-flow effects are adequately suppressed. The values of $\mathrm{sc}_{2,3}\{4\}$ and $\mathrm{sc}_{2,4}\{4\}$ are consistent in $p p$ and $p+\mathrm{Pb}$ collisions over the same $\left\langle N_{\mathrm{ch}}\right\rangle$ range, but their magnitudes at large $\left\langle N_{\mathrm{ch}}\right\rangle$ are much smaller than those for $\mathrm{Pb}+\mathrm{Pb}$ collisions. The values of $\mathrm{ac}_{2}\{3\}$ are similar at very low $\left\langle N_{\mathrm{ch}}\right\rangle$ among the three systems, but are very different at large $\left\langle N_{\mathrm{ch}}\right\rangle$. On the other hand, after scaling by the $\left\langle v_{n}^{2}\right\rangle$ estimated from a two-particle analysis [7,14], the resulting normalised cumulants $\mathrm{nsc}_{2,3}\{4\}, \mathrm{nsc}_{2,4}\{4\}$ and nac $_{2}\{3\}$ show a much weaker dependence on $\left\langle N_{\mathrm{ch}}\right\rangle$, and their values are much closer to each other among the three systems. The magnitudes of the normalised cumulants are also similar to each other for $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ as well as $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$. This suggests that the $\left\langle N_{\mathrm{ch}}\right\rangle, p_{\mathrm{T}}$ and system dependence of the $\mathrm{sc}_{2,3}\{4\}, \mathrm{sc}_{2,4}\{4\}$ and $\mathrm{ac}_{2}\{3\}$ reflect mostly the $\left\langle N_{\mathrm{ch}}\right\rangle, p_{\mathrm{T}}$ and system dependence of $\left\langle v_{n}^{2}\right\rangle$, but the relative strengths of the correlations are similar for the three collision systems.

The new results obtained with the subevent cumulant technique provide further evidence that the ridge is indeed a longrange collective phenomenon involving many particles distributed across a broad rapidity interval. The similarity between different collision systems for $\mathrm{nsc}_{2,3}\{4\}$, $\mathrm{nsc}_{2,4}\{4\}$ and $\operatorname{nac}_{2}\{3\}$, and the weak dependence of these observables on the p_{T} range and $\left\langle N_{\mathrm{ch}}\right\rangle$, largely free from non-flow effects, provide an important input towards understanding the space-time dynamics and the properties of the medium created in small collision systems. These results provide inputs to distinguish between models based on initial-state momentum correlations and models based on final-state hydrodynamics.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat

Fig. 6. The values of $v_{n}\{2, \operatorname{tmp}\}^{2}$ obtained following the template fit procedure given in Eq. (14) [7] in $p p$ collisions for $n=2$ (left panel), $n=3$ (middle panel) and $n=4$ (right panel). In each panel, the values are calculated for three peripheral $N_{\mathrm{ch}}^{\mathrm{rec}}$ intervals: $N_{\mathrm{ch}}^{\mathrm{rec}}<20, N_{\mathrm{ch}}^{\mathrm{rec}}<10$ and $10 \leq N_{\mathrm{ch}}^{\text {rec }}<20$. Only statistical uncertainties are shown.

Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [45].

Appendix A. Improvement to the template fit procedure

In order to separate the long-range ridge from other nonflow sources, especially dijets, the ATLAS Collaboration developed a template fitting procedure described in Refs. [7,14]. The first step is to construct a $\Delta \phi$ distribution of particle pairs with large pseudorapidity separation $|\Delta \eta|>2$, the so-called "per-trigger" particle yield, $Y(\Delta \phi)$, for a given $N_{c h}^{\text {rec }}$ range. The $|\Delta \eta|>2$ requirement suppresses the intra-jet and other short-range correlations, and in small collision systems the resulting $Y(\Delta \phi)$ distributions are known to be dominated by away-side jet correlations [4,5,14]. This away-side non-flow component is peaked at $\Delta \phi \sim \pi$, and leads to a significant bias in the flow coefficients v_{n}, especially for the odd harmonics.

To subtract the away-side jet correlations, the measured $Y(\Delta \phi)$ distribution in a given $N_{\mathrm{ch}}^{\mathrm{rec}}$ interval is assumed to be a sum of a scaled "peripheral" distribution $Y(\Delta \phi)^{\text {peri }}$, obtained for lowmultiplicity events $N_{\mathrm{ch}}^{\mathrm{rec}}<20$, and a constant pedestal modulated by $\cos (n \Delta \phi)$ for $n \geq 2[7,14]$:

$$
\begin{align*}
Y(\Delta \phi)= & F Y(\Delta \phi)^{\text {peri }} \\
& +G^{\mathrm{tmp}}\left(1+2 \sum_{n=2}^{\infty} v_{n}\{2, \mathrm{tmp}\}^{2} \cos n \Delta \phi\right) \tag{14}
\end{align*}
$$

The scale factor F and pedestal $G^{\text {tmp }}$ are fixed by the fit, and $v_{n}\{2, \mathrm{tmp}\}$ are calculated from a Fourier transform. On the other hand, both $Y(\Delta \phi)$ and $Y(\Delta \phi)^{\text {peri }}$ contain a dijet component and flow component:

$$
\begin{equation*}
Y(\Delta \phi)=Y(\Delta \phi)_{\mathrm{jet}}^{\mathrm{cent}}+G^{\mathrm{cent}}\left(1+2 \sum_{n=2}^{\infty} v_{n}\{2\}^{2} \cos n \Delta \phi\right) \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
Y(\Delta \phi)^{\text {peri }}=Y(\Delta \phi)_{\text {jet }}^{\text {peri }}+G^{\text {peri }}\left(1+2 \sum_{n=2}^{\infty} v_{n}\{2, \text { peri }\}^{2} \cos n \Delta \phi\right) \tag{16}
\end{equation*}
$$

With the assumption that the shape of the dijet component is independent of $N_{\mathrm{ch}}^{\mathrm{rec}}$, and the magnitudes of the dijet components are related by the scale factor $F: Y(\Delta \phi)_{\text {jet }}^{\text {cent }}=F Y(\Delta \phi)_{\text {jet }}^{\text {peri }}$, Eq. (14) can be written as:

$$
\begin{aligned}
Y(\Delta \phi)= & Y(\Delta \phi)_{\text {jet }}^{\text {cent }}+\left(G^{\text {tmp }}+F G^{\text {peri }}\right) \\
& +2 \sum_{n=2}^{\infty}\left(G^{\text {tmp }} v_{n}\{2, \mathrm{tmp}\}^{2}+F G^{\text {peri }} v_{n}\{2, \text { peri }\}^{2}\right) \\
& \times \cos n \Delta \phi .
\end{aligned}
$$

Comparing with Eqs. (15) and (16), one obtains $G^{\text {cent }}=G^{\text {tmp }}+$ $F G^{\text {peri }}$ and the following relation:
$v_{n}\{2\}^{2}=v_{n}\{2, \mathrm{tmp}\}^{2}-\frac{F G^{\text {peri }}}{G^{\text {cent }}}\left(v_{n}\{2, \mathrm{tmp}\}^{2}-v_{n}\{2, \text { peri }\}^{2}\right)$,
which shows that $v_{n}\{2, \mathrm{tmp}\}$ from the template fit differs from the true $v_{n}\{2\}$ by a correction term that vanishes if and only if $v_{n}\{2\}$ is independent of $N_{\mathrm{ch}}^{\text {rec }}$. Since the true flow harmonics in the peripheral interval $v_{n}\{2$, peri $\}$ are unknown in principle, the correction is applied starting from the third-lowest $N_{\mathrm{ch}}^{\mathrm{rec}}$ interval ($40 \leq N_{\text {chl }}^{\text {rec }}<60$) in this analysis, by using $v_{n}\{2, \mathrm{tmp}\}$ of the second $N_{\mathrm{ch}}^{\text {rec }}$ interval $\left(20 \leq N_{\mathrm{ch}}^{\text {rec }}<40\right)$ as an estimate of the true flow harmonics. Since the non-flow contribution primarily affects the odd harmonics, the $v_{3}\{2, \mathrm{tmp}\}^{2}$ may become negative in the first few $N_{\mathrm{ch}}^{\text {rec }}$ intervals in $p p$ collisions. In such cases, the correction starts from the second $N_{\mathrm{ch}}^{\text {rec }}$ interval with positive $v_{3}\{2, \mathrm{tmp}\}^{2}$ ($60 \leq N_{\mathrm{ch}}^{\text {rec }}<80$) by using $v_{3}\{2, \mathrm{tmp}\}$ from the previous $N_{\mathrm{ch}}^{\text {rec }}$ interval ($40 \leq N_{\text {ch }}^{\text {rec }}<60$).

One important feature of the template fit analysis is the assumption that the dijet component $Y(\Delta \phi)_{\text {jet }}$ is independent of $\left\langle N_{\text {ch }}\right\rangle$. In Ref. [7], the uncertainty associated with this assumption is studied by changing the default peripheral interval from $N_{\mathrm{ch}}^{\mathrm{rec}}<20$ to $N_{\mathrm{ch}}^{\mathrm{rec}}<10$ and $10 \leq N_{\mathrm{ch}}^{\mathrm{rec}}<20$. It was found that the $v_{n}\{2, \mathrm{tmp}\}$ values are relatively insensitive to the choice of peripheral interval for $n=2$ and $n=4$, but the sensitivity is much larger for $n=3$. This finding is reproduced in Fig. 6 for $p p$ collisions, which shows that the $v_{3}\{2, \mathrm{tmp}\}^{2}$ values obtained via Eq. (14) differ substantially for the different $N_{\mathrm{ch}}^{\text {rec }}$ ranges.

In addition to the template fit with and without the above mentioned correction procedure, the ATLAS and CMS collaborations

Fig. 7. The v_{2} (left column), v_{3} (middle column) and v_{4} (right column) obtained from two-particle correlations in $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ in $p p$ (top row), $p+\mathrm{Pb}$ (middle row) and $\mathrm{Pb}+\mathrm{Pb}$ (bottom row) collisions. In each panel, they are compared between three methods: direct Fourier transformation (solid circles), template fit (open circles) and the improved template fit (open squares). The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively.
also calculated directly the $v_{n}\{2\}$ values via a Fourier transform of the $Y(\Delta \phi)$ distribution without dijet subtraction [7,19]. The differences between the direct Fourier transform and template fit reflect mainly the away-side jet contribution subtracted by the template fit procedure, and therefore give a sense of the magnitude of unknown systematic uncertainties associated with the template fit procedure. If these differences are too large, the $v_{n}\{2, \mathrm{tmp}\}$ values may be sensitive to the systematic effects associated with the assumption that the shape of $Y(\Delta \phi)_{\text {jet }}$ is independent of $N_{\mathrm{ch}}^{\mathrm{rec}}$.

Fig. 7 compares the $v_{n}\{2\}$ in $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ obtained from $Y(\Delta \phi)$ using three methods: a direct Fourier transform (solid circles), a template fit (open circles) and a template fit corrected for the bias (open squares), as described above. The systematic uncertainties for the template fit results are nearly the same as those from Ref. [7]. Fig. 7 shows that the changes introduced by
the correction procedure described above are small in all cases and for all harmonics. The values of the even-order harmonics, v_{2} and v_{4}, are also quite similar to those obtained from the direct Fourier transformation, reflecting the fact that the dijet correlations have very little influence on the even-order harmonics. On the other hand, significant differences are observed between the direct Fourier transform and template fit for v_{3}, especially in the $p p$ collisions, due to the influence of $Y(\Delta \phi)_{\text {jet }}$, a trend observed and discussed previously in Refs. [7,15]. The template fit procedure is able to subtract the dijet correlations and change the sign of v_{3}, but also introduces a large uncertainty associated with the procedure. As discussed in Section 8.2, the behaviour of the symmetric cumulants $\mathrm{sc}_{2,3}\{4\}$ in Fig. 4 and normalised cumulants $\mathrm{nsc}_{2,3}\{4\}$ in Fig. 5 in $p p$ collisions, suggest that the v_{3} values from the template fit procedure are significantly underestimated due to the presence

Fig. 8. The $\mathrm{ac}_{2}\{3\}$ in $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ (left panel) and $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ (right panel) in $\mathrm{Pb}+\mathrm{Pb}$ collisions. In each panel, they are compared between the standard method (solid circles), two-subevent method (open circles), three-subevent where \boldsymbol{V}_{4} is determined in subevent a or c (open boxes), and three-subevent where \boldsymbol{V}_{4} is determined in subevent b (diamonds) according to Eq. (8). The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively.

Fig. 9. The $\mathrm{ac}_{2}\{3\}$ in $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ (left panel) and $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ (right panel) in $p+\mathrm{Pb}$ collisions. In each panel, they are compared between standard method (solid circles), two-subevent method (open circles), three-subevent where \boldsymbol{V}_{4} is determined in subevent a or c (open boxes), and three-subevent where \boldsymbol{V}_{4} is determined in subevent b (diamonds) according to Eq. (8). The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively.
of a large residual non-flow bias. In contrast, the differences of v_{3} between the direct Fourier transform and the template fit are much smaller in the $p+\mathrm{Pb}$ and the $\mathrm{Pb}+\mathrm{Pb}$ collisions, except in the very low $\left\langle N_{\mathrm{ch}}\right\rangle$ region. Therefore, the v_{3} values in $p+\mathrm{Pb}$ and $\mathrm{Pb}+\mathrm{Pb}$ systems extracted from the template fit procedure are expected to be less affected by the dijets.

Appendix B. Effects of flow decorrelations in the subevent cumulant methods

As discussed in Section 8, the differences between the standard method and subevent methods for $\mathrm{ac}_{2}\{3\}$ can be partially attributed to longitudinal flow decorrelations [38,41]. Since subevent methods correlate flow vectors obtained from different η regions, the influence of decorrelations can be studied by comparing different variants of the three-subevent method. This comparison is carried out using asymmetric cumulant $\mathrm{ac}_{2}=\left\langle\boldsymbol{V}_{2}^{2} \boldsymbol{V}_{4}^{*}\right\rangle$, however, the statistical precision of $\mathrm{sc}_{n, m}\{4\}$ is not sufficient for such comparison.

The three-subevent method uses flow vectors from three subevents a, b and c, covering $-2.5<\eta_{a}<-2.5 / 3,\left|\eta_{b}\right| \leq 2.5 / 3$ and $2.5 / 3<\eta_{c}<2.5$, and have three independent definitions for asymmetric cumulant: $\mathrm{ac}_{2}^{a, b \mid c}\{3\}, \mathrm{ac}_{n}^{b, c \mid a}\{3\}$ and $\mathrm{ac}_{2}^{a, c \mid b}\{3\}$. Because
of symmetry between subevents a and $c, \mathrm{ac}_{2}^{a, b \mid c}\{3\}$ and $\mathrm{ac}_{n}^{b, c \mid a}\{3\}$ measure the same physics, and are therefore averaged into a single result, denoted as $\mathrm{ac}_{2}^{a, b \mid c}$ or $b, c \mid a\{3\}$. Fig. 8 compares the two threesubevent results with results for the standard and two-subevent methods. The results based on various subevent methods show a small decrease with $\left\langle N_{\mathrm{ch}}\right\rangle$ in the $\left\langle N_{\mathrm{ch}}\right\rangle<50$ region, reflecting a modest contribution from non-flow. On the other hand, all the subevent-based results increase gradually with $\left\langle N_{\mathrm{ch}}\right\rangle$ for $\left\langle N_{\mathrm{ch}}\right\rangle>50$, reflecting a dominant contribution from flow.

Fig. 8 shows that the values of $\mathrm{ac}_{2}^{a, c \mid b}\{3\}=\left\langle\boldsymbol{V}_{2, a} \boldsymbol{V}_{4, b}^{*} \boldsymbol{V}_{2, c}\right\rangle$ are larger than $\mathrm{ac}_{2}^{a, b \mid c \text { or } b, c \mid a}\{3\}$ at larger $\left\langle N_{\mathrm{ch}}\right\rangle$ region. This is because the subevent for \boldsymbol{V}_{4} is in between the two subevents used to calculate \boldsymbol{V}_{2}. This configuration has much smaller decorrelation effects [41]. For ac ${ }_{2}^{a, b \mid c}$ or $b, c \mid a\{3\}$, the two subevents for \boldsymbol{V}_{2} are on the same side of the subevent for \boldsymbol{V}_{4}, leading to larger decorrelation effects. Interestingly, such configuration gives results that are very similar to those from the two-subevent method. Figs. 9 and 10 show the results for the $p+\mathrm{Pb}$ and $p p$ collisions, respectively. Similar observations as in $\mathrm{Pb}+\mathrm{Pb}$ collisions can be made, although in $p p$ collisions the results from the two-subevent method are larger than those obtained with the three-subevent method, due to significant non-flow contribution even in the large $\left\langle N_{\mathrm{ch}}\right\rangle$ region.

Fig. 10. The $\mathrm{ac}_{2}\{3\}$ in $0.3<p_{\mathrm{T}}<3 \mathrm{GeV}$ (left panel) and $0.5<p_{\mathrm{T}}<5 \mathrm{GeV}$ (right panel) in pp collisions. In each panel, they are compared between standard method (solid circles), two-subevent method (open circles), three-subevent where \boldsymbol{V}_{4} is determined in subevent a or c (open boxes), and three-subevent where \boldsymbol{V}_{4} is determined in subevent b (diamonds) according to Eq. (8). The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively.

References

[1] E. Shuryak, Strongly coupled quark-gluon plasma in heavy ion collisions, Rev. Mod. Phys. 89 (2017) 035001, arXiv:1412.8393 [hep-ph].
2] CMS Collaboration, Observation of long-range near-side angular correlations in proton-lead collisions at the LHC, Phys. Lett. B 718 (2013) 795, arXiv:1210. 5482 [nucl-ex].
[3] ALICE Collaboration, Long-range angular correlations on the near and away side in $p-\mathrm{Pb}$ collisions at $\sqrt{S_{N N}}=5.02 \mathrm{TeV}$, Phys. Lett. B 719 (2013) 29, arXiv: 1212. 2001 [nucl-ex].
[4] ATLAS Collaboration, Observation of associated near-side and away-side longrange correlations in $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$ proton-lead collisions with the ATLAS detector, Phys. Rev. Lett. 110 (2013) 182302, arXiv:1212.5198 [hep-ex].
[5] ATLAS Collaboration, Measurement of long-range pseudorapidity correlations and azimuthal harmonics in $\sqrt{S_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ proton-lead collisions with the ATLAS detector, Phys. Rev. C 90 (2014) 044906, arXiv:1409.1792 [hep-ex].
[6] CMS Collaboration, Evidence for collective multiparticle correlations in p-Pb collisions, Phys. Rev. Lett. 115 (2015) 012301, arXiv:1502.05382 [nucl-ex].
[7] ATLAS Collaboration, Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for $p p$ collisions at $\sqrt{s}=5.02$ and 13 TeV and $p+\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$ with the ATLAS detector, Phys. Rev. C 96 (2017) 024908, arXiv:1609.06213 [nucl-ex].
[8] K. Dusling, R. Venugopalan, Comparison of the color glass condensate to dihadron correlations in proton-proton and proton-nucleus collisions, Phys. Rev. D 87 (2013) 094034, arXiv:1302.7018 [hep-ph].
[9] P. Bozek, W. Broniowski, Collective dynamics in high-energy proton-nucleus collisions, Phys. Rev. C 88 (2013) 014903, arXiv:1304.3044 [nucl-th].
[10] N. Borghini, P.M. Dinh, J.-Y. Ollitrault, New method for measuring azimuthal distributions in nucleus-nucleus collisions, Phys. Rev. C 63 (2001) 054906, arXiv:nucl-th/0007063 [nucl-th].
[11] A. Bilandzic, R. Snellings, S. Voloshin, Flow analysis with cumulants: direct calculations, Phys. Rev. C 83 (2011) 044913, arXiv:1010.0233 [nucl-ex].
[12] A. Bilandzic, C.H. Christensen, K. Gulbrandsen, A. Hansen, Y. Zhou, Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations, Phys. Rev. C 89 (2014) 064904, arXiv:1312.3572 [nucl-ex].
[13] J. Jia, M. Zhou, A. Trzupek, Revealing long-range multiparticle collectivity in small collision systems via subevent cumulants, Phys. Rev. C 96 (2017) 034906, arXiv:1701.03830 [nucl-th].
[14] ATLAS Collaboration, Observation of long-range elliptic azimuthal anisotropies in $\sqrt{s}=13$ and $2.76 \mathrm{TeV} p p$ collisions with the ATLAS detector, Phys. Rev. Lett. 116 (2016) 172301, arXiv:1509.04776 [hep-ex].
[15] CMS Collaboration, Evidence for collectivity in pp collisions at the LHC, Phys. Lett. B 765 (2017) 193-220, arXiv:1606.06198 [nucl-ex].
[16] P. Huo, K. Gajdošová, J. Jia, Y. Zhou, Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems, Phys. Lett. B 777 (2018) 201, arXiv:1710.07567 [nucl-ex].
[17] ATLAS Collaboration, Measurement of multi-particle azimuthal correlations in $p p, p+\mathrm{Pb}$ and low-multiplicity $\mathrm{Pb}+\mathrm{Pb}$ collisions with the ATLAS detector, Eur. Phys. J. C 77 (2017) 428, arXiv:1705.04176 [hep-ex].
[18] ATLAS Collaboration, Measurement of multi-particle azimuthal correlations with the subevent cumulant method in $p p$ and $p+\mathrm{Pb}$ collisions with the ATLAS detector at the LHC, Phys. Rev. C 97 (2018) 024904, arXiv:1708.03559 [hep-ex].
[19] CMS Collaboration, Observation of correlated azimuthal anisotropy Fourier harmonics in pp and pPb collisions at the LHC, Phys. Rev. Lett. 120 (2018) 092301, arXiv:1709.09189 [nucl-ex].
[20] ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider, J. Instrum. 3 (2008) S08003.
[21] ATLAS Collaboration, The ATLAS inner detector commissioning and calibration, Eur. Phys. J. C 70 (2010) 787, arXiv:1004.5293 [physics.ins-det].
[22] ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report, Atlas-tdr-19, https://cds.cern.ch/record/1291633, 2010; ATLAS Insertable B-Layer Technical Design Report Addendum, ATLAS-TDR-19-ADD-1, https://cds.cern.ch/record/1451888, 2012.
[23] ATLAS Collaboration, Performance of the ATLAS trigger system in 2010, Eur. Phys. J. C 72 (2012) 1849, arXiv:1110.1530 [hep-ex].
[24] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77 (2017) 317, arXiv:1611.09661 [hep-ex].
[25] ATLAS Collaboration, Charged-particle distributions in $\sqrt{s}=13 \mathrm{TeV} p p$ interactions measured with the ATLAS detector at the LHC, Phys. Lett. B 758 (2016) 67, arXiv:1602.01633 [hep-ex].
[26] ATLAS Collaboration, Performance of the ATLAS minimum bias and forward detector triggers in pPb collisions, ATLAS-CONF-2013-104, https://cds.cern.ch/ record/1624013.
[27] T. Sjöstrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820 [hep-ph].
[28] ATLAS Collaboration, ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11, ATLAS-PHYS-PUB-2011-009, https://cds.cern.ch/record/1363300.
[29] M. Gyulassy, X.-N. Wang, HIJING 1.0: a Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83 (1994) 307, arXiv:nucl-th/9502021.
[30] GEANT4 Collaboration, S. Agostinelli, et al., GEANT4: a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250.
[31] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568 [physics.ins-det].
[32] ATLAS Collaboration, Measurement of forward-backward multiplicity correlations in lead-lead, proton-lead and proton-proton collisions with the ATLAS detector, Phys. Rev. C 95 (2017) 064914, arXiv:1606.08170 [hep-ex].
[33] P. Di Francesco, M. Guilbaud, M. Luzum, J.-Y. Ollitrault, Systematic procedure for analyzing cumulants at any order, Phys. Rev. C 95 (2017) 044911, arXiv: 1612.05634 [nucl-th].
[34] G. Giacalone, L. Yan, J. Noronha-Hostler, J.-Y. Ollitrault, Symmetric cumulants and event-plane correlations in Pb + Pb collisions, Phys. Rev. C 94 (2016) 014906, arXiv:1605.08303 [nucl-th].
[35] S.J. Das, G. Giacalone, P.-A. Monard, J.-Y. Ollitrault, Relating centrality to impact parameter in nucleus-nucleus collisions, Phys. Rev. C 97 (2018) 014905, arXiv: 1708.00081 [nucl-th].
[36] R.S. Bhalerao, J.-Y. Ollitrault, S. Pal, Event-plane correlators, Phys. Rev. C 88 (2013) 024909, arXiv:1307.0980 [nucl-th].
[37] ATLAS Collaboration, Measurement of the azimuthal anisotropy for charged particle production in $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$ lead-lead collisions with the ATLAS detector, Phys. Rev. C 86 (2012) 014907, arXiv:1203.3087 [hep-ex].
[38] P. Bozek, W. Broniowski, J. Moreira, Torqued fireballs in relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 034911, arXiv:1011.3354 [nucl-th].
[39] L.-G. Pang, G.-Y. Qin, V. Roy, X.-N. Wang, G.-L. Ma, Longitudinal decorrelation of anisotropic flows in heavy-ion collisions at the CERN Large Hadron Collider, Phys. Rev. C 91 (2015) 044904, arXiv:1410.8690 [nucl-th].
[40] CMS Collaboration, Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions, Phys. Rev. C 92 (2015) 034911, arXiv:1503.01692 [nucl-ex].

41] ATLAS Collaboration, Measurement of longitudinal flow de-correlations in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{S_{\mathrm{NN}}}=2.76$ and 5.02 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 142, arXiv:1709.02301 [nucl-ex]
[42] ATLAS Collaboration, Measurement of event-plane correlations in $\sqrt{s_{N N}}=2.76$ TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 90 (2014) 024905 , arXiv:1403.0489 [hep-ex].
[43] ATLAS Collaboration, Measurement of the correlation between flow harmonics of different order in lead-lead collisions at $\sqrt{S_{N N}}=2.76 \mathrm{TeV}$ with the ATLAS detector, Phys. Rev. C 92 (2015) 034903, arXiv:1504.01289 [hep-ex].
[44] ALICE Collaboration, J. Adam, et al., Correlated event-by-event fluctuations of flow harmonics in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{S_{N N}}=2.76 \mathrm{TeV}$, Phys. Rev. Lett. 117 (2016) 182301, arXiv:1604.07663 [nucl-ex].
[45] ATLAS Collaboration, ATLAS computing acknowledgements, ATL-GEN-PUB-2016-002, https://cds.cern.ch/record/2202407.

The ATLAS Collaboration

M. Aaboud ${ }^{34 \mathrm{~d}}$, G. Aad ${ }^{99}$, B. Abbott ${ }^{125}$, O. Abdinov ${ }^{13, *}$, B. Abeloos ${ }^{129}$, D.K. Abhayasinghe ${ }^{91}$, S.H. Abidi ${ }^{164}$, O.S. AbouZeid ${ }^{39}$, N.L. Abraham ${ }^{153}$, H. Abramowicz ${ }^{158}$, H. Abreu ${ }^{157}$, Y. Abulaiti ${ }^{6}$, B.S. Acharya ${ }^{64 a, 64 b, p}$, S. Adachi ${ }^{160}$, L. Adamczyk ${ }^{81 a}$, J. Adelman ${ }^{119}$, M. Adersberger ${ }^{112}$, A. Adiguzel ${ }^{12 c, a j}$, T. Adye ${ }^{141}$, A.A. Affolder ${ }^{143}$, Y. Afik ${ }^{157}$, C. Agheorghiesei ${ }^{27 \mathrm{c}}$, J.A. Aguilar-Saavedra ${ }^{137 f, 137 a, a i}$, F. Ahmadov ${ }^{77, a g}$, G. Aielli ${ }^{71 a, 71 b}$, S. Akatsuka ${ }^{83}$, T.P.A. Åkesson ${ }^{94}$, E. Akilli ${ }^{52}$, A.V. Akimov ${ }^{108}$, G.L. Alberghi ${ }^{23 b, 23 a}$, J. Albert ${ }^{173}$, P. Albicocco ${ }^{49}$, M.J. Alconada Verzini ${ }^{86}$, S. Alderweireldt ${ }^{117}$, M. Aleksa ${ }^{35}$, I.N. Aleksandrov ${ }^{77}$, C. Alexa ${ }^{27 \mathrm{~b}}$, T. Alexopoulos ${ }^{10}$, M. Alhroob ${ }^{125}$, B. Ali ${ }^{139}$, G. Alimonti ${ }^{66 a}$, J. Alison ${ }^{36}$, S.P. Alkire ${ }^{145}$, C. Allaire ${ }^{129}$, B.M.M. Allbrooke ${ }^{153}$, B.W. Allen ${ }^{128}$, P.P. Allport ${ }^{21}$, A. Aloisio ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, A. Alonso ${ }^{39}$, F. Alonso ${ }^{86}$, C. Alpigiani ${ }^{145}$, A.A. Alshehri ${ }^{55}$, M.I. Alstaty ${ }^{99}$, B. Alvarez Gonzalez ${ }^{35}$, D. Álvarez Piqueras ${ }^{171}$, M.G. Alviggi ${ }^{67 a, 67 b}$, B.T. Amadio ${ }^{18}$, Y. Amaral Coutinho ${ }^{78 \mathrm{~b}}$, L. Ambroz ${ }^{132}$, C. Amelung ${ }^{26}$, D. Amidei ${ }^{103}$, S.P. Amor Dos Santos ${ }^{137 a}, 137 \mathrm{C}$, S. Amoroso ${ }^{44}$, C.S. Amrouche ${ }^{52}$, C. Anastopoulos ${ }^{146}$, L.S. Ancu ${ }^{52}$, N. Andari ${ }^{142}$, T. Andeen ${ }^{11}$, C.F. Anders ${ }^{59 b}$, J.K. Anders ${ }^{20}$, K.J. Anderson ${ }^{36}$, A. Andreazza ${ }^{66 \mathrm{a}, 66 \mathrm{~b}}$, V. Andrei ${ }^{59 \mathrm{a}}$, C.R. Anelli ${ }^{173}$, S. Angelidakis ${ }^{37}$, I. Angelozzi ${ }^{118}$, A. Angerami ${ }^{38}$, A.V. Anisenkov ${ }^{120 b, 120 a}$, A. Annovi ${ }^{69 a}$, C. Antel ${ }^{59 a}$, M.T. Anthony ${ }^{146}$, M. Antonelli ${ }^{49}$, D.J.A. Antrim ${ }^{168}$, F. Anulli ${ }^{70 a}$, M. Aoki ${ }^{79}$, J.A. Aparisi Pozo ${ }^{171}$, L. Aperio Bella ${ }^{35}$, G. Arabidze ${ }^{104}$, J.P. Araque ${ }^{137 a}$, V. Araujo Ferraz ${ }^{78 b}$, R. Araujo Pereira ${ }^{78 b}$, A.T.H. Arce ${ }^{47}$, R.E. Ardell ${ }^{91}$, F.A. Arduh ${ }^{86}$, J-F. Arguin ${ }^{107}$, S. Argyropoulos ${ }^{75}$, A.J. Armbruster ${ }^{35}$, L.J. Armitage ${ }^{90}$, A. Armstrong ${ }^{168}$, O. Arnaez ${ }^{164}$, H. Arnold ${ }^{118}$, M. Arratia ${ }^{31}$, O. Arslan ${ }^{24}$, A. Artamonov ${ }^{109, *}$, G. Artoni ${ }^{132}$, S. Artz ${ }^{97}$, S. Asai ${ }^{160}$, N. Asbah ${ }^{57}$, A. Ashkenazi ${ }^{158}$, E.M. Asimakopoulou ${ }^{169}$, L. Asquith ${ }^{153}$, K. Assamagan ${ }^{29}$, R. Astalos ${ }^{28 a}$, R.J. Atkin ${ }^{32 a}$, M. Atkinson ${ }^{170}$, N.B. Atlay ${ }^{148}$, K. Augsten ${ }^{139}$, G. Avolio ${ }^{35}$, R. Avramidou ${ }^{58 a}$, M.K. Ayoub ${ }^{15 a}$, G. Azuelos ${ }^{107, a v}$, A.E. Baas ${ }^{59 a}$, M.J. Baca ${ }^{21}$, H. Bachacou ${ }^{142}$, K. Bachas ${ }^{65 a, 65 b}$, M. Backes ${ }^{132}$, P. Bagnaia ${ }^{70 a, 70 b}$, M. Bahmani ${ }^{82}$, H. Bahrasemani ${ }^{149}$, A.J. Bailey ${ }^{171}$, J.T. Baines ${ }^{141}$, M. Bajic ${ }^{39}$, C. Bakalis ${ }^{10}$, O.K. Baker ${ }^{180}$, P.J. Bakker ${ }^{118}$, D. Bakshi Gupta ${ }^{93}$, E.M. Baldin ${ }^{120 b, 120 a}$, P. Balek ${ }^{177}$, F. Balli ${ }^{142}$, W.K. Balunas ${ }^{134}$, J. Balz ${ }^{97}$, E. Banas ${ }^{82}$, A. Bandyopadhyay ${ }^{24}$, S. Banerjee ${ }^{178, l}$, A.A.E. Bannoura ${ }^{179}$, L. Barak ${ }^{158}$, W.M. Barbe ${ }^{37}$, E.L. Barberio ${ }^{102}$, D. Barberis ${ }^{53 b}, 53 \mathrm{a}$, M. Barbero ${ }^{99}$, T. Barillari ${ }^{113}$, M-S. Barisits ${ }^{35}$, J. Barkeloo ${ }^{128}$, T. Barklow ${ }^{150}$, N. Barlow ${ }^{31}$, R. Barnea ${ }^{157}$, S.L. Barnes ${ }^{58 \mathrm{c}}$, B.M. Barnett ${ }^{141}$, R.M. Barnett ${ }^{18}$, Z. Barnovska-Blenessy ${ }^{58 a}$, A. Baroncelli ${ }^{72 a}$, G. Barone ${ }^{26}$, A.J. Barr ${ }^{132}$, L. Barranco Navarro ${ }^{171}$, F. Barreiro ${ }^{96}$, J. Barreiro Guimarães da Costa ${ }^{15 a}$, R. Bartoldus ${ }^{150}$, A.E. Barton ${ }^{87}$, P. Bartos ${ }^{28 a}$, A. Basalaev ${ }^{135}$, A. Bassalat ${ }^{129}$, R.L. Bates ${ }^{55}$, S.J. Batista ${ }^{164}$, S. Batlamous ${ }^{34 e}$, J.R. Batley ${ }^{31}$, M. Battaglia ${ }^{143}$, M. Bauce ${ }^{70 \text { a, } 70 \mathrm{~b}}$, F. Bauer ${ }^{142}$, K.T. Bauer ${ }^{168}$, H.S. Bawa ${ }^{\text {'150,n }}$, J.B. Beacham ${ }^{123}$, T. Beau ${ }^{133}$, P.H. Beauchemin ${ }^{167}$, P. Bechtle ${ }^{24}$, H.C. Beck ${ }^{51}$, H.P. Beck ${ }^{20,5}$, K. Becker ${ }^{50}$, M. Becker ${ }^{97}$, C. Becot ${ }^{44}$, A. Beddall ${ }^{12 \mathrm{~d}}$, A.J. Beddall ${ }^{12 \mathrm{a}}$, V.A. Bednyakov ${ }^{77}$, M. Bedognetti ${ }^{118}$, C.P. Bee ${ }^{152}$, T.A. Beermann ${ }^{35}$, M. Begalli ${ }^{78 \mathrm{~b}}$, M. Begel ${ }^{29}$, A. Behera ${ }^{152}$, J.K. Behr ${ }^{44}$, A.S. Bell ${ }^{92}$, G. Bella ${ }^{158}$, L. Bellagamba ${ }^{23 \mathrm{~b}}$, A. Bellerive ${ }^{33}$, M. Bellomo ${ }^{157}$, P. Bellos ${ }^{9}$, K. Belotskiy ${ }^{110}$, N.L. Belyaev ${ }^{110}$, O. Benary ${ }^{158, *}$, D. Benchekroun ${ }^{34 a}$, M. Bender ${ }^{112}$, N. Benekos ${ }^{10}$, Y. Benhammou ${ }^{158}$, E. Benhar Noccioli ${ }^{180}$, J. Benitez ${ }^{75}$, D.P. Benjamin ${ }^{47}$, M. Benoit ${ }^{52}$, J.R. Bensinger ${ }^{26}$, S. Bentvelsen ${ }^{118}$, L. Beresford ${ }^{132}$, M. Beretta ${ }^{49}$, D. Berge ${ }^{44}$, E. Bergeaas Kuutmann ${ }^{169}$, N. Berger ${ }^{5}$, L.J. Bergsten ${ }^{26}$, J. Beringer ${ }^{18}$, S. Berlendis ${ }^{7}$, N.R. Bernard ${ }^{100}$, G. Bernardi ${ }^{133}$, C. Bernius ${ }^{150}$, F.U. Bernlochner ${ }^{24}$, T. Berry ${ }^{91}$, P. Berta ${ }^{97}$, C. Bertella ${ }^{15 a}$, G. Bertoli ${ }^{43 a, 43 b}$, I.A. Bertram ${ }^{87}$, G.J. Besjes ${ }^{39}$, O. Bessidskaia Bylund ${ }^{179}$, M. Bessner ${ }^{44}$, N. Besson ${ }^{142}$, A. Bethani ${ }^{98}$, S. Bethke ${ }^{113}$, A. Betti ${ }^{24}$, A.J. Bevan ${ }^{90}$, J. Beyer ${ }^{113}$, R.M. Bianchi ${ }^{136}$, O. Biebel ${ }^{112}$, D. Biedermann ${ }^{19}$, R. Bielski ${ }^{35}$, K. Bierwagen ${ }^{97}$, N.V. Biesuz ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}$, M. Biglietti ${ }^{72 \mathrm{a}}$, T.R.V. Billoud ${ }^{107}$, M. Bindi ${ }^{51}$, A. Bingul ${ }^{12 \mathrm{~d}}$, C. Bini ${ }^{70 a, 70 b}$, S. Biondi ${ }^{23 \mathrm{~b}, 23 \mathrm{a}}$, M. Birman ${ }^{177}$, T. Bisanz ${ }^{51}$, J.P. Biswal ${ }^{158}$, C. Bittrich ${ }^{46}$, D.M. Bjergaard ${ }^{47}$, J.E. Black ${ }^{150}$, K.M. Black ${ }^{25}$, T. Blazek ${ }^{28 \text { a }}$, I. Bloch ${ }^{44}$, C. Blocker ${ }^{26}$, A. Blue ${ }^{55}$, U. Blumenschein ${ }^{90}$, Dr. Blunier ${ }^{144 \mathrm{a}}$, G.J. Bobbink ${ }^{118}$, V.S. Bobrovnikov ${ }^{120 b, 120 a}$,
S.S. Bocchetta ${ }^{94}$, A. Bocci ${ }^{47}$, D. Boerner ${ }^{179}$, D. Bogavac ${ }^{112}$, A.G. Bogdanchikov ${ }^{120 b, 120 a}$, C. Bohm ${ }^{43 a}$, V. Boisvert ${ }^{91}$, P. Bokan ${ }^{169}$, T. Bold ${ }^{81 a}$, A.S. Boldyrev ${ }^{111}$, A.E. Bolz ${ }^{59 b}$, M. Bomben ${ }^{133}$, M. Bona ${ }^{90}$, J.S. Bonilla ${ }^{128}$, M. Boonekamp ${ }^{142}$, A. Borisov ${ }^{121}$, G. Borissov ${ }^{87}$, J. Bortfeldt ${ }^{35}$, D. Bortoletto ${ }^{132}$, V. Bortolotto ${ }^{71 a, 71 b}$, D. Boscherini ${ }^{23 \mathrm{~b}}$, M. Bosman ${ }^{14}$, J.D. Bossio Sola ${ }^{30}$, K. Bouaouda ${ }^{34 \mathrm{a}}$, J. Boudreau ${ }^{136}$, E.V. Bouhova-Thacker ${ }^{87}$, D. Boumediene ${ }^{37}$, C. Bourdarios ${ }^{129}$, S.K. Boutle ${ }^{55}$, A. Boveia ${ }^{123}$, J. Boyd ${ }^{35}$, D. Boye ${ }^{32 \mathrm{~b}}$, I.R. Boyko ${ }^{77}$, A.J. Bozson ${ }^{91}$, J. Bracinik ${ }^{21}$, N. Brahimi ${ }^{99}$, A. Brandt ${ }^{8}$, G. Brandt ${ }^{179}$, O. Brandt ${ }^{59}$, F. Braren ${ }^{44}$, U. Bratzler ${ }^{161}$, B. Brau ${ }^{100}$, J.E. Brau ${ }^{128}$, W.D. Breaden Madden ${ }^{55}$, K. Brendlinger ${ }^{44}$, L. Brenner ${ }^{44}$, R. Brenner ${ }^{169}$, S. Bressler ${ }^{177}$, B. Brickwedde ${ }^{97}$, D.L. Briglin ${ }^{21}$, D. Britton ${ }^{55}$, D. Britzger ${ }^{59 \mathrm{~b}}$, I. Brock ${ }^{24}$, R. Brock ${ }^{104}$, G. Brooijmans ${ }^{38}$, T. Brooks ${ }^{91}$, W.K. Brooks ${ }^{144 \mathrm{~b}}$, E. Brost ${ }^{119}$, J.H Broughton ${ }^{21}$, P.A. Bruckman de Renstrom ${ }^{82}$, D. Bruncko ${ }^{28 b}$, A. Bruni ${ }^{235}$, G. Bruni ${ }^{233}$, L.S. Bruni ${ }^{118}$, S. Bruno ${ }^{71 a, 71 b}$, B.H. Brunt ${ }^{31}$, M. Bruschi ${ }^{23 b}$, N. Bruscino ${ }^{136}$, P. Bryant ${ }^{36}$, L. Bryngemark ${ }^{44}$, T. Buanes ${ }^{17}$, Q. Buat ${ }^{35}$, P. Buchholz ${ }^{148}$, A.G. Buckley ${ }^{55}$, I.A. Budagov ${ }^{77}$, M.K. Bugge ${ }^{131}$, F. Bührer ${ }^{50}$, O. Bulekov ${ }^{110}$, D. Bullock ${ }^{8}$, T.J. Burch ${ }^{119}$, S. Burdin ${ }^{88}$, C.D. Burgard ${ }^{118}$, A.M. Burger ${ }^{5}$, B. Burghgrave ${ }^{119}$, K. Burka ${ }^{82}$, S. Burke ${ }^{141}$, I. Burmeister ${ }^{45}$, J.T.P. Burr ${ }^{132}$, D. Büscher ${ }^{50}$, V. Büscher ${ }^{97}$, E. Buschmann ${ }^{51}$, P. Bussey ${ }^{55}$, J.M. Butler ${ }^{25}$, C.M. Buttar ${ }^{55}$, J.M. Butterworth ${ }^{92}$, P. Butti ${ }^{35}$, W. Buttinger ${ }^{35}$, A. Buzatu ${ }^{155}$, A.R. Buzykaev ${ }^{120 b, 120 a}$, G. Cabras ${ }^{23 b}, 23 a$, S. Cabrera Urbán ${ }^{171}$, D. Caforio ${ }^{139}$, H. Cai ${ }^{170}$, V.M.M. Cairo ${ }^{2}$, O. Cakir ${ }^{4 a}$, N. Calace ${ }^{52}$, P. Calafiura ${ }^{18}$, A. Calandri ${ }^{99}$, G. Calderini ${ }^{133}$, P. Calfayan ${ }^{63}$, G. Callea ${ }^{40 \mathrm{~b}, 40 \mathrm{a}}$, L.P. Caloba ${ }^{78 \mathrm{~b}}$, S. Calvente Lopez ${ }^{96}$, D. Calvet ${ }^{37}$, S. Calvet ${ }^{37}$, T.P. Calvet ${ }^{152}$, M. Calvetti ${ }^{69 a, 69 b}$, R. Camacho Toro ${ }^{133}$, S. Camarda ${ }^{35}$, P. Camarri ${ }^{71 a, 71 b}$, D. Cameron ${ }^{131}$, R. Caminal Armadans ${ }^{100}$, C. Camincher ${ }^{35}$, S. Campana ${ }^{35}$, M. Campanelli ${ }^{92}$, A. Camplani ${ }^{39}$, A. Campoverde ${ }^{148}$, V. Canale ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, M. Cano Bret ${ }^{58 \mathrm{c}}$, J. Cantero ${ }^{126}$, T. Cao ${ }^{158}$, Y. Cao ${ }^{170}$, M.D.M. Capeans Garrido ${ }^{35}$, I. Caprini ${ }^{27 \mathrm{~b}}$, M. Caprini ${ }^{27 \mathrm{~b}}$, M. Capua ${ }^{40 \mathrm{~b}, 40 \mathrm{a}}$, R.M. Carbone ${ }^{38}$, R. Cardarelli ${ }^{71 \mathrm{a}}$, F.C. Cardillo ${ }^{146}$, I. Carli ${ }^{140}$, T. Carli ${ }^{35}$, G. Carlino ${ }^{67 a}$, B.T. Carlson ${ }^{136}$, L. Carminati ${ }^{66 a, 66 b}$, R.M.D. Carney ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$, S. Caron ${ }^{117}$, E. Carquin ${ }^{144 \mathrm{~b}}$, S. Carrá ${ }^{66 a, 66 b^{\prime}}$, G.D. Carrillo-Montoya ${ }^{35}$, D. Casadei ${ }^{32 \mathrm{~b}}$, M.P. Casado ${ }^{14, g^{\prime}}$, A.F. Casha ${ }^{164}$, D.W. Casper ${ }^{168}$, R. Castelijn ${ }^{118}$, F.L. Castillo ${ }^{171}$, V. Castillo Gimenez ${ }^{171}$, N.F. Castro ${ }^{137 \mathrm{a}}{ }^{137}$, ${ }^{137}$, A. Catinaccio ${ }^{35}$, J.R. Catmore ${ }^{131}$, A. Cattai ${ }^{35}$, J. Caudron ${ }^{24}$, V. Cavaliere ${ }^{29}$, E. Cavallaro ${ }^{14}$, D. Cavalli ${ }^{66 a}$, M. Cavalli-Sforza ${ }^{14}$, V. Cavasinni ${ }^{69 a, 69 b}$, E. Celebi ${ }^{12 b}$, F. Ceradini ${ }^{72 a, 72 b}$, L. Cerda Alberich ${ }^{171}$, A.S. Cerqueira ${ }^{78 a}$, A. Cerri ${ }^{153}$, L. Cerrito ${ }^{71 a, 71 b}$, F. Cerutti ${ }^{18}$, A. Cervelli ${ }^{\text {23b }}$,23a , S.A. Cetin ${ }^{12 b}$, A. Chafaq ${ }^{34 a}$, D. Chakraborty ${ }^{119}$, S.K. Chan ${ }^{57}$, W.S. Chan ${ }^{118}$, Y.L. Chan ${ }^{61 a}$, J.D. Chapman ${ }^{31}$, B. Chargeishvili ${ }^{156 b}$, D.G. Charlton ${ }^{21}$, C.C. Chau ${ }^{33}$, C.A. Chavez Barajas ${ }^{153}$, S. Che ${ }^{123}$, A. Chegwidden ${ }^{104}$, S. Chekanov ${ }^{6}$, S.V. Chekulaev ${ }^{165 a}$, G.A. Chelkov ${ }^{77, a u}$, M.A. Chelstowska ${ }^{35}$, C. Chen ${ }^{58 \mathrm{a}}$, C.H. Chen ${ }^{76}$, H. Chen ${ }^{29}$, J. Chen ${ }^{58 \mathrm{a}}$, J. Chen ${ }^{38}$, S. Chen ${ }^{134}$, S.J. Chen ${ }^{15 \mathrm{C}}$, X. Chen ${ }^{15 \mathrm{~b}, a t}$, Y. Chen ${ }^{80}$, Y-H. Chen ${ }^{44}$, H.C. Cheng ${ }^{103}$, H.J. Cheng ${ }^{15 \mathrm{~d}}$, A. Cheplakov ${ }^{77}$, E. Cheremushkina ${ }^{121}$, R. Cherkaoui El Moursli ${ }^{34 e}$, E. Cheu ${ }^{7}$, K. Cheung ${ }^{62}$, L. Chevalier ${ }^{142}$, V. Chiarella ${ }^{49}$, G. Chiarelli ${ }^{69}$, G. Chiodini ${ }^{65 a}$, A.S. Chisholm ${ }^{35}$, A. Chitan ${ }^{27 \mathrm{~b}}$, I. Chiu ${ }^{160}$, Y.H. Chiu ${ }^{173}$, M.V. Chizhov ${ }^{77}$, K. Choi ${ }^{63}$, A.R. Chomont ${ }^{129}$, S. Chouridou ${ }^{159}$, Y.S. Chow ${ }^{118}$, V. Christodoulou ${ }^{92}$, M.C. Chu ${ }^{61 a}$, J. Chudoba ${ }^{138}$, A.J. Chuinard ${ }^{101}$, J.J. Chwastowski ${ }^{82}$, L. Chytka ${ }^{127}$, D. Cinca ${ }^{45}$, V. Cindro ${ }^{89}$, I.A. Cioară ${ }^{24}$, A. Ciocio ${ }^{18}$, F. Cirotto ${ }^{67 a, 67 b}$, Z.H. Citron ${ }^{177}$, M. Citterio ${ }^{66{ }^{\prime} \mathrm{Da}}$, A. Clark ${ }^{52}$, M.R. Clark ${ }^{38}$, P.J. Clark ${ }^{48^{\prime}}$, C. Clement ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$, Y. Coadou ${ }^{99}$, M. Cobal ${ }^{64 \mathrm{a}, 64 \mathrm{c}}$, A. Coccaro ${ }^{53 b, 53 a}$, J. Cochran ${ }^{76}$, H. Cohen ${ }^{158}$, A.E.C. Coimbra ${ }^{177}$, L. Colasurdo ${ }^{117}$, B. Cole ${ }^{38}$, A.P. Colijn ${ }^{118}$, J. Collot ${ }^{56}$, P. Conde Muiño ${ }^{137}$ a, , , E. Coniavitis ${ }^{50}$, S.H. Connell ${ }^{32 \mathrm{~b}}$, I.A. Connelly ${ }^{98}$, S. Constantinescu 27 b , F. Conventi ${ }^{67 a \mathrm{a}, a w}$, A.M. Cooper-Sarkar ${ }^{132}$, F. Cormier ${ }^{172}$, K.J.R. Cormier ${ }^{164}$, M. Corradi ${ }^{70 a, 70 b}$, E.E. Corrigan ${ }^{94}$, F. Corriveau ${ }^{101, a e}$, A. Cortes-Gonzalez ${ }^{35}$, M.J. Costa ${ }^{171}$, D. Costanzo ${ }^{146}$, G. Cottin ${ }^{31}$, G. Cowan ${ }^{91}$, B.E. Cox ${ }^{98}$, J. Crane ${ }^{98}$, K. Cranmer ${ }^{122}$, S.J. Crawley ${ }^{55}$, R.A. Creager ${ }^{134}$, G. Cree ${ }^{33}$, S. Crépé-Renaudin ${ }^{56}$, F. Crescioli ${ }^{133}$, M. Cristinziani ${ }^{24}$, V. Croft ${ }^{122}$, G. Crosetti ${ }^{40 b, 40 \mathrm{a}}$, A. Cueto ${ }^{96}$, T. Cuhadar Donszelmann ${ }^{146}$, A.R. Cukierman ${ }^{150}$, J. Cúth ${ }^{97}$, S. Czekierda ${ }^{82}$, P. Czodrowski ${ }^{35}$, M.J. Da Cunha Sargedas De Sousa ${ }^{58 \mathrm{~b}}$, C. Da Via ${ }^{98}$, W. Dabrowski ${ }^{81 a}$, T. Dado ${ }^{28 a, z}$, S. Dahbi ${ }^{34 e}$, T. Dai ${ }^{103}$, F. Dallaire ${ }^{107}$, C. Dallapiccola ${ }^{100}$, M. Dam ${ }^{39}$, G. D'amen ${ }^{23 b}$, 23a, J. Damp ${ }^{97}$, J.R. Dandoy ${ }^{134}$, M.F. Daneri ${ }^{30}$, N.P. Dang ${ }^{178, l}$, N.D Dann ${ }^{98}$, M. Danninger ${ }^{172}$, V. Dao ${ }^{35}$, G. Darbo ${ }^{53 b}$, S. Darmora ${ }^{8}$, O. Dartsi ${ }^{5}$, A. Dattagupta ${ }^{128}$, T. Daubney ${ }^{44}$, S. D'Auria ${ }^{55}$, W. Davey ${ }^{24}$, C. David ${ }^{44}$, T. Davidek ${ }^{140}$, D.R. Davis ${ }^{47}$, E. Dawe ${ }^{102}$, I. Dawson ${ }^{146}$, K. De ${ }^{8}$, R. De Asmundis ${ }^{67 a}$, A. De Benedetti ${ }^{125}$, M. De Beurs ${ }^{118}$, S. De Castro ${ }^{23 \mathrm{~b}, 23 \mathrm{a}}$, S. De Cecco ${ }^{70 a \mathrm{a}, 70 \mathrm{~b}}$, N. De Groot ${ }^{117}$, P. de Jong ${ }^{1188}$, H. De la Torre ${ }^{104}$, F. De Lorenzi ${ }^{76}$, A. De Maria ${ }^{51, u}$, D. De Pedis ${ }^{70 a}$, A. De Salvo ${ }^{70 a}$, U. De Sanctis ${ }^{71 a, 71 b}$,
M. De Santis ${ }^{71 a, 71 b}$, A. De Santo ${ }^{153}$, K. De Vasconcelos Corga ${ }^{99}$, J.B. De Vivie De Regie ${ }^{129}$, C. Debenedetti ${ }^{143}$, D.V. Dedovich ${ }^{77}$, N. Dehghanian ${ }^{3}$, M. Del Gaudio ${ }^{40 \mathrm{~b}, 40 \mathrm{a}}$, J. Del Peso ${ }^{96}$, Y. Delabat Diaz ${ }^{44}$, D. Delgove ${ }^{129}$, F. Deliot ${ }^{142}$, C.M. Delitzsch ${ }^{7}$, M. Della Pietra ${ }^{67 a, 67 b}$, D. Della Volpe ${ }^{52}$, A. Dell'Acqua ${ }^{35}$, L. Dell'Asta ${ }^{25}$, M. Delmastro ${ }^{5}$, C. Delporte ${ }^{129}$, P.A. Delsart ${ }^{56}$, D.A. DeMarco ${ }^{164}$, S. Demers ${ }^{180}$, M. Demichev ${ }^{77}$, S.P. Denisov ${ }^{121}$, D. Denysiuk ${ }^{118}$, L. D'Eramo ${ }^{133}$, D. Derendarz ${ }^{82}$, J.E. Derkaoui ${ }^{34 \mathrm{~d}}$, F. Derue ${ }^{133}$, P. Dervan ${ }^{88}$, K. Desch ${ }^{24}$, C. Deterre ${ }^{44}$, K. Dette ${ }^{164}$, M.R. Devesa ${ }^{30}$, P.O. Deviveiros ${ }^{35}$, A. Dewhurst ${ }^{141}$, S. Dhaliwal ${ }^{26}$, F.A. Di Bello ${ }^{52}$, A. Di Ciaccio ${ }^{71 \text { 1a, } 711}$, L. Di Ciaccio ${ }^{5}$, W.K. Di Clemente ${ }^{134}$, C. Di Donato ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, A. Di Girolamo ${ }^{35}$, B. Di Micco ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, R. Di Nardo ${ }^{100}$, K.F. Di Petrillo ${ }^{57}$, R. Di Sipio ${ }^{164}$, D. Di Valentino ${ }^{33}$, C. Diaconu ${ }^{99}$, M. Diamond ${ }^{164}$, F.A. Dias ${ }^{39}$, T. Dias Do Vale ${ }^{137 a}$, M.A. Diaz ${ }^{144 a}$, J. Dickinson ${ }^{18}$, E.B. Diehl ${ }^{103}$, J. Dietrich ${ }^{19}$, S. Díez Cornell ${ }^{44}$, A. Dimitrievska ${ }^{18}$, J. Dingfelder ${ }^{24}$, F. Dittus ${ }^{35}$, F. Djama ${ }^{99}$, T. Djobava ${ }^{156 b}$, J.I. Djuvsland ${ }^{59 a}$, M.A.B. Do Vale ${ }^{78 \mathrm{c}}$, M. Dobre ${ }^{27 \mathrm{~b}}$, D. Dodsworth ${ }^{26}$, C. Doglioni ${ }^{94}$, J. Dolejsi ${ }^{140}$, Z. Dolezal ${ }^{140}$, M. Donadelli ${ }^{78 \mathrm{~d}}$, J. Donini ${ }^{37}$, A. D'onofrio ${ }^{90}$, M. D’Onofrio ${ }^{88}$, J. Dopke ${ }^{141}$, A. Doria ${ }^{67 a}$, M.T. Dova ${ }^{86}$, A.T. Doyle ${ }^{55}$, E. Drechsler ${ }^{51}$, E. Dreyer ${ }^{149}$, T. Dreyer ${ }^{51}$, Y. Du ${ }^{58 \mathrm{~b}}$, J. Duarte-Campderros ${ }^{158}$, F. Dubinin ${ }^{108}$, M. Dubovsky ${ }^{28 a}$, A. Dubreuil ${ }^{52}$, E. Duchovni ${ }^{177}$, G. Duckeck ${ }^{112}$, A. Ducourthial ${ }^{133}$, O.A. Ducu ${ }^{107, y}$, D. Duda ${ }^{113}$, A. Dudarev ${ }^{35}$, A.C. Dudder ${ }^{97}$, E.M. Duffield ${ }^{18}$, L. Duflot ${ }^{129}$, M. Dührssen ${ }^{35}$, C. Dülsen ${ }^{179}$, M. Dumancic ${ }^{177}$, A.E. Dumitriu ${ }^{27 \mathrm{~b}, e}$, A.K. Duncan ${ }^{55}$, M. Dunford ${ }^{59 \mathrm{a}}$, A. Duperrin ${ }^{99}$, H. Duran Yildiz ${ }^{4 a}$, M. Düren ${ }^{54}$, A. Durglishvili ${ }^{156 \mathrm{~b}}$, D. Duschinger ${ }^{46}$, B. Dutta ${ }^{44}$, D. Duvnjak ${ }^{1}$, M. Dyndal ${ }^{44}$, S. Dysch ${ }^{98}$, B.S. Dziedzic ${ }^{82}$, C. Eckardt ${ }^{44}$, K.M. Ecker ${ }^{113}$, R.C. Edgar ${ }^{103}$, T. Eifert ${ }^{35}$, G. Eigen ${ }^{17}$, K. Einsweiler ${ }^{18}$, T. Ekelof ${ }^{169}$, M. El Kacimi ${ }^{34 \mathrm{c}}$, R. El Kosseifi ${ }^{99}$, V. Ellajosyula ${ }^{99}$, M. Ellert ${ }^{169}$, F. Ellinghaus ${ }^{179}$, A.A. Elliot ${ }^{90}$, N. Ellis ${ }^{35}$, J. Elmsheuser ${ }^{29}$, M. Elsing ${ }^{35}$, D. Emeliyanov ${ }^{141}$, Y. Enari ${ }^{160}$, J.S. Ennis ${ }^{175}$, M.B. Epland ${ }^{47}$, J. Erdmann ${ }^{45}$, A. Ereditato ${ }^{20}$, S. Errede ${ }^{170}$, M. Escalier ${ }^{129}$, C. Escobar ${ }^{171}$, O. Estrada Pastor ${ }^{171}$, A.I. Etienvre ${ }^{142}$, E. Etzion ${ }^{158}$, H. Evans ${ }^{63}$, A. Ezhilov ${ }^{135}$, M. Ezzi ${ }^{34 e^{\prime}}$, F. Fabbri ${ }^{55}$, L. Fabbri ${ }^{23 b, 23 a}$, V. Fabiani ${ }^{117}$, G. Facini ${ }^{92}$, R.M. Faisca Rodrigues Pereira ${ }^{137 a}$, R.M. Fakhrutdinov ${ }^{121}$, S. Falciano ${ }^{70 a}$, P.J. Falke ${ }^{5}$, S. Falke ${ }^{5}$, J. Faltova ${ }^{140}$, Y. Fang ${ }^{15 a}$, M. Fanti ${ }^{66 a, 66 b}$, A. Farbin ${ }^{8}$, A. Farilla ${ }^{72}$, ${ }^{\text {a }}$, E.M. Farina ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, T. Farooque ${ }^{104}$, S. Farrell ${ }^{18}$, S.M. Farrington ${ }^{175}$, P. Farthouat ${ }^{35}$, F. Fassi ${ }^{34 \mathrm{e}}$, P. Fassnacht ${ }^{35}$, D. Fassouliotis ${ }^{9}$, M. Faucci Giannelli ${ }^{48}$, A. Favareto ${ }^{53 b, 53 a}$, W.J. Fawcett ${ }^{31}$, L. Fayard ${ }^{129}$, O.L. Fedin ${ }^{135, q}$, W. Fedorko ${ }^{172}$, M. Feickert ${ }^{41}$, S. Feigl ${ }^{131}$, L. Feligioni ${ }^{99}$, C. Feng ${ }^{58 b}$, E.J. Feng ${ }^{35}$, M. Feng ${ }^{47}$, M.J. Fenton ${ }^{55}$, A.B. Fenyuk ${ }^{121}$, L. Feremenga ${ }^{8}$, J. Ferrando ${ }^{44}$, A. Ferrari ${ }^{169}$, P. Ferrari ${ }^{118}$, R. Ferrari ${ }^{68 \mathrm{a}}$, D.E. Ferreira de Lima ${ }^{59 b}$, A. Ferrer ${ }^{171}$, D. Ferrere ${ }^{52}$, C. Ferretti ${ }^{103}$, F. Fiedler ${ }^{97}$, A. Filipčič ${ }^{89}$, F. Filthaut ${ }^{117}$, K.D. Finelli ${ }^{25}$, M.C.N. Fiolhais ${ }^{137 a, 137 c, a}$, L. Fiorini ${ }^{171}$, C. Fischer ${ }^{14}$, W.C. Fisher ${ }^{104}$, N. Flaschel ${ }^{44}$, I. Fleck ${ }^{148}$, P. Fleischmann ${ }^{103}$, R.R.M. Fletcher ${ }^{134}$, T. Flick ${ }^{179}$, B.M. Flierl ${ }^{112}$, L.M. Flores ${ }^{134}$, L.R. Flores Castillo ${ }^{61 \mathrm{a}}$, F.M. Follega ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, N. Fomin ${ }^{17}$, G.T. Forcolin ${ }^{98}$, A. Formica ${ }^{142}$, F.A. Förster ${ }^{14}$, A.C. Forti ${ }^{98}$, A.G. Foster ${ }^{21}$, D. Fournier ${ }^{129}$, H. Fox ${ }^{87}$, S. Fracchia ${ }^{146}$, P. Francavilla ${ }^{69 a, 69 b}$, M. Franchini ${ }^{23 b, 23 a}$, S. Franchino ${ }^{59 a}$, D. Francis ${ }^{35}$, L. Franconi ${ }^{131}$, M. Franklin ${ }^{57}$, M. Frate ${ }^{168}$, M. Fraternali ${ }^{68 a, 68 b}$, A.N. Fray ${ }^{90}$, D. Freeborn ${ }^{92}$, S.M. Fressard-Batraneanu ${ }^{35}$, B. Freund ${ }^{107}$, W.S. Freund ${ }^{785}$, D.C. Frizzell ${ }^{125}$, D. Froidevaux ${ }^{35}$, J.A. Frost ${ }^{132}$, C. Fukunaga ${ }^{\text {i61 }}$, E. Fullana Torregrosa ${ }^{171}$, T. Fusayasu ${ }^{114}$, J. Fuster ${ }^{171}$, O. Gabizon ${ }^{157}$, A. Gabrielli ${ }^{23 b}, 23 \mathrm{a}$, A. Gabrielli ${ }^{18}$, G.P. Gach ${ }^{81 a}$, S. Gadatsch ${ }^{52}$, P. Gadow ${ }^{113}$, G. Gagliardi ${ }^{\text {53b,53a }}$, L.G. Gagnon ${ }^{107}$, C. Galea ${ }^{27 b}$, B. Galhardo ${ }^{137 a, 137 c}$, E.J. Gallas ${ }^{132}$, B.J. Gallop ${ }^{141}$, P. Gallus ${ }^{139}$, G. Galster ${ }^{39}$, R. Gamboa Goni ${ }^{90}$, K.K. Gan ${ }^{123}$, S. Ganguly ${ }^{177}$, J. Gao ${ }^{58 a}$, Y. Gao ${ }^{88}$, Y.S. Gao ${ }^{150, n}$, C. García ${ }^{171}$, J.E. García Navarro ${ }^{171}$, J.A. García Pascual ${ }^{15 a}$, M. Garcia-Sciveres ${ }^{18}$, R.W. Gardner ${ }^{36}$, N. Garelli ${ }^{150}$, V. Garonne ${ }^{131}$, K. Gasnikova ${ }^{44}$, A. Gaudiello ${ }^{53 b, 53 a}$, G. Gaudio ${ }^{68 \mathrm{a}}$, I.L. Gavrilenko ${ }^{108}$, A. Gavrilyuk ${ }^{109}$, C. Gay ${ }^{172}$, G. Gaycken ${ }^{24}$, E.N. Gazis ${ }^{10}$, C.N.P. Gee ${ }^{141}$, J. Geisen ${ }^{51}$, M. Geisen ${ }^{97}$, M.P. Geisler ${ }^{59 \mathrm{a}}$, K. Gellerstedt ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$, C. Gemme ${ }^{\text {53b }}$, M.H. Genest ${ }^{56}$, C. Geng ${ }^{103}$, S. Gentile ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$, S. George ${ }^{91}$, D. Gerbaudo ${ }^{14}$, G. Gessner ${ }^{45}$, S. Ghasemi ${ }^{148}$, M. Ghasemi Bostanabad ${ }^{173}$, M. Ghneimat ${ }^{24}$, B. Giacobbe ${ }^{23 \mathrm{~b}}$, S. Giagu ${ }^{70 a, 70 \mathrm{~b}}$, N. Giangiacomi ${ }^{23 \mathrm{~b}, 23 \mathrm{a}}$, P. Giannetti ${ }^{69 \mathrm{a}}$,
A. Giannini ${ }^{67 \mathrm{7a}, 67 \mathrm{~b}}$, S.M. Gibson ${ }^{91}$, M. Gignac ${ }^{143}$, D. Gillberg ${ }^{33}$, G. Gilles ${ }^{179}$, D.M. Gingrich ${ }^{3, a v}$, M.P. Giordani ${ }^{64 a, 64 c}$, F.M. Giorgi ${ }^{23 b}$, P.F. Giraud ${ }^{142}$, P. Giromini ${ }^{57}$, G. Giugliarelli ${ }^{64 a, 64 c}$, D. Giugni ${ }^{66 a}$, F. Giuli ${ }^{132}$, M. Giulini ${ }^{59 b}$, S. Gkaitatzis ${ }^{159}$, I. Gkialas ${ }^{9, k}$, E.L. Gkougkousis ${ }^{14}$, P. Gkountoumis ${ }^{10}$, L.K. Gladilin ${ }^{111}$, C. Glasman ${ }^{96}$, J. Glatzer ${ }^{14}$, P.C.F. Glaysher ${ }^{44}$, A. Glazov ${ }^{44}$, M. Goblirsch-Kolb ${ }^{26}$, J. Godlewski ${ }^{82}$, S. Goldfarb ${ }^{102}$, T. Golling ${ }^{52}$, D. Golubkov ${ }^{121}$, A. Gomes ${ }^{137 \mathrm{a}, 137 \mathrm{~b}}$, R. Goncalves Gama ${ }^{78 \mathrm{a}}$, R. Gonçalo ${ }^{137 a}$, G. Gonella ${ }^{50}$, L. Gonella ${ }^{21}$, A. Gongadze ${ }^{77}$, F. Gonnella ${ }^{21}$, J.L. Gonski ${ }^{57}$,
S. González de la Hoz ${ }^{171}$, S. Gonzalez-Sevilla ${ }^{52}$, L. Goossens ${ }^{35}$, P.A. Gorbounov ${ }^{109}$, H.A. Gordon ${ }^{29}$, B. Gorini ${ }^{35}$, E. Gorini ${ }^{65 a, 65 b}$, A. Gorišek ${ }^{89}$, A.T. Goshaw ${ }^{47}$, C. Gössling ${ }^{45}$, M.I. Gostkin ${ }^{77}$, C.A. Gottardo ${ }^{24}$, C.R. Goudet ${ }^{129}$, D. Goujdami ${ }^{34 c}$, A.G. Goussiou ${ }^{145}$, N. Govender ${ }^{32 b, c}$, C. Goy ${ }^{5}$, E. Gozani ${ }^{157}$, I. Grabowska-Bold ${ }^{81 a}$, P.O.J. Gradin ${ }^{169}$, E.C. Graham ${ }^{88}$, J. Gramling ${ }^{168}$, E. Gramstad ${ }^{131}$, S. Grancagnolo ${ }^{19}$, V. Gratchev ${ }^{135}$, P.M. Gravila ${ }^{27 f}$, F.G. Gravili ${ }^{65 a, 65 b}$, C. Gray ${ }^{55}$, H.M. Gray ${ }^{18}$, Z.D. Greenwood ${ }^{93, a l}$, C. Grefe ${ }^{24}$, K. Gregersen ${ }^{94}$, I.M. Gregor ${ }^{44}$, P. Grenier ${ }^{150}$, K. Grevtsov ${ }^{44}$, N.A. Grieser ${ }^{125}$, J. Griffiths ${ }^{8}$, A.A. Grillo ${ }^{143}$, K. Grimm ${ }^{150, b}$, S. Grinstein ${ }^{14, a a}$, Ph. Gris ${ }^{37}$, J.-F. Grivaz ${ }^{129}$, S. Groh ${ }^{97}$, E. Gross ${ }^{177}$, J. Grosse-Knetter ${ }^{51}$, G.C. Grossi ${ }^{93}$, Z.J. Grout ${ }^{92}$, C. Grud ${ }^{103}$, A. Grummer ${ }^{116}$, L. Guan ${ }^{103}$, W. Guan ${ }^{178}$, J. Guenther ${ }^{35}$, A. Guerguichon ${ }^{129}$, F. Guescini ${ }^{165 a}$, D. Guest ${ }^{168}$, R. Gugel ${ }^{50}$, B. Gui ${ }^{123}$, T. Guillemin ${ }^{5}$, S. Guindon ${ }^{35}$, U. Gul ${ }^{55}$, C. Gumpert ${ }^{35}$, J. Guo ${ }^{58 \mathrm{c}}$, W. Guo ${ }^{103}$, Y. Guo ${ }^{58 \mathrm{a}, \mathrm{t}}$, Z. Guo ${ }^{99}$, R. Gupta ${ }^{41}$, S. Gurbuz ${ }^{12 \mathrm{c}}$, G. Gustavino ${ }^{125}$, B.J. Gutelman ${ }^{157}$, P. Gutierrez ${ }^{125}$, C. Gutschow ${ }^{92}$, C. Guyot ${ }^{142}$, M.P. Guzik ${ }^{81 \text { a }}$, C. Gwenlan ${ }^{132}$, C.B. Gwilliam ${ }^{88}$, A. Haas ${ }^{122}$, C. Haber ${ }^{18}$, H.K. Hadavand ${ }^{8}$, N. Haddad ${ }^{34 e}$, A. Hadef ${ }^{58 a}$, S. Hageböck ${ }^{24}$, M. Hagihara ${ }^{166}$, H. Hakobyan ${ }^{181, *}$, M. Haleem ${ }^{174}$, J. Haley ${ }^{126}$, G. Halladjian ${ }^{104}$, G.D. Hallewell ${ }^{99}$, K. Hamacher ${ }^{179}$, P. Hamal ${ }^{127}$, K. Hamano ${ }^{173}$, A. Hamilton ${ }^{32 a}$, G.N. Hamity ${ }^{146}$, K. Han ${ }^{58 a, a k}$, L. Han ${ }^{58 a}$, S. Han ${ }^{15 d}$, K. Hanagaki ${ }^{79, w}$, M. Hance ${ }^{143}$, D.M. Handl ${ }^{112}$, B. Haney ${ }^{134}$, R. Hankache ${ }^{133}$, P. Hanke ${ }^{59 a}$, E. Hansen ${ }^{94}$, J.B. Hansen ${ }^{39}$, J.D. Hansen ${ }^{39}$, M.C. Hansen ${ }^{24}$, P.H. Hansen ${ }^{39}$, K. Hara ${ }^{166}$, A.S. Hard ${ }^{178}$, T. Harenberg ${ }^{179}$, S. Harkusha ${ }^{105}$, P.F. Harrison ${ }^{175}$, N.M. Hartmann ${ }^{112}$, Y. Hasegawa ${ }^{147}$, A. Hasib ${ }^{48}$, S. Hassani ${ }^{142}$, S. Haug ${ }^{20}$, R. Hauser ${ }^{104}$, L. Hauswald ${ }^{46}$, L.B. Havener ${ }^{38}$, M. Havranek ${ }^{139}$, C.M. Hawkes ${ }^{21}$, R.J. Hawkings ${ }^{35}$, D. Hayden ${ }^{104}$, C. Hayes ${ }^{152}$, C.P. Hays ${ }^{132}$, J.M. Hays ${ }^{90}$, H.S. Hayward ${ }^{88}$, S.J. Haywood ${ }^{141}$, M.P. Heath ${ }^{48}$, V. Hedberg ${ }^{94}$, L. Heelan ${ }^{8}$, S. Heer ${ }^{24}$, K.K. Heidegger ${ }^{50}$, J. Heilman ${ }^{33}$, S. Heim ${ }^{44}$, T. Heim ${ }^{18}$, B. Heinemann ${ }^{44, a q}$, J.J. Heinrich ${ }^{112}$, L. Heinrich ${ }^{122}$, C. Heinz ${ }^{54}$, J. Hejbal ${ }^{138}$, L. Helary ${ }^{35}$, A. Held ${ }^{172}$,S. Hellesund ${ }^{131}$, S. Hellman ${ }^{43 a, 43 b}$, C. Helsens ${ }^{35}$, R.C.W. Henderson ${ }^{87}$, Y. Heng ${ }^{178}$, S. Henkelmann ${ }^{172}$, A.M. Henriques Correia ${ }^{35}$, G.H. Herbert ${ }^{19}$, H. Herde ${ }^{26}$, V. Herget ${ }^{174}$, Y. Hernández Jiménez ${ }^{32 \text { 2c }}$, H. Herr ${ }^{97}$, M.G. Herrmann ${ }^{112}$, G. Herten ${ }^{50}$, R. Hertenberger ${ }^{112}$, L. Hervas ${ }^{35}$, T.C. Herwig ${ }^{134}$, G.G. Hesketh ${ }^{92}$, N.P. Hessey ${ }^{165 a}$, J.W. Hetherly ${ }^{41}$, S. Higashino ${ }^{79}$, E. Higón-Rodriguez ${ }^{171}$, K. Hildebrand ${ }^{36}$, E. Hill ${ }^{173}$, J.C. Hill ${ }^{31}$, K.K. Hill ${ }^{29}$, K.H. Hiller ${ }^{44}$, S.J. Hillier ${ }^{21}$, M. Hils ${ }^{46}$, I. Hinchliffe ${ }^{18}$, M. Hirose ${ }^{130}$, D. Hirschbuehl ${ }^{179}$ B. itit 89, O. Hladik ${ }^{138}$, D.R. Hlaluku ${ }^{32 \text { 2c, }}$, X. Hoad ${ }^{48}$, J. Hobbs ${ }^{152}$, N. Hod ${ }^{165 a}$, M.C. Hodgkinson ${ }^{146}$, A. Hoecker ${ }^{35}$, M.R. Hoeferkamp ${ }^{116}$, F. Hoenig ${ }^{112}$, D. Hohn ${ }^{24}$, D. Hohov ${ }^{129}$, T.R. Holmes ${ }^{36}$, M. Holzbock ${ }^{112}$, M. Homann ${ }^{45}$, S. Honda ${ }^{166}$, T. Honda ${ }^{79}$, T.M. Hong ${ }^{136}$, A. Hönle ${ }^{113}$, B.H. Hooberman ${ }^{170}$, W.H. Hopkins ${ }^{128}$, Y. Horii ${ }^{115}$, P. Horn ${ }^{46}$, A.J. Horton ${ }^{149}$, L.A. Horyn ${ }^{36}$, J-Y. Hostachy ${ }^{56}$, A. Hostiuc ${ }^{145}$, S. Hou ${ }^{155}$, A. Hoummada ${ }^{34 a}$, J. Howarth ${ }^{98}$, J. Hoya ${ }^{86}$, M. Hrabovsky ${ }^{127}$, J. Hrdinka ${ }^{35}$, I. Hristova ${ }^{19}$, J. Hrivnac ${ }^{129}$, A. Hrynevich ${ }^{106}$, T. Hryn'ova ${ }^{5}$, P.J. Hsu ${ }^{62}$, S.-C. Hsu ${ }^{145}$, Q. Hu^{29}, S. Hu ${ }^{58 \mathrm{c}}$, Y. Huang ${ }^{15 a}$, Z. Hubacek ${ }^{139}$, F. Hubaut ${ }^{99}$, M. Huebner ${ }^{24}$, F. Huegging ${ }^{24}$, T.B. Huffman ${ }^{132}$, E.W. Hughes ${ }^{38}$, M. Huhtinen ${ }^{35}$, R.F.H. Hunter ${ }^{33}$, P. Huo ${ }^{152}$, A.M. Hupe ${ }^{33}$, N. Huseynov ${ }^{77, a g}$, J. Huston ${ }^{104}$, J. Huth ${ }^{57}$, R. Hyneman ${ }^{103}$, G. Iacobucci ${ }^{52}$, G. Iakovidis ${ }^{29}$, I. Ibragimov ${ }^{148}$, L. Iconomidou-Fayard ${ }^{129}$, Z. Idrissi ${ }^{34 e}$, P. Iengo ${ }^{35}$, R. Ignazzi ${ }^{39}$, O. Igonkina ${ }^{118, a c}$, R. Iguchi ${ }^{160}$, T. Iizawa ${ }^{52}$, Y. Ikegami ${ }^{79}$, M. Ikeno ${ }^{79}$, D. Iliadis ${ }^{159}$, N. Ilic ${ }^{117}$, F. Iltzsche ${ }^{46}$,
 M. Ishino ${ }^{160}$, M. Ishitsuka ${ }^{162}$, W. Islam ${ }^{126}$, C. Issever ${ }^{132}$, S. Istin ${ }^{157}$, F. Ito ${ }^{166}$, J.M. Iturbe Ponce ${ }^{61 a}{ }^{12}$, R. Iuppa ${ }^{73 a, 73 b}$, A. Ivina ${ }^{177}$, H. Iwasaki ${ }^{79}$, J.M. Izen ${ }^{42}$, V. Izzo ${ }^{67 a}$, P. Jacka ${ }^{138}$, P. Jackson ${ }^{1}$, R.M. Jacobs ${ }^{24}$, V. Jain ${ }^{2}$, G. Jäkel ${ }^{179}$, K.B. Jakobi ${ }^{97}$, K. Jakobs ${ }^{50}$, S. Jakobsen ${ }^{74}$, T. Jakoubek ${ }^{138}$, D.O. Jamin ${ }^{126}$, D.K. Jana ${ }^{93}$, R. Jansky ${ }^{52}$, J. Janssen ${ }^{24}$, M. Janus ${ }^{51}$, P.A. Janus ${ }^{81}$, G. Jarlskog ${ }^{94}$, N. Javadov ${ }^{77}$, ag , T. Javůrek ${ }^{35}$, M. Javurkova ${ }^{50}$, F. Jeanneau ${ }^{142}$, L. Jeanty ${ }^{18}$, J. Jejelava ${ }^{156 a, a h}$, A. Jelinskas ${ }^{175}$, P. Jenni ${ }^{50, d}$, J. Jeong ${ }^{44}$, S. Jézéquel ${ }^{5}$, H. Ji ${ }^{178}$, J. Jia ${ }^{152}$, H. Jiang ${ }^{76}$, Y. Jiang ${ }^{58 \mathrm{a}}$, Z. Jiang ${ }^{150, r}$, S. Jiggins ${ }^{50}$, F.A. Jimenez Morales ${ }^{37}$, J. Jimenez Pena ${ }^{171}$, S. Jin ${ }^{15 c}$, A. Jinaru ${ }^{27 b}$, O. Jinnouchi ${ }^{162}$, H. Jivan ${ }^{32 \mathrm{c}}$, P. Johansson ${ }^{146}$, K.A. Johns ${ }^{7}$, C.A. Johnson ${ }^{63}$, W.J. Johnson ${ }^{145}$, K. Jon-And ${ }^{43 a, 43 b}$, R.W.L. Jones ${ }^{87}$, S.D. Jones ${ }^{153}$, S. Jones ${ }^{7}$, T.J. Jones ${ }^{88}$, J. Jongmanns ${ }^{59 \mathrm{a}}$, P.M. Jorge ${ }^{137 \mathrm{a}, 137 \mathrm{~b}}$, J. Jovicevic ${ }^{165 \mathrm{a}}$, X. Ju ${ }^{18}$, J.J. Junggeburth ${ }^{113}$, A. Juste Rozas ${ }^{14, a a}$, A. Kaczmarska ${ }^{82}$, M. Kado ${ }^{129}$, H. Kagan ${ }^{123}$, M. Kagan ${ }^{150}$, T. Kaji ${ }^{176}$, E. Kajomovitz ${ }^{157}$, C.W. Kalderon ${ }^{94}$, A. Kaluza ${ }^{97}$, S. Kama ${ }^{41}$, A. Kamenshchikov ${ }^{121}$, L. Kanjir ${ }^{89}$, Y. Kano ${ }^{160}$, V.A. Kantserov ${ }^{1110}$, J. Kanzaki ${ }^{79}$, B. Kaplan ${ }^{122}$, L.S. Kaplan ${ }^{178}$, D. Kar ${ }^{32 \mathrm{c}}$, M.J. Kareem ${ }^{165 b}$, E. Karentzos ${ }^{10}$, S.N. Karpov ${ }^{77}$, Z.M. Karpova ${ }^{77}$, V. Kartvelishvili ${ }^{87}$, A.N. Karyukhin ${ }^{121}$, L. Kashif ${ }^{178}$, R.D. Kass ${ }^{123}$, A. Kastanas ${ }^{151}$, Y. Kataoka ${ }^{160}$,
C. Kato ${ }^{58 d, 58 \text { c }}$, J. Katzy ${ }^{44}$, K. Kawade ${ }^{80}$, K. Kawagoe ${ }^{85}$, T. Kawamoto ${ }^{160}$, G. Kawamura ${ }^{51}$, E.F. Kay ${ }^{88}$, V.F. Kazanin ${ }^{120 b, 120 a}$, R. Keeler ${ }^{173}$, R. Kehoe ${ }^{41}$, J.S. Keller ${ }^{33}$, E. Kellermann ${ }^{94}$, J.J. Kempster ${ }^{21}$, J. Kendrick ${ }^{21}$, O. Kepka ${ }^{138}$, S. Kersten ${ }^{179}$, B.P. Kerševan ${ }^{89}$, R.A. Keyes ${ }^{101}$, M. Khader ${ }^{170}$, F. Khalil-Zada ${ }^{13}$, A. Khanov ${ }^{126}$, A.G. Kharlamov ${ }^{120 b, 120 a}$, T. Kharlamova ${ }^{120 b, 120 a}$, E.E. Khoda ${ }^{172}$, A. Khodinov ${ }^{163}$, T.J. Khoo ${ }^{52}$, E. Khramov ${ }^{77}$, J. Khubua ${ }^{156}$ bb, S. Kido ${ }^{80}$, M. Kiehn ${ }^{52}$, C.R. Kilby ${ }^{91}$, Y.K. Kim ${ }^{36}$,
N. Kimura ${ }^{64 a, 64 c}$, O.M. Kind ${ }^{19}$, B.T. King ${ }^{88}$, D. Kirchmeier ${ }^{46}$, J. Kirk ${ }^{141}$, A.E. Kiryunin ${ }^{113}$, T. Kishimoto ${ }^{160}$, D. Kisielewska ${ }^{81 a}$, V. Kitali ${ }^{44}$, O. Kivernyk ${ }^{5}$, E. Kladiva ${ }^{28 b}$, *, T. Klapdor-Kleingrothaus ${ }^{50}$, M.H. Klein ${ }^{103}$, M. Klein ${ }^{88}$, U. Klein ${ }^{88}$, K. Kleinknecht ${ }^{97}$, P. Klimek ${ }^{119}$, A. Klimentov ${ }^{29}$, R. Klingenberg ${ }^{45}$, , T. Klingl ${ }^{24}$, T. Klioutchnikova ${ }^{35}$, F.F. Klitzner ${ }^{112}$, P. Kluit ${ }^{118}$, S. Kluth ${ }^{113}$, E. Kneringer ${ }^{74}$, E.B.F.G. Knoops ${ }^{99}$,
A. Knue ${ }^{50}$, A. Kobayashi ${ }^{160}$, D. Kobayashi ${ }^{85}$, T. Kobayashi ${ }^{160}$, M. Kobel ${ }^{46}$, M. Kocian ${ }^{150}$, P. Kodys ${ }^{140}$, P.T. Koenig ${ }^{24}$, T. Koffas ${ }^{33}$, E. Koffeman ${ }^{118}$, N.M. Köhler ${ }^{113}$, T. Koi ${ }^{150}$, M. Kolb ${ }^{59 b}$, I. Koletsou ${ }^{5}$, T. Kondo ${ }^{79}$, N. Kondrashova ${ }^{58 c}$, K. Köneke ${ }^{50}$, A.C. König ${ }^{117}$, T. Kono ${ }^{79}$, R. Konoplich ${ }^{122, a n}$, V. Konstantinides ${ }^{92}$, N. Konstantinidis ${ }^{92}$, B. Konya ${ }^{94}$, R. Kopeliansky ${ }^{63}$, S. Koperny ${ }^{81 a}$, K. Korcyl ${ }^{82}$, K. Kordas ${ }^{159}$, G. Koren ${ }^{158}$, A. Korn ${ }^{92}$, I. Korolkov ${ }^{14}$, E.V. Korolkova ${ }^{146}$, N. Korotkova ${ }^{111}$, O. Kortner ${ }^{113}$, S. Kortner ${ }^{113}$, T. Kosek ${ }^{140}$, V.V. Kostyukhin ${ }^{24}$, A. Kotwal ${ }^{47}$, A. Koulouris ${ }^{10}$,
A. Kourkoumeli-Charalampidi ${ }^{68,}$, 68 b , C. Kourkoumelis ${ }^{9}$, E. Kourlitis ${ }^{146}$, V. Kouskoura ${ }^{29}$,
A.B. Kowalewska ${ }^{82}$, R. Kowalewski ${ }^{173}$, T.Z. Kowalski ${ }^{81 a}$, C. Kozakai ${ }^{160}$, W. Kozanecki ${ }^{142}$, A.S. Kozhin ${ }^{121}$, V.A. Kramarenko ${ }^{111}$, G. Kramberger ${ }^{89}$, D. Krasnopevtsev ${ }^{58 a}$, M.W. Krasny ${ }^{133}$, A. Krasznahorkay ${ }^{35}$, D. Krauss ${ }^{113}$, J.A. Kremer ${ }^{81 a}$, J. Kretzschmar ${ }^{88}$, P. Krieger ${ }^{164}$, K. Krizka ${ }^{18}$, K. Kroeninger ${ }^{45}$, H. Kroha ${ }^{113}$, J. Kroll ${ }^{138}$, J. Kroll ${ }^{134}$, J. Krstic ${ }^{16}$, U. Kruchonak ${ }^{77}$, H. Krüger ${ }^{24}$, N. Krumnack ${ }^{76}$, M.C. Kruse ${ }^{47}$, T. Kubota ${ }^{102}$, S. Kuday ${ }^{4 \mathrm{~b}}$, J.T. Kuechler ${ }^{179}$, S. Kuehn ${ }^{35}$, A. Kugel ${ }^{59 \mathrm{a}}$, F. Kuger ${ }^{174}$, T. Kuhl ${ }^{44}$, V. Kukhtin ${ }^{77}$, R. Kukla ${ }^{99}$, Y. Kulchitsky ${ }^{105}$, S. Kuleshov ${ }^{144 \mathrm{~b}}$, Y.P. Kulinich ${ }^{170}$, M. Kuna ${ }^{56}$, T. Kunigo ${ }^{83}$, A. Kupco ${ }^{138}$, T. Kupfer ${ }^{45}$, O. Kuprash ${ }^{158}$, H. Kurashige ${ }^{80}$, L.L. Kurchaninov ${ }^{165 a}$, Y.A. Kurochkin ${ }^{105}$, M.G. Kurth ${ }^{15 d}$, E.S. Kuwertz ${ }^{35}$, M. Kuze ${ }^{162}$, J. Kvita ${ }^{127}$, T. Kwan ${ }^{101}$, A. La Rosa ${ }^{113}$, J.L. La Rosa Navarro ${ }^{78 \mathrm{~d}}$, L. La Rotonda ${ }^{40 \mathrm{~b}, 40 \mathrm{a}}$, F. La Ruffa ${ }^{40 \mathrm{~b}, 40 \mathrm{a}}$, C. Lacasta ${ }^{171}$, F. Lacava ${ }^{70 a, 70 \mathrm{~b}}$, J. Lacey ${ }^{44}$, D.P.J. Lack ${ }^{98}$, H. Lacker ${ }^{19}$, D. Lacour ${ }^{133}$, E. Ladygin ${ }^{77}$, R. Lafaye ${ }^{5}$, B. Laforge ${ }^{133}$, T. Lagouri ${ }^{32 c}$, S. Lai ${ }^{51}$, S. Lammers ${ }^{63}$, W. Lampl ${ }^{7}$, E. Lançon ${ }^{29}$, U. Landgraf ${ }^{50}$, M.P.J. Landon ${ }^{90}$, M.C. Lanfermann ${ }^{52}$, V.S. Lang ${ }^{44}$, J.C. Lange ${ }^{14}$, R.J. Langenberg ${ }^{35}$, A.J. Lankford ${ }^{168}$, F. Lanni ${ }^{29}$, K. Lantzsch ${ }^{24}$, A. Lanza ${ }^{68 a}$, A. Lapertosa ${ }^{53 b}, 53 a$, S. Laplace ${ }^{133}$, J.F. Laporte ${ }^{142}$, T. Lari ${ }^{66 a}$, F. Lasagni Manghi ${ }^{23 b}$, 23 a , M. Lassnig ${ }^{35}$, T.S. Lau ${ }^{61 a}$, A. Laudrain ${ }^{129}$, M. Lavorgna ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, A.T. Law ${ }^{143}$, P. Laycock ${ }^{88}$, M. Lazzaroni ${ }^{66 a, 66 \mathrm{~b}}$, B. Le ${ }^{102}$, O. Le Dortz ${ }^{133}$, E. Le Guirriec 99, E.P. Le Quilleuc ${ }^{142}$, M. LeBlanc ${ }^{7}$, T. LeCompte ${ }^{6}$, F. Ledroit-Guillon ${ }^{56}$, C.A. Lee ${ }^{29}$, G.R. Lee ${ }^{144 a}$, L. Lee ${ }^{57}$, S.C. Lee ${ }^{155}$, B. Lefebvre ${ }^{101}$, M. Lefebvre ${ }^{173}$, F. Legger ${ }^{112}$, C. Leggett ${ }^{18}$, K. Lehmann ${ }^{149}$, N. Lehmann ${ }^{179}$, G. Lehmann Miotto ${ }^{35}$, W.A. Leight ${ }^{44}$, A. Leisos ${ }^{159, x}$, M.A.L. Leite ${ }^{78 \mathrm{~d}}$, R. Leitner ${ }^{140}$, D. Lellouch ${ }^{177}$, B. Lemmer ${ }^{51}$, K.J.C. Leney ${ }^{92}$, T. Lenz ${ }^{24}$, B. Lenzi ${ }^{35}$, R. Leone ${ }^{7}$, S. Leone ${ }^{69 a}$, C. Leonidopoulos ${ }^{48}$, G. Lerner ${ }^{153}$, C. Leroy ${ }^{107}$, R. Les ${ }^{164}$, A.A.J. Lesage ${ }^{142}$, C.G. Lester ${ }^{31}$,
M. Levchenko ${ }^{135}$, J. Levêque ${ }^{5}$, D. Levin ${ }^{103}$, L.J. Levinson ${ }^{177}$, D. Lewis ${ }^{90}$, B. Li ${ }^{103}$, C-Q. Li ${ }^{58 \mathrm{a}, a m}$, H. Li ${ }^{58 \mathrm{~b}}$, L. Li ${ }^{58 \mathrm{c}}$, Q. Li ${ }^{15 \mathrm{~d}}$, Q.Y. Li ${ }^{\text {58a }}$, S. Li ${ }^{58 d, 58 \mathrm{c}}$, X. Li ${ }^{58 \mathrm{c}}$, Y. Li ${ }^{148}$, Z. Liang ${ }^{15 a}$, B. Liberti ${ }^{\text {11a }}$, A. Liblong ${ }^{\text {164 }}$, K. Lie ${ }^{61 \text { c }}$, S. Liem ${ }^{118}$, A. Limosani ${ }^{154}$, C.Y. Lin ${ }^{31}$, K. Lin ${ }^{104}$, T.H. Lin ${ }^{97}$, R.A. Linck ${ }^{63}$, J.H. Lindon ${ }^{21}$, B.E. Lindquist ${ }^{152}$, A.L. Lionti ${ }^{52}$, E. Lipeles ${ }^{134}$, A. Lipniacka ${ }^{17}$, M. Lisovyi ${ }^{59 \mathrm{~b}}$, T.M. Liss ${ }^{170, \text { as }}$, A. Lister ${ }^{172}$, A.M. Litke ${ }^{143}$, J.D. Little ${ }^{8}$, B. Liu ${ }^{76}$, B.L Liu ${ }^{6}$, H.B. Liu ${ }^{29}$, H. Liu ${ }^{103}$, J.B. Liu ${ }^{58 \text { a }}$, J.K.K. Liu ${ }^{132}$, K. Liu ${ }^{133}$ M. Liu ${ }^{58 a}$, P. Liu ${ }^{18}$, Y. Liu ${ }^{15 a}$, Y.L. Liu ${ }^{58 \mathrm{a}}$, Y.W. Liu ${ }^{58 \mathrm{a}}$, M. Livan ${ }^{68 a, \text {,68b }}$, A. Lleres ${ }^{56}$, J. Llorente Merino ${ }^{\text {15a }}$, S.L. Lloyd ${ }^{90}$, C.Y. Lo ${ }^{61 b}$, F. Lo Sterzo ${ }^{41}$, E.M. Lobodzinska ${ }^{44}$, P. Loch ${ }^{7}$, T. Lohse ${ }^{19}$, K. Lohwasser ${ }^{146}$, M. Lokajicek ${ }^{138}$, B.A. Long ${ }^{25}$, J.D. Long ${ }^{170}$, R.E. Long ${ }^{87}$, L. Longo ${ }^{65 \mathrm{a}, 65 \mathrm{~b}}$, K.A. Looper ${ }^{123}$, J.A. Lopez ${ }^{144 \mathrm{~b}}$, I. Lopez Paz ${ }^{14}$, A. Lopez Solis ${ }^{146}$, J. Lorenz ${ }^{112}$, N. Lorenzo Martinez ${ }^{5}$, M. Losada ${ }^{22}$, P.J. Lösel ${ }^{112}$, A. Lösle ${ }^{50}$, X. Lou ${ }^{44}$, X. Lou ${ }^{15 a}$, A. Lounis ${ }^{129}$, J. Love ${ }^{6}$, P.A. Love ${ }^{87}$, J.J. Lozano Bahilo ${ }^{171}$, $\mathrm{H}^{\text {Lu }}{ }^{61 \mathrm{a}}$, M. Lu ${ }^{58 \mathrm{a}}$, N. Lu ${ }^{103}$, Y.J. Lu ${ }^{62}$, H.J. Lubatti ${ }^{145}$, C. Luci ${ }^{70 a}, 70$ b, A. Lucotte ${ }^{56}$, C. Luedtke ${ }^{50}$, F. Luehring ${ }^{63}$, I. Luise ${ }^{133}$, L. Luminari ${ }^{70 a}$, B. Lund-Jensen ${ }^{151}$, M.S. Lutz ${ }^{100}$, P.M. Luzi ${ }^{133}$, D. Lynn ${ }^{29}$, R. Lysak ${ }^{138}$, E. Lytken ${ }^{94}$, F. Lyu ${ }^{15 a}$, V. Lyubushkin ${ }^{77}$, H. Ma ${ }^{29}$, L.L. Ma ${ }^{58 \mathrm{~b}}$, Y. Ma ${ }^{58 \mathrm{~b}}$, G. Maccarrone ${ }^{49}$, A. Macchiolo ${ }^{113}$, C.M. Macdonald ${ }^{146}$, J. Machado Miguens ${ }^{134,137 \mathrm{~b}}$, D. Madaffari ${ }^{171}$, R. Madar ${ }^{37}$, W.F. Mader ${ }^{46}$, A. Madsen ${ }^{44}$, N. Madysa ${ }^{46}$, J. Maeda ${ }^{80}$, K. Maekawa ${ }^{160}$, S. Maeland ${ }^{17}$, T. Maeno ${ }^{29}$, A.S. Maevskiy ${ }^{111}$, V. Magerl ${ }^{50}$, C. Maidantchik ${ }^{78 \mathrm{~b}}$, T. Maier ${ }^{1122}$, A. Maio ${ }^{137 \mathrm{a}, 137 \mathrm{~b}, 137 \mathrm{~d}}$, O. Majersky ${ }^{28 \mathrm{a}}$, S. Majewski ${ }^{128}$, Y. Makida ${ }^{79}$, N. Makovec ${ }^{129}$, B. Malaescu ${ }^{133}$, Pa. Malecki ${ }^{82}$, V.P. Maleev ${ }^{135}$, F. Malek ${ }^{56}$,
U. Mallik ${ }^{75}$, D. Malon ${ }^{6}$, C. Malone ${ }^{31}$, S. Maltezos ${ }^{10}$, S. Malyukov ${ }^{35}$, J. Mamuzic ${ }^{171}$, G. Mancini ${ }^{49}$, I. Mandić ${ }^{89}$, J. Maneira ${ }^{137 a}$, L. Manhaes de Andrade Filho ${ }^{78 \mathrm{a}}$, J. Manjarres Ramos ${ }^{46}$, K.H. Mankinen ${ }^{94}$, A. Mann ${ }^{112}$, A. Manousos ${ }^{74}$, B. Mansoulie ${ }^{142}$, J.D. Mansour ${ }^{15 a}$, M. Mantoani ${ }^{51}$, S. Manzoni ${ }^{66 a, 66 b}$, G. Marceca ${ }^{30}$, L. March ${ }^{52}$, L. Marchese ${ }^{132}$, G. Marchiori ${ }^{133}$, M. Marcisovsky ${ }^{138}$, C.A. Marin Tobon ${ }^{35}$, M. Marjanovic ${ }^{37}$, D.E. Marley ${ }^{103}$, F. Marroquim ${ }^{78 \mathrm{~b}}$, Z. Marshall ${ }^{18}$, M.U.F Martensson ${ }^{169}$, S. Marti-Garcia ${ }^{171}$, C.B. Martin ${ }^{123}$, T.A. Martin ${ }^{175}$, V.J. Martin ${ }^{48}$, B. Martin dit Latour ${ }^{17}$, M. Martinez ${ }^{14, a a}$, V.I. Martinez Outschoorn ${ }^{100}$, S. Martin-Haugh ${ }^{141}$, V.S. Martoiu ${ }^{27 \mathrm{~b}}$, A.C. Martyniuk ${ }^{92}$, A. Marzin ${ }^{35}$, L. Masetti ${ }^{97}$, T. Mashimo ${ }^{160}$, R. Mashinistov ${ }^{108}$, J. Masik ${ }^{98}$, A.L. Maslennikov ${ }^{120 \mathrm{~b}, 120 \mathrm{a}}$, L.H. Mason ${ }^{102}$, L. Massa ${ }^{71 a}$, 71 b , P. Massarotti ${ }^{67 a, 67 b}$, P. Mastrandrea ${ }^{5}$, A. Mastroberardino ${ }^{40 \mathrm{~b}, 40 \mathrm{a} \text {, }}$ T. Masubuchi ${ }^{160}$, P. Mättig ${ }^{179}$, J. Maurer ${ }^{27 b}$, B. Maček ${ }^{89}$, S.J. Maxfield ${ }^{88}$, D.A. Maximov ${ }^{120 b,} 120{ }^{\text {a }}$, R. Mazini ${ }^{155}$, I. Maznas ${ }^{159}$, S.M. Mazza ${ }^{143}$, N.C. Mc Fadden ${ }^{116}$, G. Mc Goldrick ${ }^{164}$, S.P. Mc Kee ${ }^{103}$, A. McCarn ${ }^{103}$, T.G. McCarthy ${ }^{113}$, L.I. McClymont ${ }^{92}$, E.F. McDonald ${ }^{102}$, J.A. Mcfayden ${ }^{35}$, G. Mchedlidze ${ }^{51}$, M.A. McKay ${ }^{41}$, K.D. McLean ${ }^{173}$, S.J. McMahon ${ }^{141}$, P.C. McNamara ${ }^{102}$, C.J. McNicol ${ }^{175}$, R.A. McPherson ${ }^{173, a e}$, J.E. Mdhluli ${ }^{32 \mathrm{C}}$, Z.A. Meadows ${ }^{100}$, S. Meehan ${ }^{145}$, T.M. Megy ${ }^{50}$, S. Mehlhase ${ }^{112}$, A. Mehta ${ }^{88}$, T. Meideck ${ }^{56}$, B. Meirose ${ }^{42}$, D. Melini ${ }^{171, h}$, B.R. Mellado Garcia ${ }^{32 \mathrm{c}}$, J.D. Mellenthin ${ }^{51}$, M. Melo ${ }^{28 a}$, F. Meloni 44, A. Melzer ${ }^{24}$, S.B. Menary ${ }^{98}$, E.D. Mendes Gouveia ${ }^{137 \mathrm{a}}$, L. Meng ${ }^{88}$, X.T. Meng ${ }^{103}$, A. Mengarelli ${ }^{23 b}, 23 \mathrm{a}$, S. Menke ${ }^{113}$, E. Meoni ${ }^{40 \mathrm{~b}, 40 \mathrm{a}}$, S. Mergelmeyer ${ }^{19}$, C. Merlassino ${ }^{20}$, P. Mermod ${ }^{52}$, L. Merola ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, C. Meroni ${ }^{66 \mathrm{a}}$, F.S. Merritt ${ }^{36}$, A. Messina ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$, J. Metcalfe ${ }^{6}$, A.S. Mete ${ }^{168}$, C. Meyer ${ }^{134}$, J. Meyer ${ }^{157}$, J-P. Meyer ${ }^{142}$, H. Meyer Zu Theenhausen ${ }^{59 a}$, F. Miano ${ }^{153}$, R.P. Middleton ${ }^{141}$, L. Mijović ${ }^{48}$, G. Mikenberg ${ }^{177}$, M. Mikestikova ${ }^{138}$, M. Mikuž ${ }^{89}$, M. Milesi ${ }^{102}$, A. Milic ${ }^{164}$, D.A. Millar ${ }^{90}$, D.W. Miller ${ }^{36}$, A. Milov ${ }^{177}$, D.A. Milstead ${ }^{43 a, 43 \mathrm{~b}}$, A.A. Minaenko ${ }^{121}$, M. Miñano Moya ${ }^{171}$, I.A. Minashvili ${ }^{156 b}$, A.I. Mincer ${ }^{122}$, B. Mindur ${ }^{81 a}$, M. Mineev ${ }^{77}$, Y. Minegishi ${ }^{160}$, Y. Ming ${ }^{\text {178 }}$, L.M. Mir ${ }^{14}$, A. Mirto ${ }^{65 a, 65 b}$, K.P. Mistry ${ }^{134}$, T. Mitani ${ }^{176}$, J. Mitrevski ${ }^{112}$, V.A. Mitsou ${ }^{171}$, A. Miucci ${ }^{20}$, P.S. Miyagawa ${ }^{146}$, A. Mizukami ${ }^{79}$, J.U. Mjörnmark ${ }^{94}$, T. Mkrtchyan ${ }^{181}$, M. Mlynarikova ${ }^{140}$, T. Moa ${ }^{43 a, 43 \mathrm{~b}}$, K. Mochizuki ${ }^{107}$, P. Mogg ${ }^{50}$, S. Mohapatra ${ }^{38}$, S. Molander ${ }^{43 a, 43 \mathrm{~b}}$, R. Moles-Valls ${ }^{24}$, M.C. Mondragon ${ }^{104}$, K. Mönig ${ }^{44}$, J. Monk ${ }^{39}$, E. Monnier ${ }^{99}$, A. Montalbano ${ }^{149}$, J. Montejo Berlingen ${ }^{35}$, F. Monticelli ${ }^{86}$, S. Monzani ${ }^{66 a}$, N. Morange ${ }^{129}$, D. Moreno ${ }^{22}$, M. Moreno Llácer ${ }^{35}$, P. Morettini ${ }^{53 b}$, M. Morgenstern ${ }^{118}$, S. Morgenstern ${ }^{46}$, D. Mori ${ }^{149}$, M. Morii ${ }^{57}$, M. Morinaga ${ }^{176}$, V. Morisbak ${ }^{131}$, A.K. Morley ${ }^{35}$, G. Mornacchi ${ }^{35}$, A.P. Morris ${ }^{92}$, J.D. Morris ${ }^{90}$, L. Morvaj ${ }^{152}$, P. Moschovakos ${ }^{10}$, M. Mosidze ${ }^{156 b}$, H.J. Moss ${ }^{146}$, J. Moss ${ }^{150,0}$, K. Motohashi ${ }^{162}$, R. Mount ${ }^{150}$, E. Mountricha ${ }^{35}$, E.J.W. Moyse ${ }^{100}$, S. Muanza ${ }^{99}$, F. Mueller ${ }^{113}$, J. Mueller ${ }^{136}$, R.S.P. Mueller ${ }^{112}$, D. Muenstermann ${ }^{87}$, G.A. Mullier ${ }^{20}$, F.J. Munoz Sanchez ${ }^{98}$, P. Murin ${ }^{28 b}$, W.J. Murray ${ }^{175,141}$, A. Murrone ${ }^{66 a, 66 b}$, M. Muškinja ${ }^{89}$, C. Mwewa ${ }^{32 a}$, A.G. Myagkov ${ }^{121, a 0}$, J. Myers ${ }^{128}$, M. Myska ${ }^{139}$, B.P. Nachman ${ }^{18}$, O. Nackenhorst ${ }^{45}$, K. Nagai ${ }^{132}$, K. Nagano ${ }^{79}$, Y. Nagasaka ${ }^{60}$, M. Nagel ${ }^{50}$, E. Nagy ${ }^{99}$, A.M. Nairz ${ }^{35}$, Y. Nakahama ${ }^{115}$, K. Nakamura ${ }^{79}$, T. Nakamura ${ }^{160}$, I. Nakano ${ }^{124}$, H. Nanjo ${ }^{130}$, F. Napolitano ${ }^{59 a}$, R.F. Naranjo Garcia ${ }^{44}$, R. Narayan ${ }^{11}$, D.I. Narrias Villar ${ }^{59 a}$, I. Naryshkin ${ }^{135}$, T. Naumann ${ }^{44}$, G. Navarro ${ }^{22}$, R. Nayyar ${ }^{7}$, H.A. Neal ${ }^{103, *}$, P.Y. Nechaeva ${ }^{108}$, T.J. Neep ${ }^{142}$, A. Negri ${ }^{68 a, 68 b}$, M. Negrini ${ }^{23 \mathrm{~b}}$, S. Nektarijevic ${ }^{117}$, C. Nellist ${ }^{51}$, M.E. Nelson ${ }^{132}$, S. Nemecek ${ }^{138}$, P. Nemethy ${ }^{122}$, M. Nessi ${ }^{35, f}$, M.S. Neubauer ${ }^{170}$, M. Neumann ${ }^{179}$, P.R. Newman ${ }^{21}$, T.Y. $\mathrm{Ng}^{61 \mathrm{c}}$, Y.S. Ng^{19}, H.D.N. Nguyen ${ }^{99}$, T. Nguyen Manh ${ }^{107}$, E. Nibigira ${ }^{37}$, R.B. Nickerson ${ }^{132}$, R. Nicolaidou ${ }^{142}$, J. Nielsen ${ }^{143}$, N. Nikiforou ${ }^{11}$, V. Nikolaenko ${ }^{121, a 0}$, I. Nikolic-Audit ${ }^{133}$, K. Nikolopoulos ${ }^{21}$, P. Nilsson ${ }^{29}$, Y. Ninomiya ${ }^{79}$, A. Nisati ${ }^{70 a}$, N. Nishu ${ }^{58 \mathrm{c}}$, R. Nisius ${ }^{113}$, I. Nitsche ${ }^{45}$, T. Nitta ${ }^{176}$, T. Nobe ${ }^{160}$, Y. Noguchi ${ }^{83}$, M. Nomachi ${ }^{130}$, I. Nomidis ${ }^{133}$, M.A. Nomura ${ }^{29}$, T. Nooney ${ }^{90}$, M. Nordberg ${ }^{35}$, N. Norjoharuddeen ${ }^{132}$, T. Novak ${ }^{89}$, O. Novgorodova ${ }^{46}$, R. Novotny ${ }^{139}$, L. Nozka ${ }^{127}$, K. Ntekas ${ }^{168}$, E. Nurse ${ }^{92}$, F. Nuti ${ }^{102}$, F.G. Oakham ${ }^{33, \text { av }}$, H. Oberlack ${ }^{113}$, T. Obermann ${ }^{24}$, J. Ocariz ${ }^{133}$, A. Ochi ${ }^{80}$, I. Ochoa ${ }^{38}$, J.P. Ochoa-Ricoux ${ }^{144 a}$, K. O'Connor ${ }^{26}$, S. Oda ${ }^{85}$, S. Odaka ${ }^{79}$, S. Oerdek ${ }^{51}$, A. Oh ${ }^{98}$, S.H. Oh ${ }^{47}$, C.C. Ohm ${ }^{151}$, H. Oide ${ }^{53 b, 53 a^{\prime}}$, M.L. Ojeda ${ }^{164}$, H. Okawa ${ }^{166}$, Y. Okazaki ${ }^{83}$, Y. Okumura ${ }^{160}$, T. Okuyama ${ }^{79}$, A. Olariu ${ }^{27 b}$, L.F. Oleiro Seabra ${ }^{137 a}$, S.A. Olivares Pino ${ }^{144 a}$, D. Oliveira Damazio ${ }^{29}$, J.L. Oliver ${ }^{1}$, M.J.R. Olsson ${ }^{36}$, A. Olszewski ${ }^{82}$, J. Olszowska ${ }^{82}$, D.C. O'Neil ${ }^{149}$, A. Onofre ${ }^{137 a, 137 e}$, K. Onogi ${ }^{115}$, P.U.E. Onyisi ${ }^{11}$, H. Oppen ${ }^{131}$, M.J. Oreglia ${ }^{36}$, Y. Oren ${ }^{158}$, D. Orestano ${ }^{72 a, 72 b^{\prime}}$, E.C. Orgill ${ }^{98}$, N. Orlando ${ }^{61 b^{\prime}}$, A.A. O'Rourke ${ }^{44}$, R.S. Orr ${ }^{164}$, B. Osculati ${ }^{53 b, 53 a, *}$, V. O'Shea ${ }^{55}$, R. Ospanov ${ }^{58 \mathrm{a}}$, G. Otero y Garzon ${ }^{30}$, H. Otono ${ }^{85}$, M. Ouchrif ${ }^{34 d}$, F. Ould-Saada ${ }^{131}$, A. Ouraou ${ }^{142}$, Q. Ouyang ${ }^{15 a}$, M. Owen ${ }^{55}$, R.E. Owen ${ }^{21}$, V.E. Ozcan ${ }^{12 \mathrm{c}}$, N. Ozturk ${ }^{8}$, J. Pacalt ${ }^{127}$,'
H.A. Pacey ${ }^{31}$, K. Pachal ${ }^{149}$, A. Pacheco Pages ${ }^{14}$, L. Pacheco Rodriguez ${ }^{142}$, C. Padilla Aranda ${ }^{14}$, S. Pagan Griso ${ }^{18}$, M. Paganini ${ }^{180}$, G. Palacino ${ }^{63}$, S. Palazzo ${ }^{40 \mathrm{~b}, 40 \mathrm{a}}$, S. Palestini ${ }^{35}$, M. Palka ${ }^{81 \mathrm{~b}}$, D. Pallin ${ }^{37}$, I. Panagoulias ${ }^{10}$, C.E. Pandini ${ }^{35}$, J.G. Panduro Vazquez ${ }^{91}$, P. Pani ${ }^{35}$, G. Panizzo ${ }^{64 a, 64 c}$, L. Paolozzi ${ }^{52}$, T.D. Papadopoulou ${ }^{10}$, K. Papageorgiou ${ }^{9, k}$, A. Paramonov ${ }^{6}$, D. Paredes Hernandez ${ }^{61 \mathrm{~b}}$, S.R. Paredes Saenz ${ }^{132}$, B. Parida ${ }^{58 \mathrm{c}}$, A.J. Parker ${ }^{87}$, K.A. Parker ${ }^{44}$, M.A. Parker ${ }^{31}$, F. Parodi ${ }^{53 b, 53 a}$, J.A. Parsons ${ }^{38}$, U. Parzefall ${ }^{50}$, V.R. Pascuzzi ${ }^{164}$, J.M.P. Pasner ${ }^{143}$, E. Pasqualucci ${ }^{70 a}$, S. Passaggio ${ }^{53 b}$, F. Pastore ${ }^{91}$, P. Pasuwan ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$, S. Pataraia ${ }^{97}$, J.R. Pater ${ }^{98}$, A. Pathak ${ }^{178, I}$, T. Pauly ${ }^{35}$, B. Pearson ${ }^{113}$, M. Pedersen ${ }^{131}$, L. Pedraza Diaz ${ }^{117}$, R. Pedro ${ }^{137 \mathrm{a}, 137 \mathrm{~b}}$, S.V. Peleganchuk ${ }^{120 \mathrm{~b}, 120 \mathrm{a}}$, O. Penc ${ }^{138}$, C. Peng ${ }^{15 \mathrm{~d}}$, H. Peng ${ }^{58 a}$, B.S. Peralva ${ }^{78 a}$, M.M. Perego ${ }^{142}$, A.P. Pereira Peixoto ${ }^{137 a}$, D.V. Perepelitsa ${ }^{29}$, F. Peri ${ }^{19}$, L. Perini ${ }^{66 \mathrm{a}, 66 \mathrm{~b}}$, H. Pernegger ${ }^{35}$, S. Perrella ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, V.D. Peshekhonov ${ }^{77, *}$, K. Peters ${ }^{44}$, R.F.Y. Peters ${ }^{98}$, B.A. Petersen ${ }^{35}$, T.C. Petersen ${ }^{39}$, E. Petit ${ }^{56}$, A. Petridis ${ }^{1}$, C. Petridou ${ }^{159}$, P. Petroff ${ }^{129}$, M. Petrov ${ }^{132}$, F. Petrucci ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, M. Pettee ${ }^{180}$, N.E. Pettersson ${ }^{100}$, A. Peyaud ${ }^{142}$, R. Pezoa ${ }^{144 \mathrm{~b}}$, T. Pham ${ }^{102}$, F.H. Phillips ${ }^{104}$, P.W. Phillips ${ }^{141}$, G. Piacquadio ${ }^{152}$, E. Pianori ${ }^{18}$, A. Picazio ${ }^{100}$, M.A. Pickering ${ }^{132}$, R.H. Pickles ${ }^{98}$, R. Piegaia ${ }^{30}$, J.E. Pilcher ${ }^{36}$, A.D. Pilkington ${ }^{98}$, M. Pinamonti ${ }^{71 a}$, 71 b , J.L. Pinfold ${ }^{3}$, M. Pitt ${ }^{177}$, M.-A. Pleier ${ }^{29}$, V. Pleskot ${ }^{140}$, E. Plotnikova ${ }^{77}$, D. Pluth ${ }^{76}$, P. Podberezko ${ }^{120 b,}$, 120a, R. Poettgen ${ }^{94}$, R. Poggi ${ }^{52}$, L. Poggioli ${ }^{129}$, I. Pogrebnyak ${ }^{104}$, D. Pohl ${ }^{24}$, I. Pokharel ${ }^{51}$, G. Polesello ${ }^{68 a}$, A. Poley ${ }^{18}$, A. Policicchio ${ }^{70 a, 70 b}$, R. Polifka ${ }^{35}$, A. Polini ${ }^{23 b}$, C.S. Pollard ${ }^{44}$, V. Polychronakos ${ }^{29}$, D. Ponomarenko ${ }^{110}$, L. Pontecorvo ${ }^{35}$, G.A. Popeneciu ${ }^{27 d}$, D.M. Portillo Quintero ${ }^{133}$, S. Pospisil ${ }^{139}$, K. Potamianos ${ }^{44}$, I.N. Potrap ${ }^{77}$, C.J. Potter ${ }^{31}$, H. Potti ${ }^{11}$, T. Poulsen ${ }^{94}$, J. Poveda ${ }^{35}$, T.D. Powell ${ }^{146}$, M.E. Pozo Astigarraga ${ }^{35}$, P. Pralavorio ${ }^{99}$, S. Prell ${ }^{76}$, D. Price ${ }^{98}$, M. Primavera ${ }^{65 a}$, S. Prince ${ }^{101}$, N. Proklova ${ }^{110}$, K. Prokofiev ${ }^{61 \mathrm{c}}$, F. Prokoshin ${ }^{144 \mathrm{~b}}$, S. Protopopescu ${ }^{29}$, J. Proudfoot ${ }^{6}$, M. Przybycien ${ }^{\text {81a }}$, A. Puri ${ }^{170}$, P. Puzo ${ }^{129}$, J. Qian ${ }^{103}$, Y. Qin ${ }^{98}$, A. Quadt ${ }^{51}$, M. Queitsch-Maitland ${ }^{44}$, A. Qureshi ${ }^{1}$, P. Rados ${ }^{102}$, F. Ragusa ${ }^{66 a, 66 b}$, G. Rahal ${ }^{95}$, J.A. Raine ${ }^{52}$, S. Rajagopalan ${ }^{29}$, A. Ramirez Morales ${ }^{90}$, T. Rashid ${ }^{129}$, S. Raspopov ${ }^{5}$, M.G. Ratti ${ }^{66{ }^{\prime}, 66 \mathrm{~b}}$, D.M. Rauch ${ }^{44}$, F. Rauscher ${ }^{112}$, S. Rave ${ }^{97}$, B. Ravina ${ }^{146}$, I. Ravinovich ${ }^{177}$, J.H. Rawling ${ }^{98}$, M. Raymond ${ }^{35}$, A.L. Read ${ }^{131}$, N.P. Readioff ${ }^{56}$, M. Reale ${ }^{65 a}$, 65 b , D.M. Rebuzzi ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, A. Redelbach ${ }^{174}$, G. Redlinger ${ }^{29}$, R. Reece ${ }^{143}$, R.G. Reed ${ }^{32 \mathrm{C}}$, K. Reeves ${ }^{42}$, L. Rehnisch ${ }^{19}$, J. Reichert ${ }^{134}$, A. Reiss ${ }^{97}$, C. Rembser ${ }^{35}$, H. Ren ${ }^{15 d}$, M. Rescigno ${ }^{70 \mathrm{a}}$, S. Resconi ${ }^{66 a}$, E.D. Resseguie ${ }^{134}$, S. Rettie ${ }^{172}$, E. Reynolds ${ }^{21}$, O.L. Rezanova ${ }^{120 b, 120 a}$, P. Reznicek ${ }^{140}$, E. Ricci ${ }^{73 a, 73 b}$, R. Richter ${ }^{113}$, S. Richter ${ }^{92}$, E. Richter-Was ${ }^{81 b}$, O. Ricken ${ }^{24}$, M. Ridel ${ }^{133}$, P. Rieck ${ }^{113}$, C.J. Riegel ${ }^{179}$, O. Rifki ${ }^{44}$, M. Rijssenbeek ${ }^{152}$, A. Rimoldi ${ }^{68 a, 68 b}$, M. Rimoldi ${ }^{20}$, L. Rinaldi ${ }^{23 \mathrm{~b}}$, G. Ripellino ${ }^{151}$, B. Ristić ${ }^{87}$, E. Ritsch ${ }^{35}$, I. Riu ${ }^{14}$, J.C. Rivera Vergara ${ }^{144 a}$, F. Rizatdinova ${ }^{126}$, E. Rizvi ${ }^{90}$, C. Rizzi ${ }^{14}$, R.T. Roberts ${ }^{98}$, S.H. Robertson ${ }^{101, a e}$, D. Robinson ${ }^{31}$, J.E.M. Robinson ${ }^{44}$, A. Robson ${ }^{55}$, E. Rocco ${ }^{97}$, C. Roda ${ }^{69 a}$, 69 b , Y. Rodina ${ }^{99}$, S. Rodriguez Bosca ${ }^{171}$, A. Rodriguez Perez ${ }^{14}$, D. Rodriguez Rodriguez ${ }^{171}$, A.M. Rodríguez Vera ${ }^{165 b}$, S. Roe ${ }^{35}$, C.S. Rogan ${ }^{57}$, O. Røhne ${ }^{131}$, R. Röhrig ${ }^{113}$, C.P.A. Roland ${ }^{63}$, J. Roloff ${ }^{57}$, A. Romaniouk ${ }^{110}$, M. Romano ${ }^{23 \mathrm{~b}, 23 \mathrm{a}}$, N. Rompotis ${ }^{88}$, M. Ronzani ${ }^{122}$, L. Roos ${ }^{133}$, S. Rosati ${ }^{70 a}$, K. Rosbach ${ }^{50}$, P. Rose ${ }^{143}$, N-A. Rosien ${ }^{51}$, E. Rossi ${ }^{44}$, E. Rossi ${ }^{67 a, 67 b}$, L.P. Rossi ${ }^{53 b}$, L. Rossini ${ }^{66 a, 66 b}$, J.H.N. Rosten ${ }^{31}$, R. Rosten ${ }^{14}$, M. Rotaru ${ }^{27 b}$, J. Rothberg ${ }^{145}$, D. Rousseau ${ }^{129}$, D. Roy ${ }^{32 \mathrm{C}}$, A. Rozanov ${ }^{99}$, Y. Rozen ${ }^{157}$, X. Ruan ${ }^{32 c}$, F. Rubbo ${ }^{150}$, F. Rühr ${ }^{50}$, A. Ruiz-Martinez ${ }^{171}$, Z. Rurikova ${ }^{50}$, N.A. Rusakovich ${ }^{77}$, H.L. Russell ${ }^{101}$, J.P. Rutherfoord ${ }^{7}$, E.M. Rüttinger ${ }^{44, m}$, Y.F. Ryabov ${ }^{135}$, M. Rybar ${ }^{170}$, G. Rybkin ${ }^{129}$, S. Ryu ${ }^{6}$, A. Ryzhov ${ }^{121}$, G.F. Rzehorz ${ }^{51}$, P. Sabatini ${ }^{51}$, G. Sabato ${ }^{118}$, S. Sacerdoti ${ }^{129}$, H.F-W. Sadrozinski ${ }^{143}$, R. Sadykov ${ }^{77}$, F. Safai Tehrani ${ }^{700}$, P. Saha ${ }^{119}$, M. Sahinsoy ${ }^{59 a}$, A. Sahu ${ }^{179}$, M. Saimpert ${ }^{44}$, M. Saito ${ }^{160}$, T. Saito ${ }^{160}$, H. Sakamoto ${ }^{160}$, A. Sakharov ${ }^{122, a n}$, D. Salamani ${ }^{52}$, G. Salamanna ${ }^{72 a, 72 \mathrm{~b}}$, J.E. Salazar Loyola ${ }^{144 \mathrm{~b}}$, D. Salek ${ }^{118}$, P.H. Sales De Bruin ${ }^{169}$, D. Salihagic ${ }^{113}$, A. Salnikov ${ }^{150}$, J. Salt ${ }^{171}$, D. Salvatore ${ }^{40 \mathrm{~b}, 40 \mathrm{a}}$, F. Salvatore ${ }^{153}$, A. Salvucci ${ }^{61 \mathrm{a}, 61 \mathrm{~b}, 61 \mathrm{c}}$, A. Salzburger ${ }^{35}$, J. Samarati ${ }^{35}$, D. Sammel ${ }^{50}$, D. Sampsonidis ${ }^{159}$, D. Sampsonidou ${ }^{159}$, J. Sánchez ${ }^{171}$, A. Sanchez Pineda ${ }^{644,64 c}$, H. Sandaker ${ }^{131}$, C.O. Sander ${ }^{44}$, M. Sandhoff ${ }^{179}$, C. Sandoval ${ }^{22}$, D.P.C. Sankey ${ }^{141}$, M. Sannino ${ }^{53 b, 53 a}$, Y. Sano ${ }^{115}$, A. Sansoni ${ }^{49}$, C. Santoni ${ }^{37}$, H. Santos ${ }^{137 a}$, I. Santoyo Castillo ${ }^{153}$, A. Santra ${ }^{171}$, A. Sapronov ${ }^{77}$, J.G. Saraiva ${ }^{137 a, 137 d}$, O. Sasaki ${ }^{79}$, K. Sato ${ }^{166}$, E. Sauvan ${ }^{5}$, P. Savard ${ }^{164, a v}$, N. Savic ${ }^{113}$, R. Sawada ${ }^{160}$, C. Sawyer ${ }^{141}$, L. Sawyer ${ }^{93, a l}$, C. Sbarra ${ }^{23 b}$, A. Sbrizzi ${ }^{23 a}$, T. Scanlon ${ }^{92}$, J. Schaarschmidt ${ }^{145}$, P. Schacht ${ }^{113}$, B.M. Schachtner ${ }^{112}$, D. Schaefer ${ }^{36}$, L. Schaefer ${ }^{134}$, J. Schaeffer ${ }^{97}$, S. Schaepe ${ }^{35}$, U. Schäfer ${ }^{97}$, A.C. Schaffer ${ }^{129}$, D. Schaile ${ }^{112}$, R.D. Schamberger ${ }^{152}$, N. Scharmberg ${ }^{98}$, V.A. Schegelsky ${ }^{135}$, D. Scheirich ${ }^{140}$, F. Schenck ${ }^{19}$, M. Schernau ${ }^{168}$, C. Schiavi ${ }^{53 b, 53 a}$, S. Schier ${ }^{143}$, L.K. Schildgen ${ }^{24}$,
Z.M. Schillaci ${ }^{26}$, E.J. Schioppa ${ }^{35}$, M. Schioppa ${ }^{40 b, 40 a}$, K.E. Schleicher ${ }^{50}$, S. Schlenker ${ }^{35}$, K.R. Schmidt-Sommerfeld ${ }^{113}$, K. Schmieden ${ }^{35}$, C. Schmitt ${ }^{97}$, S. Schmitt ${ }^{44}$, S. Schmitz ${ }^{97}$, J.C. Schmoeckel ${ }^{44}$, U. Schnoor ${ }^{50}$, L. Schoeffel ${ }^{142}$, A. Schoening ${ }^{59 b}$, E. Schopf ${ }^{24}$, M. Schott ${ }^{97}$, J.F.P. Schouwenberg ${ }^{117}$, J. Schovancova ${ }^{35}$, S. Schramm ${ }^{52}$, A. Schulte ${ }^{97}$, H-C. Schultz-Coulon ${ }^{59 a}$, M. Schumacher ${ }^{50}$, B.A. Schumm ${ }^{143}$, Ph. Schune ${ }^{142}$, A. Schwartzman ${ }^{150}$, T.A. Schwarz ${ }^{103}$, H. Schweiger ${ }^{98}$, Ph. Schwemling ${ }^{142}$, R. Schwienhorst ${ }^{104}$, A. Sciandra ${ }^{24}$, G. Sciolla ${ }^{26}$, M. Scornajenghi ${ }^{40 \mathrm{~b}, 40 \mathrm{a}}$, F. Scuri ${ }^{69 \mathrm{a}}$, F. Scutti ${ }^{102}$, L.M. Scyboz ${ }^{113}$, J. Searcy ${ }^{103}$, C.D. Sebastiani ${ }^{70 a}, 70 \mathrm{~b}$, P. Seema ${ }^{24}$, S.C. Seidel ${ }^{116}$, A. Seiden ${ }^{143}$, T. Seiss ${ }^{36}$, J.M. Seixas ${ }^{78 \mathrm{~b}}$, G. Sekhniaidze ${ }^{67 a}$, K. Sekhon ${ }^{103}$, S.J. Sekula ${ }^{41}$, N. Semprini-Cesari ${ }^{23 b, 23 a}$, S. Sen ${ }^{47}$, S. Senkin ${ }^{37}$, C. Serfon ${ }^{131}$, L. Serin ${ }^{129}$, L. Serkin ${ }^{64 a ́, 64 b}$, M. Sessa ${ }^{72 a, 72 b}$, H. Severini ${ }^{125}$, F. Sforza ${ }^{167}$, A. Sfyrla ${ }^{52}$, E. Shabalina ${ }^{51}$, J.D. Shahinian ${ }^{143}$, N.W. Shaikh ${ }^{43 a}{ }^{\prime}{ }^{43 \mathrm{~b}}$, L.Y. Shan ${ }^{15 \mathrm{a}}$, R. Shang ${ }^{170}$, J.T. Shank ${ }^{25}$, M. Shapiro ${ }^{18}$, A.S. Sharma ${ }^{1}$, A. Sharma ${ }^{132}$, P.B. Shatalov ${ }^{109}$, K. Shaw ${ }^{153}$, S.M. Shaw ${ }^{98}$, A. Shcherbakova ${ }^{135}$, Y. Shen ${ }^{125}$, N. Sherafati ${ }^{33}$, A.D. Sherman ${ }^{25}$, P. Sherwood ${ }^{92}$, L. Shi ${ }^{155, a r}$, S. Shimizu ${ }^{79}$, C.O. Shimmin ${ }^{180}$, M. Shimojima ${ }^{114}$, I.P.J. Shipsey ${ }^{132}$, S. Shirabe ${ }^{85}$, M. Shiyakova ${ }^{77}$, J. Shlomi ${ }^{177}$, A. Shmeleva ${ }^{108}$, D. Shoaleh Saadi ${ }^{107}$, M.J. Shochet ${ }^{36}$, S. Shojaii ${ }^{102}$, D.R. Shope ${ }^{125}$, S. Shrestha ${ }^{123}$, E. Shulga 110 , P. Sicho ${ }^{138}$, A.M. Sickles ${ }^{170}$, P.E. Sidebo ${ }^{151}$, E. Sideras Haddad ${ }^{32 c}$, O. Sidiropoulou ${ }^{35}$, A. Sidoti ${ }^{23 b}, 23 a$, F. Siegert ${ }^{46}$, Dj. Sijacki ${ }^{16}$, J. Silva ${ }^{137 a}$, M. Silva Jr. ${ }^{178}$, M.V. Silva Oliveira ${ }^{78 a}$, S.B. Silverstein ${ }^{43 a}$, L. Simic ${ }^{77}$, S. Simion ${ }^{129}$, E. Simioni ${ }^{97}$, M. Simon ${ }^{97}$, R. Simoniello ${ }^{97}$, P. Sinervo ${ }^{164}$, N.B. Sinev ${ }^{128}$, M. Sioli ${ }^{23 b}{ }^{23}$ 23a, G. Siragusa ${ }^{174}$, I. Siral ${ }^{103}$, S.Yu. Sivoklokov ${ }^{111}$, J. Sjölin ${ }^{43 a, ’ 43 \text { b }}$, P. Skubic ${ }^{125}$, M. Slater ${ }^{21}$, T. Slavicek ${ }^{139}$, M. Slawinska ${ }^{82}$, K. Sliwa ${ }^{167}$, R. Slovak ${ }^{140}$, V. Smakhtin ${ }^{177}$, B.H. Smart ${ }^{5}$, J. Smiesko ${ }^{28 a}$, N. Smirnov ${ }^{110}$, S.Yu. Smirnov ${ }^{110}$, Y. Smirnov ${ }^{1110}$, L.N. Smirnova ${ }^{111}$, O. Smirnova ${ }^{94}$, J.W. Smith ${ }^{51}$, M.N.K. Smith ${ }^{38}$, M. Smizanska ${ }^{87}$, K. Smolek ${ }^{139}$, A. Smykiewicz ${ }^{82}$, A.A. Snesarev ${ }^{108}$, I.M. Snyder ${ }^{128}$, S. Snyder ${ }^{29}$, R. Sobie ${ }^{173, \text { ae }}$, A.M. Soffa ${ }^{168}$, A. Soffer ${ }^{158}$, A. Søgaard ${ }^{48}$, D.A. Soh ${ }^{155}$, G. Sokhrannyi ${ }^{89}$, C.A. Solans Sanchez ${ }^{35}$, M. Solar ${ }^{139}$, E.Yu. Soldatov ${ }^{110}$, U. Soldevila ${ }^{171}$, A.A. Solodkov ${ }^{121}$, A. Soloshenko ${ }^{77}$, O.V. Solovyanov ${ }^{121}$, V. Solovyev ${ }^{135}$, P. Sommer ${ }^{146}$, H. Son ${ }^{167}$, W. Song ${ }^{141}$, W.Y. Song ${ }^{165 b}$, A. Sopczak ${ }^{139}$, F. Sopkova ${ }^{28 b}$, D. Sosa ${ }^{59 b}$, C.L. Sotiropoulou ${ }^{69 a, 69 b}$, S. Sottocornola ${ }^{68 a, 68 b}$, R. Soualah ${ }^{64 a, 64 c, j}$, A.M. Soukharev ${ }^{120 b, 120 a}$, D. South ${ }^{44}$, B.C. Sowden ${ }^{91}$, S. Spagnolo ${ }^{65 a, 65 b}$, M. Spalla ${ }^{113}$, M. Spangenberg ${ }^{175}$, F. Spanò ${ }^{91}$, D. Sperlich ${ }^{19}$, F. Spettel ${ }^{113}$, T.M. Spieker ${ }^{59 a}$, R. Spighi ${ }^{23 b}$, G. Spigo ${ }^{35}$, L.A. Spiller ${ }^{102}$, D.P. Spiteri ${ }^{55}$, M. Spousta ${ }^{140}$, A. Stabile ${ }^{66 \sigma^{\prime}, 66 \mathrm{~b}}$, R. Stamen ${ }^{59 \mathrm{a}}$, S. Stamm ${ }^{19}$, E. Stanecka ${ }^{82}$, R.W. Stanek ${ }^{6}$, C. Stanescu ${ }^{72 \mathrm{a}}$, B. Stanislaus ${ }^{132}$, M.M. Stanitzki ${ }^{44}$, B. Stapf ${ }^{1188}$, S. Stapnes ${ }^{131}$, E.A. Starchenko ${ }^{121}$, G.H. Stark ${ }^{36}$, J. Stark ${ }^{56}$, S.H Stark ${ }^{39}$, P. Staroba ${ }^{138}$, P. Starovoitov ${ }^{59 a}$, S. Stärz ${ }^{35}$, R. Staszewski ${ }^{82}$, M. Stegler ${ }^{44}$, P. Steinberg ${ }^{29}$, B. Stelzer ${ }^{149}$, H.J. Stelzer ${ }^{35}$, O. Stelzer-Chilton ${ }^{165 a}$, H. Stenzel ${ }^{54}$, T.J. Stevenson ${ }^{90}$, G.A. Stewart ${ }^{35}$, M.C. Stockton ${ }^{128}$, G. Stoicea ${ }^{27 b}$, P. Stolte ${ }^{51}$, S. Stonjek ${ }^{113}$, A. Straessner ${ }^{46}$, J. Strandberg ${ }^{151}$, S. Strandberg ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$, M. Strauss ${ }^{125}$, P. Strizenec ${ }^{28 \mathrm{~b}}$, R. Ströhmer ${ }^{174}$, D.M. Strom ${ }^{128}$, R. Stroynowski ${ }^{41}$, A. Strubig ${ }^{48}$, S.A. Stucci ${ }^{29}$, B. Stugu ${ }^{17}$, J. Stupak ${ }^{125}$, N.A. Styles ${ }^{44}$, D. Su ${ }^{150}$, J. Su ${ }^{136}$, S. Suchek ${ }^{59 a}$, Y. Sugaya ${ }^{130}$, M. Suk ${ }^{139}$, V.V. Sulin ${ }^{108}$, D.M.S. Sultan ${ }^{52}$, S. Sultansoy ${ }^{4 c}$, T. Sumida ${ }^{83}$, S. Sun ${ }^{103}$, X. Sun ${ }^{3}$, K. Suruliz ${ }^{153}$, C.J.E. Suster ${ }^{154}$, M.R. Sutton ${ }^{153}$, S. Suzuki ${ }^{79}$, M. Svatos ${ }^{138}$, M. Swiatlowski ${ }^{36}$, S.P. Swift ${ }^{2}$, A. Sydorenko ${ }^{97}$, I. Sykora ${ }^{28 a}$, T. Sykora ${ }^{140}$, D. Ta ${ }^{97}$, K. Tackmann ${ }^{44, a b}$, J. Taenzer ${ }^{158}$, A. Taffard ${ }^{168}$, R. Tafirout ${ }^{165 a}$, E. Tahirovic ${ }^{90}$, N. Taiblum ${ }^{158}$, H. Takai ${ }^{29}$, R. Takashima ${ }^{84}$, E.H. Takasugi ${ }^{113}$, K. Takeda ${ }^{80}$, T. Takeshita ${ }^{147^{\prime}}$, Y. Takubo ${ }^{79}$, M. Talby ${ }^{99}$, A.A. Talyshev ${ }^{120 \mathrm{O}, 120 \mathrm{a}}$, J. Tanaka ${ }^{160}$, M. Tanaka ${ }^{162^{\prime}}$, R. Tanaka ${ }^{129}$, B.B. Tannenwald ${ }^{123}$, S. Tapia Araya ${ }^{144 \mathrm{~b}}$, S. Tapprogge ${ }^{97}$, A. Tarek Abouelfadl Mohamed ${ }^{133}$, S. Tarem ${ }^{157}$, G. Tarna ${ }^{27 \mathrm{~b}, e}$, G.F. Tartarelli ${ }^{66 \mathrm{a}}$, P. Tas ${ }^{140}$, M. Tasevsky ${ }^{138}$, T. Tashiro ${ }^{83}$, E. Tassi ${ }^{40 \mathrm{~b}, 40 \mathrm{a}}$, A. Tavares Delgado ${ }^{137 \mathrm{a}, 137 \mathrm{~b}}$, Y. Tayalati ${ }^{34 \mathrm{e}}$, A.C. Taylor ${ }^{116}$, A.J. Taylor ${ }^{48}$, G.N. Taylor ${ }^{102}$, P.T.E. Taylor ${ }^{102}$, W. Taylor ${ }^{1655}$, A.S. Tee ${ }^{87}$, P. Teixeira-Dias ${ }^{91}$, H. Ten Kate ${ }^{35}$, P.K. Teng ${ }^{155}$, J.J. Teoh ${ }^{118}$, F. Tepel ${ }^{179}$, S. Terada ${ }^{79}$, K. Terashi ${ }^{160}$, J. Terron ${ }^{96}$, S. Terzo ${ }^{14}$, M. Testa ${ }^{49}$, R.J. Teuscher ${ }^{164, a e}$, S.J. Thais ${ }^{180}$, T. Theveneaux-Pelzer ${ }^{44}$, F. Thiele ${ }^{39}$, D.W. Thomas ${ }^{91}$, J.P. Thomas ${ }^{21}$, A.S. Thompson ${ }^{55}$, P.D. Thompson ${ }^{21}$, L.A. Thomsen ${ }^{180}$, E. Thomson ${ }^{134}$, Y. Tian ${ }^{38}$, R.E. Ticse Torres ${ }^{51}$, V.O. Tikhomirov ${ }^{108, a p}$, Yu.A. Tikhonov ${ }^{120}{ }^{\prime 2}, 120 \mathrm{a}$, S. Timoshenko ${ }^{110}$, P. Tipton ${ }^{180}$, S. Tisserant ${ }^{99}$, K. Todome ${ }^{162}$, S. Todorova-Nova ${ }^{5}$, S. Todt ${ }^{46}$, J. Tojo ${ }^{85}$, S. Tokár ${ }^{28 a}$, K. Tokushuku ${ }^{79}$, E. Tolley ${ }^{123}$, K.G. Tomiwa ${ }^{32 c}$, M. Tomoto ${ }^{115}$, L. Tompkins ${ }^{150, r}$, K. Toms ${ }^{116}$, B. Tong ${ }^{57}$, P. Tornambe ${ }^{50}$, E. Torrence ${ }^{128}$, H. Torres ${ }^{46}$, E. Torró Pastor ${ }^{145}$, C. Tosciri ${ }^{132}$, J. Toth ${ }^{99, a d}$, F. Touchard ${ }^{99}$, D.R. Tovey ${ }^{146}$, C.J. Treado ${ }^{122}$, T. Trefzger ${ }^{174}$, F. Tresoldi ${ }^{153}$, A. Tricoli ${ }^{29}$, I.M. Trigger ${ }^{165 a}$, S. Trincaz-Duvoid ${ }^{133}$, M.F. Tripiana ${ }^{14}$, W. Trischuk ${ }^{164}$,
B. Trocmé ${ }^{56}$, A. Trofymov ${ }^{129}$, C. Troncon ${ }^{66 a}$, M. Trovatelli ${ }^{173}$, F. Trovato ${ }^{153}$, L. Truong ${ }^{32 b}$, M. Trzebinski ${ }^{82}$, A. Trzupek ${ }^{82}$, F. Tsai ${ }^{44}$, J.C-L. Tseng ${ }^{132}$, P.V. Tsiareshka ${ }^{105}$, A. Tsirigotis ${ }^{159}$, N. Tsirintanis ${ }^{9}$, V. Tsiskaridze ${ }^{152}$, E.G. Tskhadadze ${ }^{156 a}$, I.I. Tsukerman ${ }^{109}$, V. Tsulaia ${ }^{18}$, S. Tsuno ${ }^{79}$, D. Tsybychev ${ }^{152,163}$, Y. Tu ${ }^{61 \mathrm{~b}}$, A. Tudorache ${ }^{27 \mathrm{~b}}$, V. Tudorache ${ }^{27 \mathrm{~b}}$, T.T. Tulbure ${ }^{27 \mathrm{a}}$, A.N. Tuna ${ }^{57}$, S. Turchikhin ${ }^{77}$, D. Turgeman ${ }^{177}$, I. Turk Cakir ${ }^{4 b, v}$, R. Turra ${ }^{66 a}$, P.M. Tuts ${ }^{38}$, E. Tzovara ${ }^{97}$, G. Ucchielli ${ }^{23 b, 23 a}$, I. Ueda ${ }^{79}$, M. Ughetto ${ }^{43 a, 43 b}$, F. Ukegawa ${ }^{166}$, G. Unal ${ }^{35}$,A. Undrus ${ }^{29}$, G. Unel ${ }^{168}$, F.C. Ungaro ${ }^{102}$, Y. Unno ${ }^{79}$, K. Uno ${ }^{160}$, J. Urban ${ }^{28 b}$, P. Urquijo ${ }^{102}$, P. Urrejola ${ }^{97}$, G. Usai ${ }^{8}$, J. Usui ${ }^{79}$, L. Vacavant ${ }^{99}$, V. Vacek ${ }^{139}$, B. Vachon ${ }^{101}$, K.O.H. Vadla ${ }^{131}$, A. Vaidya ${ }^{92}$, C. Valderanis ${ }^{112}$, E. Valdes Santurio ${ }^{43 a, 43 b}$, M. Valente ${ }^{52}$, S. Valentinetti ${ }^{23 b},{ }^{23 a}$, A. Valero ${ }^{171}$, L. Valéry ${ }^{44}$, R.A. Vallance ${ }^{21}$, A. Vallier ${ }^{5}$, J.A. Valls Ferrer ${ }^{171}$, T.R. Van Daalen ${ }^{14}$, H. Van der Graaf ${ }^{118}$, P. Van Gemmeren ${ }^{6}$, J. Van Nieuwkoop ${ }^{149}$, I. Van Vulpen ${ }^{118}$, M. Vanadia ${ }^{71 a, 71 b}$, W. Vandelli ${ }^{35}$, A. Vaniachine ${ }^{163}$, P. Vankov ${ }^{118}$, R. Vari ${ }^{70 a}$, E.W. Varnes ${ }^{7}$, C. Varni ${ }^{53 b, 53 a}$, T. Varol ${ }^{41}$, D. Varouchas ${ }^{129}$, K.E. Varvell ${ }^{154}$, G.A. Vasquez ${ }^{144 \mathrm{~b}}$, J.G. Vasquez ${ }^{180}$, F. Vazeille ${ }^{37}$, D. Vazquez Furelos ${ }^{14}$, T. Vazquez Schroeder ${ }^{101}$, J. Veatch ${ }^{51}$, V. Vecchio ${ }^{72 a, 72 b}$, L.M. Veloce ${ }^{164}$, F. Veloso ${ }^{137 a, 137 c}$, S. Veneziano ${ }^{70 a}$, A. Ventura ${ }^{65 a}$, 65 b , M. Venturi ${ }^{173}$, N. Venturi ${ }^{35}$, V. Vercesi ${ }^{68 a}$, M. Verducci ${ }^{72 a, 72 b}$, C.M. Vergel Infante ${ }^{76}$, C. Vergis ${ }^{24}$, W. Verkerke ${ }^{118}$, A.T. Vermeulen ${ }^{118}$, J.C. Vermeulen ${ }^{118}$, M.C. Vetterli ${ }^{149, a v}$, N. Viaux Maira ${ }^{144 b}$, M. Vicente Barreto Pinto ${ }^{52}$, I. Vichou ${ }^{170, *}$, T. Vickey ${ }^{146}$, O.E. Vickey Boeriu ${ }^{146}$, G.H.A. Viehhauser ${ }^{132}$, S. Viel ${ }^{18}$, L. Vigani ${ }^{132}$, M. Villa ${ }^{23 b}$,23a, M. Villaplana Perez ${ }^{66 a, 66 b}$, E. Vilucchi ${ }^{49}$, M.G. Vincter ${ }^{33}$, V.B. Vinogradov ${ }^{77}$, A. Vishwakarma ${ }^{44}$, C. Vittori ${ }^{23 b}, 23 \mathrm{a}$, I. Vivarelli ${ }^{153}$, S. Vlachos ${ }^{10}$, M. Vogel ${ }^{179}$, P. Vokac ${ }^{139}$, G. Volpi ${ }^{14}$, S.E. von Buddenbrock ${ }^{32 \mathrm{C}}$, E. Von Toerne ${ }^{24}$, V. Vorobel ${ }^{140}$, K. Vorobev ${ }^{110}$, M. Vos ${ }^{171}$, J.H. Vossebeld ${ }^{88}$, N. Vranjes ${ }^{16}$, M. Vranjes Milosavljevic ${ }^{16}$, V. Vrba ${ }^{139}$, M. Vreeswijk ${ }^{1118}$, T. Šfiligoj ${ }^{89}$, R. Vuillermet ${ }^{35^{\prime}}$, I. Vukotic ${ }^{36}$, T. Ženiš ${ }^{28 a}$, L. Živković ${ }^{16}$, P. Wagner ${ }^{24}$, W. Wagner ${ }^{179}$, J. Wagner-Kuhr ${ }^{112}$, H. Wahlberg ${ }^{86}$, S. Wahrmund ${ }^{46}$, K. Wakamiya ${ }^{80}$, V.M. Walbrecht ${ }^{113}$, J. Walder ${ }^{87}$, R. Walker ${ }^{112}$, S.D. Walker ${ }^{91}$, W. Walkowiak ${ }^{148}$, V. Wallangen ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$, A.M. Wang ${ }^{57}$, C. Wang ${ }^{58 \mathrm{~b}, e}$, F. Wang ${ }^{178}$, H. Wang ${ }^{18}$, H. Wang ${ }^{3}$, J. Wang ${ }^{154}$, J. Wang ${ }^{59 \mathrm{D}}$, P. Wang ${ }^{41}$, Q. Wang ${ }^{125}$, R.-J. Wang ${ }^{133}$, R. Wang ${ }^{58 \mathrm{a}}$, R. Wang ${ }^{6}$, S.M. Wang ${ }^{155}$, W.T. Wang ${ }^{58 \mathrm{a}}$, W. Wang ${ }^{15 c, \text { af }}$, W.X. Wang ${ }^{58 \mathrm{a}, \text { af }}$, Y. Wang ${ }^{58 \mathrm{a}, a m}$, Z. Wang ${ }^{58 C}$, C. Wanotayaroj ${ }^{44}$, A. Warburton ${ }^{101}$, C.P. Ward ${ }^{31}$, D.R. Wardrope ${ }^{92}$, A. Washbrook ${ }^{48}$, P.M. Watkins ${ }^{21}$, A.T. Watson ${ }^{21}$, M.F. Watson ${ }^{21}$, G. Watts ${ }^{145}$, S. Watts ${ }^{98}$, B.M. Waugh ${ }^{92}$, A.F. Webb ${ }^{11}$, S. Webb ${ }^{97}$, C. Weber ${ }^{180}$, M.S. Weber ${ }^{20}$, S.A. Weber ${ }^{33}$, S.M. Weber ${ }^{59 \mathrm{a}}$, A.R. Weidberg ${ }^{132}$, B. Weinert ${ }^{63}$, J. Weingarten ${ }^{45}$, M. Weirich ${ }^{97}$, C. Weiser ${ }^{50}$, P.S. Wells ${ }^{35}$, T. Wenaus ${ }^{29}$, T. Wengler ${ }^{35}$, S. Wenig ${ }^{35}$, N. Wermes ${ }^{24}$, M.D. Werner ${ }^{76}$, P. Werner ${ }^{35}$, M. Wessels ${ }^{59 \mathrm{a}}$, T.D. Weston ${ }^{20}$, K. Whalen ${ }^{128}$, N.L. Whallon ${ }^{145}$, A.M. Wharton ${ }^{87}$, A.S. White ${ }^{103}$, A. White ${ }^{8}$, M.J. White ${ }^{1}$, R. White ${ }^{144 \mathrm{~b}}$, D. Whiteson ${ }^{168}$, B.W. Whitmore ${ }^{87}$, F.J. Wickens ${ }^{141}$, W. Wiedenmann ${ }^{178}$, M. Wielers ${ }^{141}$, C. Wiglesworth ${ }^{39}$, L.A.M. Wiik-Fuchs ${ }^{50}$, A. Wildauer ${ }^{113}$, F. Wilk ${ }^{98}$, H.G. Wilkens ${ }^{35}$, L.J. Wilkins ${ }^{91}$, H.H. Williams ${ }^{134}$, S. Williams ${ }^{31}$, C. Willis ${ }^{104}$, S. Willocq ${ }^{100}$, J.A. Wilson ${ }^{21}$, I. Wingerter-Seez ${ }^{5}$, E. Winkels ${ }^{153}$, F. Winklmeier ${ }^{128}$, O.J. Winston ${ }^{153}$, B.T. Winter ${ }^{24}$, M. Wittgen ${ }^{150}$, M. Wobisch ${ }^{93}$, A. Wolf ${ }^{97}$, T.M.H. Wolf ${ }^{118}$, R. Wolff ${ }^{99}$, M.W. Wolter ${ }^{82}$, H. Wolters ${ }^{137 a, 137 c}$, V.W.S. Wong ${ }^{172}$, N.L. Woods ${ }^{143}$, S.D. Worm ${ }^{21}$, B.K. Wosiek ${ }^{82}$, K.W. Woźniak ${ }^{82}$, K. Wraight ${ }^{55}$, M. Wu ${ }^{36}$, S.L. Wu ${ }^{178}$, X. Wu ${ }^{52}$, Y. Wu ${ }^{58 a}$, T.R. Wyatt ${ }^{98}$, B.M. Wynne ${ }^{48}$, S. Xella ${ }^{39}$, Z. Xi ${ }^{103}$, L. Xia ${ }^{175}$, D. Xu ${ }^{15 a}$, H. Xu ${ }^{58 a, e}$, L. Xu ${ }^{29}$, T. Xu ${ }^{142}$, W. Xu ${ }^{103}$, B. Yabsley ${ }^{154}$, S. Yacoob ${ }^{32 a}$, K. Yajima ${ }^{130}$, D.P. Yallup ${ }^{92}$, D. Yamaguchi ${ }^{162}$, Y. Yamaguchi ${ }^{162}$, A. Yamamoto ${ }^{79}$, T. Yamanaka ${ }^{160}$, F. Yamane ${ }^{80}$, M. Yamatani ${ }^{160}$, T. Yamazaki ${ }^{160}$, Y. Yamazaki ${ }^{80}$, Z. Yan ${ }^{25}$, H.J. Yang ${ }^{58 c, 58 d}$, H.T. Yang ${ }^{18}$, S. Yang ${ }^{75}$, Y. Yang ${ }^{160}$, Z. Yang ${ }^{17}$, W-M. Yao ${ }^{18}$, Y.C. Yap ${ }^{44}$, Y. Yasu ${ }^{79}$, E. Yatsenko ${ }^{58 c, 58 \mathrm{~d}}$, J. Ye ${ }^{41}$, S. Ye ${ }^{29}$, I. Yeletskikh ${ }^{77}$, E. Yigitbasi ${ }^{25}$, E. Yildirim ${ }^{97}$, K. Yorita ${ }^{176}$, K. Yoshihara ${ }^{134}$, C.J.S. Young ${ }^{35}$, C. Young ${ }^{150}$, J. Yu ${ }^{8}$, J. Yu ${ }^{76}$, X. Yue ${ }^{59 a}$, S.P.Y. Yuen ${ }^{24}$, B. Zabinski ${ }^{82}$, G. Zacharis ${ }^{10}$, E. Zaffaroni ${ }^{52}$, R. Zaidan ${ }^{14}$, A.M. Zaitsev ${ }^{121, a 0}$, T. Zakareishvili ${ }^{156 b}$, N. Zakharchuk ${ }^{44}$, J. Zalieckas ${ }^{17}$, S. Zambito ${ }^{57}$, D. Zanzi ${ }^{35}$, D.R. Zaripovas ${ }^{55}$, S.V. Zeißner ${ }^{45}$, C. Zeitnitz ${ }^{179}$, G. Zemaityte ${ }^{132}$, J.C. Zeng ${ }^{170}$, Q. Zeng ${ }^{150}$, O. Zenin ${ }^{121}$, D. Zerwas ${ }^{129}$, M. Zgubič ${ }^{132}$, D.F. Zhang ${ }^{58 \mathrm{~b}}$, D. Zhang ${ }^{103}$, F. Zhang ${ }^{178}$, G. Zhang ${ }^{58 \mathrm{a}}$, H. Zhang ${ }^{15 \mathrm{c}}$, J. Zhang ${ }^{6}$, L. Zhang ${ }^{15 c}$, L. Zhang ${ }^{58 \mathrm{a}}$, M. Zhang ${ }^{170}$, P. Zhang ${ }^{15 \mathrm{c}}$, R. Zhang ${ }^{58 \mathrm{a}}$, R. Zhang ${ }^{24}$, X. Zhang ${ }^{58 b}$, Y. Zhang ${ }^{15 \mathrm{~d}}$, Z. Zhang ${ }^{129}$, P. Zhao ${ }^{47}$, X. Zhao ${ }^{41}$, Y. Zhao ${ }^{58 b}$, 129 ,ak, Z. Zhao ${ }^{58 \mathrm{a}}$, A. Zhemchugov ${ }^{77}$, B. Zhou ${ }^{103}$, C. Zhou ${ }^{178}$, L. Zhou ${ }^{41}$, M.S. Zhou ${ }^{15 \mathrm{~d}}$, M. Zhou ${ }^{152}$, N. Zhou ${ }^{58 \mathrm{c}}$, Y. Zhou ${ }^{7}$, C.G. Zhu ${ }^{58 b}$, H.L. Zhu ${ }^{58 a}$, H. Zhu ${ }^{15 a}$, J. Zhu ${ }^{103}$, Y. Zhu ${ }^{58 \mathrm{a}}$, X. Zhuang ${ }^{15 \mathrm{a}}$, K. Zhukov ${ }^{108}$, V. Zhulanov ${ }^{120 b, 120 a}$, A. Zibell ${ }^{174}$, D. Zieminska ${ }^{63}$, N.I. Zimine ${ }^{77}$, S. Zimmermann ${ }^{50}$, Z. Zinonos ${ }^{113}$,

M. Zinser ${ }^{97}$, M. Ziolkowski ${ }^{148}$, G. Zobernig ${ }^{178}$, A. Zoccoli ${ }^{23 b, 23 a}$, K. Zoch ${ }^{51}$, T.G. Zorbas ${ }^{146}$, R. Zou ${ }^{36}$, M. Zur Nedden ${ }^{19}$, L. Zwalinski ${ }^{35}$

${ }^{1}$ Department of Physics, University of Adelaide, Adelaide, Australia
${ }^{2}$ Physics Department, SUNY Albany, Albany, NY, United States of America
${ }^{3}$ Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; ${ }^{(c)}$ Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
${ }^{5}$ LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America
${ }^{7}$ Department of Physics, University of Arizona, Tucson, AZ, United States of America
8 Department of Physics, University of Texas at Arlington, Arlington, TX, United States of America
${ }^{9}$ Physics Department, National and Kapodistrian University of Athens, Athens, Greece
${ }^{10}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{11}$ Department of Physics, University of Texas at Austin, Austin, TX, United States of America
12 (a) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul; (b) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (c) Department of Physics, Bogazici University, Istanbul; ${ }^{(d)}$ Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
${ }^{13}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{14}$ Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
15 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Physics Department, Tsinghua University, Beijing; (c) Department of Physics, Nanjing University, Nanjing;
${ }^{(d)}$ University of Chinese Academy of Science (UCAS), Beijing, China
${ }^{16}$ Institute of Physics, University of Belgrade, Belgrade, Serbia
17 Department for Physics and Technology, University of Bergen, Bergen, Norway
18 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America
${ }^{19}$ Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
${ }^{20}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{21}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
22 Centro de Investigaciónes, Universidad Antonio Nariño, Bogota, Colombia
23 (a) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna; ${ }^{(b)}$ INFN Sezione di Bologna, Italy
${ }^{24}$ Physikalisches Institut, Universität Bonn, Bonn, Germany
25 Department of Physics, Boston University, Boston, MA, United States of America
${ }^{26}$ Department of Physics, Brandeis University, Waltham, MA, United States of America
27 (a) Transilvania University of Brasov, Brasov; ${ }^{(b)}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; ${ }^{(c)}$ Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; ${ }^{(d)}$ National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; (e) University Politehnica Bucharest, Bucharest; ${ }^{(f)}$ West University in Timisoara, Timisoara, Romania
28 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
${ }^{29}$ Physics Department, Brookhaven National Laboratory, Upton, NY, United States of America
${ }^{30}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{31}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
32 (a) Department of Physics, University of Cape Town, Cape Town; ${ }^{(b)}$ Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
33 Department of Physics, Carleton University, Ottawa, ON, Canada
34 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires (CNESTEN), Rabat; ${ }^{(c)}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA, Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda;
${ }^{(e)}$ Faculté des sciences, Université Mohammed V, Rabat, Morocco
${ }^{35}$ CERN, Geneva, Switzerland
${ }^{36}$ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States of America
${ }^{37}$ LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
38 Nevis Laboratory, Columbia University, Irvington, NY, United States of America
39 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
40 (a) Dipartimento di Fisica, Università della Calabria, Rende; ${ }^{(b)}$ INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
${ }^{41}$ Physics Department, Southern Methodist University, Dallas, TX, United States of America
42 Physics Department, University of Texas at Dallas, Richardson, TX, United States of America
43 (a) Department of Physics, Stockholm University; ${ }^{(b)}$ Oskar Klein Centre, Stockholm, Sweden
${ }^{44}$ Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
${ }^{45}$ Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{46}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
${ }^{47}$ Department of Physics, Duke University, Durham, NC, United States of America
48 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
49 INFN e Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{50}$ Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
${ }^{51}$ II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
52 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
53 (a) Dipartimento di Fisica, Università di Genova, Genova; ${ }^{(b)}$ INFN Sezione di Genova, Italy
54 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
55 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{56}$ LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States of America
58 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; ${ }^{(b)}$ Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao; (c) School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai; (d) Tsung-Dao Lee Institute, Shanghai, China
59 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(b)}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
${ }^{60}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
61 (a) Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; ${ }^{(b)}$ Department of Physics, University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
62 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
63 Department of Physics, Indiana University, Bloomington, IN, United States of America
64 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ${ }^{(b)}$ ICTP, Trieste; ${ }^{(c)}$ Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

65 (a) INFN Sezione di Lecce; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
66 (a) INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
67 (a) INFN Sezione di Napoli; ${ }^{(b)}$ Dipartimento di Fisica, Università di Napoli, Napoli, Italy
68 (a) INFN Sezione di Pavia; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
69 (a) INFN Sezione di Pisa; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
70 (a) INFN Sezione di Roma; ${ }^{(b)}$ Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
71 (a) INFN Sezione di Roma Tor Vergata; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
72 (a) INFN Sezione di Roma Tre; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
73 (a) INFN-TIFPA; ${ }^{\text {(b) }}$ Università degli Studi di Trento, Trento, Italy
${ }^{74}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
${ }^{75}$ University of Iowa, Iowa City, IA, United States of America
${ }^{76}$ Department of Physics and Astronomy, Iowa State University, Ames, IA, United States of America
77 Joint Institute for Nuclear Research, Dubna, Russia
78 (a) Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; ${ }^{(b)}$ Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro;
${ }^{(c)}$ Universidade Federal de São João del Rei (UFSJ), São João del Rei; ${ }^{(d)}$ Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
${ }^{79}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
80 Graduate School of Science, Kobe University, Kobe, Japan
81 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; ${ }^{(b)}$ Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
82 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
${ }^{83}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{84}$ Kyoto University of Education, Kyoto, Japan
${ }^{85}$ Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{86}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
87 Physics Department, Lancaster University, Lancaster, United Kingdom
88 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{89}$ Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
${ }^{90}$ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
91 Department of Physics, Royal Holloway University of London, Egham, United Kingdom
92 Department of Physics and Astronomy, University College London, London, United Kingdom
${ }^{93}$ Louisiana Tech University, Ruston, LA, United States of America
${ }^{94}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
${ }^{95}$ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
${ }^{96}$ Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain
97 Institut für Physik, Universität Mainz, Mainz, Germany
98 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{99}$ CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
100 Department of Physics, University of Massachusetts, Amherst, MA, United States of America
101 Department of Physics, McGill University, Montreal, QC, Canada
102 School of Physics, University of Melbourne, Victoria, Australia
103 Department of Physics, University of Michigan, Ann Arbor, MI, United States of America
104 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States of America
105 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
106 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
107 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
108 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
109 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
110 National Research Nuclear University MEPhI, Moscow, Russia
111 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
112 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
113 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
114 Nagasaki Institute of Applied Science, Nagasaki, Japan
115 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
${ }^{116}$ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States of America
${ }^{117}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
118 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
119 Department of Physics, Northern Illinois University, DeKalb, IL, United States of America
120 (a) Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk; ${ }^{(b)}$ Novosibirsk State University, Novosibirsk, Russia
${ }^{121}$ Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino, Russia
122 Department of Physics, New York University, New York, NY, United States of America
123 Ohio State University, Columbus, OH, United States of America
${ }^{124}$ Faculty of Science, Okayama University, Okayama, Japan
125 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States of America
${ }^{126}$ Department of Physics, Oklahoma State University, Stillwater, OK, United States of America
127 Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic
128 Center for High Energy Physics, University of Oregon, Eugene, OR, United States of America
129 LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
${ }^{130}$ Graduate School of Science, Osaka University, Osaka, Japan
${ }^{131}$ Department of Physics, University of Oslo, Oslo, Norway
132 Department of Physics, Oxford University, Oxford, United Kingdom
133 LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
134 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States of America
${ }^{135}$ Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg, Russia
136 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States of America
137 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP; (b) Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Departamento de Física, Universidade de Coimbra, Coimbra; ${ }^{(d)}$ Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teorica y del Cosmos, Universidad de Granada, Granada (Spain); ${ }^{(g)}$ Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
138 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
139 Czech Technical University in Prague, Prague, Czech Republic
${ }^{140}$ Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
141 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
142 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
143 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States of America
144 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ${ }^{(b)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
145 Department of Physics, University of Washington, Seattle, WA, United States of America
146 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
147 Department of Physics, Shinshu University, Nagano, Japan
148 Department Physik, Universität Siegen, Siegen, Germany
149 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
150 SLAC National Accelerator Laboratory, Stanford, CA, United States of America
${ }^{151}$ Physics Department, Royal Institute of Technology, Stockholm, Sweden
152 Departments of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States of America
153 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
154 School of Physics, University of Sydney, Sydney, Australia
155 Institute of Physics, Academia Sinica, Taipei, Taiwan
156 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; ${ }^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
157 Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
158 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
159 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
160 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
161 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
162 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
163 Tomsk State University, Tomsk, Russia
164 Department of Physics, University of Toronto, Toronto, ON, Canada
165 (a) TRIUMF, Vancouver, BC; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto, ON, Canada
166 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
${ }^{167}$ Department of Physics and Astronomy, Tufts University, Medford, MA, United States of America
168 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States of America
${ }^{169}$ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
170 Department of Physics, University of Illinois, Urbana, IL, United States of America
${ }^{171}$ Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
172 Department of Physics, University of British Columbia, Vancouver, BC, Canada
173 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
175 Department of Physics, University of Warwick, Coventry, United Kingdom
176 Waseda University, Tokyo, Japan
177 Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel
178 Department of Physics, University of Wisconsin, Madison, WI, United States of America
${ }^{179}$ Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
180 Department of Physics, Yale University, New Haven, CT, United States of America
181 Yerevan Physics Institute, Yerevan, Armenia
${ }^{a}$ Also at Borough of Manhattan Community College, City University of New York, NY; United States of America.
${ }^{b}$ Also at California State University, East Bay; United States of America.
${ }^{c}$ Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town; South Africa.
${ }^{d}$ Also at CERN, Geneva; Switzerland.
e Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
f Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
g Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain.
${ }^{h}$ Also at Departamento de Física Teorica y del Cosmos, Universidad de Granada, Granada (Spain); Spain.
${ }^{i}$ Also at Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.
j Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah; United Arab Emirates.
k Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.
${ }^{I}$ Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.
m Also at Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
n Also at Department of Physics, California State University, Fresno CA; United States of America.
o Also at Department of Physics, California State University, Sacramento CA; United States of America.
p Also at Department of Physics, King's College London, London; United Kingdom.
q Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.
Also at Department of Physics, Stanford University; United States of America.
s Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.
t Also at Department of Physics, University of Michigan, Ann Arbor MI; United States of America.
${ }^{u}$ Also at Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.
v Also at Giresun University, Faculty of Engineering, Giresun; Turkey.
w Also at Graduate School of Science, Osaka University, Osaka; Japan.
x Also at Hellenic Open University, Patras; Greece.
${ }^{y}$ Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; Romania.
z Also at II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany.
aa Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.
$a b$ Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.
ac Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.
${ }^{\text {ad }}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.
ae Also at Institute of Particle Physics (IPP); Canada.
af Also at Institute of Physics, Academia Sinica, Taipei; Taiwan.
ag Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
${ }^{a h}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia.
${ }^{a i}$ Also at Instituto de Física Teórica de la Universidad Autónoma de Madrid; Spain.
${ }^{a j}$ Also at Istanbul University, Dept. of Physics, Istanbul; Turkey.
${ }^{a k}$ Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.
${ }^{\text {al }}$ Also at Louisiana Tech University, Ruston LA; United States of America.
${ }^{a m}$ Also at LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris; France.
${ }^{a n}$ Also at Manhattan College, New York NY; United States of America.
ao Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
${ }^{a p}$ Also at National Research Nuclear University MEPhI, Moscow; Russia.
${ }^{a q}$ Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
ar Also at School of Physics, Sun Yat-sen University, Guangzhou; China.
as Also at The City College of New York, New York NY; United States of America.
${ }^{\text {at }}$ Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China.
${ }^{a u}$ Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
${ }^{a v}$ Also at TRIUMF, Vancouver BC; Canada.
aw Also at Universita di Napoli Parthenope, Napoli; Italy.

* Deceased.

[^0]: * E-mail address: atlas.publications@cern.ch.

[^1]: 1 ATLAS typically uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. By default, the pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$. However, for asymmetric $p+\mathrm{Pb}$ or $\mathrm{Pb}+p$ collisions, the $-z$ direction is always defined as the direction of the Pb beam.

