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Integration of Preferences in Decomposition
Multiobjective Optimization

Ke Li , Member, IEEE, Renzhi Chen, Geyong Min, Member, IEEE, and Xin Yao , Fellow, IEEE

Abstract—Rather than a whole Pareto-optimal front, which
demands too many points (especially in a high-dimensional
space), the decision maker (DM) may only be interested in a
partial region, called the region of interest (ROI). In this case,
solutions outside this region can be noisy to the decision-making
procedure. Even worse, there is no guarantee that we can find
the preferred solutions when tackling problems with compli-
cated properties or many objectives. In this paper, we develop
a systematic way to incorporate the DM’s preference informa-
tion into the decomposition-based evolutionary multiobjective
optimization methods. Generally speaking, our basic idea is a
nonuniform mapping scheme by which the originally evenly dis-
tributed reference points on a canonical simplex can be mapped
to new positions close to the aspiration-level vector supplied by
the DM. By this means, we are able to steer the search pro-
cess toward the ROI either directly or interactively and also
handle many objectives. Meanwhile, solutions lying on the bound-
ary can be approximated as well given the DM’s requirements.
Furthermore, the extent of the ROI is intuitively understand-
able and controllable in a closed form. Extensive experiments
on a variety of benchmark problems with 2 to 10 objectives,
fully demonstrate the effectiveness of our proposed method for
approximating the preferred solutions in the ROI.

Index Terms—Decomposition-based method, evolutionary mul-
tiobjective optimization (EMO), reference points, user-preference
incorporation.
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I. INTRODUCTION

MANY REAL-LIFE applications usually consider opti-
mizing multiple conflicting objectives simultaneously.

To handle such problems, called multiobjective optimization
problems (MOPs), decision makers (DMs) often look for a
set of Pareto-optimal solutions, none of which can be consid-
ered better than another when all objectives are of importance.
Evolutionary multiobjective optimization (EMO) algorithms,
which work with a population of solutions and can approxi-
mate a set of tradeoff alternatives simultaneously, have been
widely accepted as a major tool for solving MOPs. Over the
past two decades and beyond, many efforts have been devoted
to developing EMO algorithms (e.g., elitist nondominated sort-
ing genetic algorithm (NSGA-II) [1], indicator-based EA [2],
multiobjective EA based on decomposition (MOEA/D) [3],
and their variants [4]–[10]) to find a set of efficient solutions
that well approximate the whole Pareto-optimal front (PF) in
terms of convergence and diversity.

The ultimate goal of multiobjective optimization is to help
the DM find solutions that meet, at most, his/her preferences.
Supplying a DM with a large amount of tradeoff points, which
approximate the entire PF, not only increases his/her workload
but also provides many irrelevant or even noisy information
to the decision-making procedure. Moreover, due to the curse
of dimensionality, approximating a high-dimensional PF as a
whole not only becomes computationally inefficient (or even
infeasible) but also causes a severe cognitive obstacle for
the DM to comprehend the high-dimensional data. To facil-
itate the decision-making procedure, it is more practical to
incorporate the DM’s preference information into the search
process. This allows the computational efforts to concentrate
on the region of interest (ROI) and, thus, has better approxi-
mation therein. In general, the preference information can be
incorporated a priori, posteriori, or interactively. Note that
the traditional EMO goes along the posteriori way of which
the disadvantages have been discussed before. If the prefer-
ence information is elicited a priori, it is directly used to
guide the solutions toward the ROI. However, it is nontrivial
to faithfully model the preference information before solv-
ing the MOP at hand. Eliciting the preference information
in an interactive manner has been studied in the multicrite-
rion decision-making (MCDM) field for over half a century.
It enables the DM to progressively learn and understand the
characteristics of the MOP at hand and adjust his/her elicited
preference information. Consequently, solutions are effectively
driven toward the ROI. However, since the optimization pro-
cess is full of uncertainty and the DM is almost unavoidable
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to show inconsistencies in decision-making [11], it is difficult
to model the DM’s behavior in an appropriate manner.

Integrating and blending the EMO and MCDM together to
tailor the DM’s preference information has been studied since
the 1990s. Although the existing works aim at steering the
search process toward the ROI, the definition of the ROI is
still vague. First of all, the ROI can be any part of the PF
near the DM-supplied aspiration-level vector or even subjec-
tively determined by the DM. Second, the ROI is expected to
be a partial region of the PF whereas no quantitative defini-
tion has been given to the size of this region. Although some
studies (e.g., [12]–[14]) claimed to control the spread of the
preferred solutions accommodating the DM’s expectation of
the extent of the ROI, that is, the ROI’s size, the correspond-
ing parameter setting is ad-hoc [15]. In addition to the ROI, the
boundary of the PF is also important for the DM to understand
the underlying problem and to facilitate the further decision-
making procedure. In particular, the boundary provides the
DM general information about the PF’s geometrical charac-
teristics; and more important, it provides the information of
the ideal and nadir points which facilitate the normalization
of the disparately scaled objective functions. Unfortunately,
how to keep solutions located in the ROI and the boundary
simultaneously has rarely been studied [16].

During recent years, especially after the developments of
MOEA/D and NSGA-III [17], the decomposition-based EMO
methods have become increasingly popular for the posteriori
multiobjective optimization. Generally speaking, by specify-
ing a set of reference points,1 the decomposition-based EMO
methods at first decompose the MOP at hand into multiple
subproblems, either with scalar objective or simplified multi-
objective. Then, a population-based technique is applied to
solve these subproblems in a collaborative manner. Under
some mild conditions, the optimal solutions of all subproblems
constitute a good approximation to the PF. It is not difficult
to understand that the distribution of the reference points is
essential in a decomposition-based EMO method. It not only
implies a priori prediction of the PF’s geometrical character-
istics but also determines the distribution of Pareto-optimal
solutions. Das and Dennis [18] and Tan et al. [19] suggested
some structured methods to generate evenly distributed refer-
ence points on a canonical simplex. To adapt to the irregular
PFs, such as disconnected or mixed shapes and disparately
scaled objectives, some adaptive reference point adjustment
methods (e.g., [20]) have been developed to adjust the distri-
bution of reference points on the fly. To integrate the DM’s
preference information into the decomposition-based EMO
methods, a natural idea is to make the distribution of the refer-
ence points be biased toward the ROI. Although it sounds quite
intuitive, in practice, how to obtain the appropriate reference
points that accommodate the DM’s preference information is
far from trivial. Most recently, there have been some initiatives
on adjusting the distribution of the reference points according
to the DM’s preference information (e.g., [21]). However, they

1In this paper, we use the term reference point without loss of generality,
although in some other literature, for example, the original MOEA/D [3] also
uses the term weight vector interchangeably.

are ad-hoc and the position and extent of the reference points
around the ROI are not fully controllable.

In this paper, we present a systematic way to incorporate the
DM’s preference information, either a priori or interactively,
into the decomposition-based EMO methods. In particular, the
DM’s preference information is modeled as an aspiration-level
vector, which has been widely used in the EMO litera-
ture [15]. Compared to three state-of-the-art preference-based
EMO algorithms, the effectiveness and competitiveness of
the proposed preference incorporation method for assisting
three state-of-the-art decomposition-based EMO algorithms
to approximate ROIs have been validated through extensive
experiments on 56 test problems with 2 to 10 objectives,
under both attainable and unattainable aspiration-level vector
settings. Our major contributions are outlined as follows.

1) Our basic idea is a nonuniform mapping scheme
(NUMS) by which the originally evenly distributed ref-
erence points on a canonical simplex can be mapped to
new positions close to the DM-specified aspiration-level
vector and thereby have biased distribution.

2) The mapping function is nonlinear in nature and is a
function of a reference point’s position with respect to
the pivot point. Accordingly, the distribution of the ref-
erence points after the nonuniform mapping is biased
toward the pivot point. In particular, this pivot point is
representative of the ROI on the simplex and determines
the ROI’s position.

3) Different from the existing preference-based EMO algo-
rithms, where the extent of the approximated ROI is
controlled in an ad-hoc manner, this paper provides an
intuitively understandable manner to quantify this extent
in a closed form. It is the ratio of the biased reference
points proportional to the simplex. To a certain extent,
this quantity can be used as the ratio of the ROI’s size
with respect to the PF.

4) Given the DM’s requirements, the proposed NUMS is
able to not only obtain a set of biased reference points
toward the ROI, but also preserve the ones located
on the boundary. This latter characteristic enables a
decomposition-based EMO method to not only find the
preferred solutions but also provide the global informa-
tion about the PF to the DM.

The rest of this paper is organized as follows. Section II
overviews some state of the art related to this paper.
Section III presents the technical details of our proposed
NUMS. Section IV shows the empirical studies on several
benchmark problems. Finally, Section V concludes this paper
and provides some future directions.

II. RELATED WORKS

In the past two decades, various methods have been devel-
oped to incorporate the DM’s preference information into
the EMO. This section briefly overviews the existing litera-
ture according to the ways of eliciting the DM’s preference
information along with the mechanisms adopted to guide the
population toward the ROI. The interested reader is referred
to [15] for a recent comprehensive survey.
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The first one employs the weight information,
that is, relative importance, to model the DM’s preference
information. For example, Deb [22] developed a modified
fitness-sharing mechanism, by using a weighted Euclidean
distance, to bias the population distribution. Branke and
Deb [23] developed a weighted mapping method to modify
the crowding distance calculation of NSGA-II by which the
search process can be guided toward the ROI. Note that the
weight-based methods become ineffective when facing a large
number of objectives, because it is difficult to either specify
the weights or verify the quality of the biased approximation.
Moreover, it is unintuitive and challenging for the DM to steer
the search process toward the ROI via the weighting scheme.

The second sort elicits the preference information by
inviting the DM to make pairwise comparisons among a
sample of solutions from a population. As the pioneer,
Phelps and Köksalan [24] proposed using a value function
model to represent the DM’s preference information. Note
that the precise form of the value function model is unknown
a priori. It is progressively learned through a periodic
interaction with the DM during the optimization process. In
particular, the DM is asked to express his/her preference infor-
mation about some selected alternatives, for example, their
rankings, at each interaction session. Inspired by [24], many
variants have been developed by using various value function
models, for example, quasi-concave preference function [25],
polynomial value function [26], support vector machine [27],
and ordinal regression [28]. Gong et al. [29] proposed using
a preference polyhedron to approximate the DM’s value
function by choosing the best and worst solutions from the
current nondominated solutions. Cvetkovic and Parmee [30]
suggested a method to integrate the DM’s fuzzy preference
information into the EMO algorithm by converting the
linguistic terms into weights. These sorts of methods are
interesting but complicated, especially when the number of
objectives becomes large. In addition, using such an approach
interactively increases the DM’s cognitive load and it is hard
to control the extent of the ROI. In [16], the biased distribution
of solutions is achieved by setting different territory sizes in
the territory-based evolutionary algorithm [31]. In particular,
a smaller territory leads to a higher resolution of solutions,
and vice-versa. The size of the corresponding territory is
progressively adjusted by the interaction with the DM. Note
that this paper is one of the few that acknowledged the impor-
tance of providing information on the extent of the solution
space while converging the ROI. The major drawback of this
method comes from its diversity management, especially in a
high-dimensional space. Due to the same reason, it might be
difficult to control the extent of the ROI precisely.

The third category transforms the DM’s preference infor-
mation into some modified tradeoff relationship to compare
solutions [32]. Greenwood et al. [33] suggested an impre-
cisely specified multiattribute utility theory-based weighted
sum method to obtain the ranking of objectives from some
candidate solutions.

The fourth category [34] invites the DM to express his/her
preference information by supplying two thresholds: 1) an
absolutely satisfying objective value and 2) a marginally

infeasible objective value. Afterward, each objective function
of the original MOP is converted into a desirability function
by using these thresholds as parameters. Then, an EMO algo-
rithm is applied to optimize the desirability functions instead
of the original objective functions.

The fifth class [35], [36] uses the outranking concept [37]
to incorporate the DM’s preference information. Specifically,
by specifying some necessary parameters, a DM develops a
fuzzy predicate that models the truth degree of the predicate
“solution x is at least as good as solution y”.

The last one uses aspiration-level vectors to represent the
DM’s desired values/levels for each objective he/she would
like to achieve. As the first attempt, Fonseca and Fleming [38]
suggested modeling the DM’s preference as a goal to achieve,
that is, the aspiration-level vector. Deb et al. [12], [39] com-
bined the reference point, that is, aspiration-level vector,
related methods with NSGA-II to guide the search process
toward the ROI. In particular, solutions close to the given
reference point have a high priority to survive to the next
generation. In [40] and [41], the aspiration-level vector is used
to help select the leader swarm in the multiobjective particle
swarm optimization algorithm. Molina et al. [42] suggested a
modified dominance relationship, called g-dominance, where
solutions satisfying either all or none of the aspiration-levels
are preferred over those satisfying some aspiration-levels.
Said et al. [13] developed another modified dominance rela-
tionship, called r-dominance, where nondominated solutions,
according to the Pareto dominance relationship, can be dis-
tinguished by their weighted Euclidean distances toward
the DM-supplied aspiration-level vector. Recently, some
decomposition-based methods also used the aspiration-level
vector to incorporate the DM’s preference information into the
search process, for example, [43] and [44]–[46]. Their basic
idea is to use the aspiration-level vector as the anchor around
which they try to obtain some reference points. Although by
specifying aspiration-level vectors, a DM is able to guide the
search toward the ROI directly or interactively even when
encountering a large number of objectives, existing methods
cannot approximate the solutions in the ROI and the bound-
ary simultaneously. In addition, the control of the extent of
the ROI is ad-hoc.

III. NONUNIFORM MAPPING SCHEME

A. Overview

Reference points, as the basic components in the
decomposition-based EMO algorithms, are usually generated
in a structured manner, for example, the Das and Dennis’s
method.2 [18] Fig. 1(a) shows an example of 91 evenly dis-
tributed reference points in a 3-D space. In this case, the DM
has no preference on any particular region of the PF. These ref-
erence points are used to guide a decomposition-based EMO
algorithm search for the whole PF. On the other hand, if the
DM has elicited some preference information, for example, an

2In [18], N = (H+m−1
m−1

)
reference points, with uniform spacing δ = (1/H),

are sampled from a canonical simplex �m, where H > 0 is the number of
divisions considered along each objective coordinate, and m is the number of
objectives.
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(a) (b) (c)

Fig. 1. Reference points used in decomposition-based EMO methods. (a) Uniform distribution. (b) Biased distribution with boundary. (c) Biased distribution
without boundary.

aspiration-level vector, it is preferable that reference points can
have a biased distribution toward the ROI accordingly. Bearing
this consideration in mind, this section presents an NUMS by
which we are able to change the originally evenly distributed
reference points to be biased toward the ROI. Fig. 1(b) and (c)
shows two examples of the biased reference points distribution
after the nonuniform mapping. In the following paragraphs, we
will describe the mathematical model of the NUMS in detail
before showing its algorithmic implementations.

B. NUMS in 1-D Space

Let us start with a 1-D case. Considering the illustrative
example shown in Fig. 2, the reference points generated in
a structured manner are evenly distributed along the line
starting from b1 and ending at b2. Let us assume that the
position of an evenly distributed reference point w obeys
a uniform distribution whose probability density function
(PDF) is defined as follows:

ψu(ζ ) = 1

�
(1)

where 0 ≤ ζ ≤ �, � = |b2 − wp| is the distance between
wp and b2. Here, wp is defined as the pivot point, which is
the intersecting point between the reference line, connecting
the DM-supplied aspiration-level vector zr and the origin, and
the simplex �m, to represent the ROI. When considering the
DM’s preference information, instead of a uniform distribu-
tion, it is preferable that the reference points have a biased
distribution toward wp, that is, the closer to wp, the more ref-
erence points there are. The purpose of the NUMS is to shift w,
originally generated by a structured manner, onto a new posi-
tion w′ close to wp. Let us assume that the position of w′ obeys
a nonuniform distribution whose PDF is defined as follows:

ψe(ξ) = kξη (2)

where ξ = (δ/�), δ = |b2−w′| is the distance between w′ and
b2. δ determines the position of w′. η is a control parameter
which will be further discussed in Section III-D. Note that
0 ≤ ξ ≤ 1 and δ gives the exact position of w′ along the line
starting from b1 and ending at b2. By equating the area under
the probability curve of ψe(ξ) with that of ψu(ζ ), we have

∫ δ
�

0
kxηdx =

∫ �−	

0

1

�
dx = �− 	

�
(3)

Fig. 2. NUMS in 1-D scenario.

where 	 = |w − wp| is the distance between w and wp. By
letting 	 = 0 and δ = � in (3), we have

∫ 1

0
kxηdx = 1 (4)

this gives us k = η + 1. Finally, by substituting η + 1 for k
in (3), we have

δ = �
(
�− 	
�

) 1
η+1

. (5)

C. NUMS in m-Dimensional Space

Now, we generalize the 1-D nonuniform mapping model
into an m-dimensional case. Without loss of generality, let
us consider a 2-D example shown in Fig. 3 for illustration.
Similar to the 1-D case, the purpose of the NUMS in an
m-dimensional case is to shift an evenly distributed reference
point w onto w′ along the direction wp − w. For the ease of
latter computation, we consider the opposite direction. That
is to say, the NUMS shifts wp onto w′ along the direction
w− wp. Accordingly, w′ is calculated as

w′ = wp + ρ × w− wp

‖w− wp‖ (6)

where ‖ · ‖ represents the 	2-norm and ρ is calculated as

ρ = �− δ (7)

where � = ‖b−wp‖ and δ is calculated based on (5) in which
	 = ‖w−wp‖. Note that w and wp are known a priori, while b
is one of the intersecting points between the line connecting wp
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Fig. 3. NUMS in 2-D scenario.

and w and the edges of the simplex �m. Generally speaking,
b can be calculated as

b = wp +�× w− wp

‖w− wp‖ . (8)

Geometrically, there are at most m such intersecting points,
each of which should have a zero element. In this case, for
each bi, i ∈ {1, . . . ,m}, the corresponding � in (8) can be
calculated as

� = min
1≤i≤m

[
wp

i ×
‖wp − w‖
wp

i − wi

]

+
(9)

where [σ ]+ returns σ if and only if σ > 0; otherwise, it returns
an invalid number.

D. Effects and Setting of η

Fig. 4 shows six function curves with various η settings.
From this figure, we can infer that η controls the gradient
of the PDF curve. ψe(ξ) is a decreasing function of ξ when
η > 0; while it is an increasing function of ξ when η < 0.
From Fig. 4, we also find that the function curve is more
skewed with a larger η. According to the properties of power
function, it is not difficult to understand that for a given �
and 	 in (5), a larger η will result in a larger δ. In summary,
η has the following two effects on the NUMS.

1) To push w toward wp, we need to set η > 0; otherwise,
w will be shifted away from wp.

2) With a large η, which results in a large δ, w′ has a
large probability to be closer to wp after the nonuniform
mapping; on the flip side, w′ will be closer to b.

Based on the above discussions, we realize that η is able
to control the extent of the biased reference points after the
nonuniform mapping. However, due to the nonlinear property
of the PDF in (2), it is far from trivial to choose the appro-
priate η beforehand that results in the expected extent of the
ROI. Instead of tweaking η, by trial-and-error, with respect
to the nonlinear mapping function, here we introduce an intu-
itively understandable way to control the extent of the ROI.
Specifically, rather than a concrete extent of the ROI, it is

Fig. 4. Shape of ψe(ξ) with different η.

more plausible for the DM to specify a relative quantity in
practice. Here, we use τ (0 < τ ≤ 1) as the ratio of the
surface area of the biased reference points proportional to the
simplex �m, as this quantity. As discussed in [3], under cer-
tain smoothness assumption, each reference point is supposed
to correspond to a Pareto-optimal solution. Therefore, τ can
also be regarded as relative ratio of the ROI’s size with respect
to the PF. Given τ , collected as additional preference informa-
tion elicited by the DM, Theorem 1 gives a closed form for
setting the corresponding η value.

Theorem 1: Given the relative extent τ (0 < τ ≤ 1) of
reference points after the nonuniform mapping, compared to
the simplex �m, the η value in (2) is calculated as

η = logα

logβ
− 1 (10)

where α = (m/H) and β = 1− τ .
The proof of Theorem 1 can be found in Appendix A of

the supplementary material.3 Fig. 5 shows three examples of
biased reference points after the nonuniform mapping with
different τ settings. Based on Theorem 1, we have the follow-
ing corollary which provides the upper and lower bounds for
setting τ .

Corollary 1: To make the extent of the biased reference
points shrink, we need to set 0 < τ < 1− (m/H).

The proof of Corollary 1 can be found in Appendix B of the
supplementary material. In principle, comparing to the whole
PF, the relative extent of the ROI can be any number between
0 and 1. However, Corollary 1 provides a restriction on τ in
order to make the evenly distributed reference points shrink
to the ROI; otherwise they will expand toward the boundary.
It is worth noting that Theorem 1 and Corollary 1 are derived
under the condition H > m. Otherwise, all reference points
generated by the Das and Dennis’s method should lie on the
boundary of the simplex �m. How to shift the reference points
lying on the boundary will be described in the next section.

3The supplementary material can be found in https://coda-
group.github.io/supp.pdf.
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(a) (b) (c)

Fig. 5. Distribution of reference points for different settings of τ and their corresponding η when zr = (0.7, 0.8, 0.5)T . (a) τ = 0.1 and η = 12.1576.
(b) τ = 0.3 and η = 2.8867. (c) τ = 0.5 and η = 1.0.

E. Boundary Preservation

Note that the NUMS described so far shifts the reference
points, except those lying on the boundary of the simplex
�m, onto the ROI. The biased reference points try to guide
a decomposition-based EMO algorithm not only search for
the preferred solutions but also approximate those lying on
the PF’s boundary. In particular, the boundary solutions pro-
vide the DM more comprehension of the PF, e.g., the PF’s
general shape, the ideal and nadir points which can be useful
for further decision-making. Nevertheless, if the DM is not
interested in the boundary any longer, we can make a simple
modification on the NUMS to shift the reference points lying
on the boundary toward the ROI as well. Specifically, a refer-
ence point wb is considered lying on the boundary of �m if
and only if the following condition is met:

�− ‖wb − wp‖ < ε (11)

where ε = 10−6 is a small quantity and � is determined
according to (9). To shift wb onto the ROI, its new position
after the NUMS is calculated as

w′ = wp + ρ × wb − wp
∥
∥wb − wp

∥
∥ (12)

where ρ = τ × ‖wb − wp‖. Note that the η value derived in
Theorem 1 is under the consideration that the DM is willing
to keep the boundary points. If the reference points lying on
the boundary are shifted onto the ROI by the NUMS as well,
the η value should be calculated according to Corollary 2.

Corollary 2: If all reference points are shifted onto the ROI,
the η value in (2) is calculated as

η = logα

logβ
− 1 (13)

where α = (m/H) and β = 1− (1− [m/H])× τ .
The proof of Corollary 2 can be found in Appendix C of

the supplementary material. Accordingly, we should have a
different upper and lower bounds for η as follows.

Corollary 3: If all reference points are shifted onto the ROI,
we can set 0 < τ < 1.

The proof of Corollary 3 can be found in Appendix D of
the supplementary material. Fig. 1(c) gives an example that
all reference points have been shifted onto the ROI.

Algorithm 1: NUMS
Input:
• DM supplied aspiration level vector zr

• Number of divisions H
• Expected extent of ROI τ
• flag determines whether keep the boundary or not

Output:
• Biased reference points W ← {w1, · · · ,wN}

1 Initialize N ← (H+m−1
m−1

)
reference points w1, · · · ,wN on

a canonical simplex �m by Das and Dennis’s method;
2 Find the pivot point wp of zr on �m;
3 if flag = 1 then // keep the boundary
4 α← m

H , β ← 1− τ ;
5 else
6 α← m

H , β ← 1− (1− m
H )× τ ;

7 η← logα
logβ − 1;

8 for i← 1 to N do

9 �← min
1≤j≤m

[wp
j × ‖w

p−wi‖
wp

j −wi
j

]+;

10 if �− ‖wi − wp‖ < ε ∧ flag = 0 then
11 ρ ← τ × ‖wi − wp‖;
12 else

13 δ← �(�−	
�
)

1
η+1 , where 	← ‖wi − wp‖;

14 ρ ← �− δ;
15 wi ← wp + ρ × wi−wp

‖wi−wp‖ ;

16 return W

F. Algorithmic Details

After describing the mathematical foundations of the
NUMS, this section describes its algorithmic implementation
whose pseudo-code is presented in Algorithm 1. First of all,
N = (H+m−1

m−1

)
reference points w1, . . . ,wN are initialized

via the Das and Dennis’s method (line 1 of Algorithm 1).
Afterwards, we find the pivot point (line 2 of Algorithm 1).
Then, if the DM is interested in the boundary, we use
Theorem 1 to compute the exponent η of the PDF in (2); oth-
erwise, we use Corollary 2 to do so (lines 3–7 of Algorithm 1).
During the main loop, for each reference point, we use (9) to
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Fig. 6. Estimated ideal point z∗ is away from the DM-supplied
aspiration-level vector zr .

determine the position of the corresponding boundary point
for the nonuniform mapping (line 9 of Algorithm 1). If the
currently investigating reference point lying on the boundary
of �m and the DM is not interested in the boundary, we use
(12) to determine the step-length for shifting this boundary
reference point onto the ROI (line 11 of Algorithm 1); other-
wise we use (5) and (7) to serve this purpose (lines 13 and
14 of Algorithm 1). At the end of this loop, we use (6) to
calculate the new position of the biased reference point (line
15 of Algorithm 1).

G. Incorporation of the NUMS into Decomposition-Based
EMO Algorithm

In principle, the NUMS can be readily incorporated into
any decomposition-based EMO algorithm, e.g., MOEA/D and
NSGA-III, in a plug-in manner. In particular, we only need
to replace the reference points with the ones generated by the
NUMS. However, for MOEA/D and its variants, the commonly
used subproblem formulation, e.g., the Tchebycheff function,
will only result in the population that are dominated by the
ideal point [47], i.e., z∗ = (z∗1, . . . , z∗m)T , where z∗i = min

x∈PS
fi(x)

for all i ∈ {1, . . . ,m}, which is unknown a priori. Although
the ideal point can be estimated by the currently evolving pop-
ulation, it is highly likely that the estimated ideal point is
away from the DM-supplied aspiration-level vector, as shown
in Fig. 6. Note that it is fine if the DM wants to approximate
the boundary and the ROI together, since the solutions on the
boundary can give the appropriate ideal point. Otherwise, the
algorithm will be struggling to obtain acceptable solutions if
the DM is only interested in the ROI.

To overcome this aforementioned drawback, we use the
following subproblem formation in MOEA/D and its variants:

minimize g
(
x|w, zr) = max

1≤i≤m

{
wi

(
fi(x)− zr

i

)}

+ ρ
m∑

i=1

wi
(
fi(x)− zr

i

)
(14)

subject to x ∈ �
where � is the decision space and ρ is a sufficiently small
positive number, which we set as 10−6 as suggested in [39].
As discussed in [48], the optimum of (14) must be a

Pareto-optimal solution, and ρ is able to avoid the generation
of weakly Pareto-optimal solutions. By using this subprob-
lem formulation, we can expect that the search directions are
heading toward the DM-supplied aspiration-level vector.

IV. EXPERIMENTAL STUDIES

To validate the effectiveness of the NUMS,4 we incorporate
it into three state-of-the-art decomposition-based EMO algo-
rithms (i.e., MOEA/D [3], NSGA-III [17], and our recently
proposed MOEA/D variant based on stable matching model,
named MOEA/D-STM [49]) and three other state-of-the-
art preference-based EMO algorithms (i.e., g-NSGA-II [42],
R-NSGA-II [12], and r-NSGA-II [13]). Here we use the
simulated binary crossover (SBX) [50] and the polynomial
mutation [51] as the reproduction operators. For the SBX, the
crossover probability is set as pc = 1.0 and its distribution
index is set as ηc = 10; for the polynomial mutation, the
mutation probability is set as pm = (1/n) and its distribution
index is set as ηm = 20. In the experiments, we choose the
popular DTLZ1 to DTLZ4, and WFG41 to WFG48 test prob-
lems [52] to form the benchmark suite. Note that WFG41 to
WFG48 problems are designed to have various complex PF
shapes, e.g., sharp convex/concave, mixed shape, and discon-
nected PF segments. For DTLZ problems, m ∈ {3, 5, 8, 10};
while for WFG problems, m ∈ {2, 3, 5, 8, 10}. The settings
of aspiration-level vectors used in our experiments are given
in Appendix E of the supplementary material. The population
size is set as N = 100 when m = 2; N = 92 when m = 3;
N = 210 when m = 5; N = 360 when m = 8; and N = 660
when m = 10, respectively. As for the NUMS, the number
of divisions is set as H = 13 when m = 3 and H = 6 when
m = 5. When the number of objectives is larger than 5, we use
a 3-layer method suggested in our recent work [53] to generate
the initially evenly distributed reference points. In particular,
we set H = 3 for each layer. In our experiments, the stopping
criterion of a preference-based EMO algorithm is the number
of function evaluations (FEs), where the detailed settings are
given in Appendix E of the supplementary material. As for
R-NSGA-II, the additional parameter ε, used in its ε-clearing
procedure, is set according to [12], i.e., ε = 0.001 when m = 2
and ε = 0.01 otherwise.

It is nontrivial to quantitatively compare the performance of
different preference-based EMO algorithms for approximating
the ROI. Here we use our recently developed preference-
based R-HV [54] to serve the purpose. The basic idea of
R-HV computation is to preprocess the obtained preferred
solution set S, according to the DM-supplied zr, before
using the hypervolume (HV) [55] for performance assessment.
Interested readers can find the technical details from [54].
Similar to HV, the larger is the R-HV value, the better is the
quality of S for approximating the ROI.

In the experiments, each algorithm is performed 31 inde-
pendent runs. In the data tables, we show the median and the
interquartile range (IQR) of metric values for different prob-
lem instances with various aspiration-level vector settings. In

4The proof-of-principle results can be found in Section G of the supple-
mentary material.
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TABLE I
COMPARISON RESULTS OF MEDIAN R-HV VALUES AND THE IQR OBTAINED BY SIX PREFERENCE-BASED EMO ALGORITHMS ON DTLZ1 TO DTLZ4

PROBLEMS WITH UNATTAINABLE AND ATTAINABLE ASPIRATION LEVEL VECTORS

particular, the best median metric values are highlighted in
bold face with a gray background. To have a statistically sound
conclusion, we carry out the statistical analysis as suggested
in [56] to validate the statistical significance of the results.
More detailed description of this statistical analysis frame-
work is provided in Appendix F of the supplementary material.
To have a visual comparison, we also show the scatter plots
and the parallel coordinate plots (PCP), in the supplementary
material, of the final solutions obtained by different algorithms
having the best R-HV value.

A. Experimental Results

Due to the page limit, we only discuss some results on
DTLZ problems here. More comprehensive results and the
discussion on WFG problems are in Section H of the sup-
plementary material. From the results shown in Table I, we
can clearly see that the decomposition-based EMO algorithms,
i.e., MOEA/D-STM, MOEA/D, and NSGA-III, assisted by the
NUMS are the best candidates for approximating the ROI of
various test problems. Their superiority becomes more evident
with the increase of the number of objectives. In the following
paragraphs, we explain the results instance by instance.

Let us start from the DTLZ1 problem which has a linear
PF shape, i.e., a hyper-plane intersects with each coordinate at
0.5. Note that DTLZ1 also has many local optima in its search
space, which obstruct the convergence toward the global PF.

In the 3-objective case, all algorithms, except g-NSGA-II, are
able to drive solutions to converge toward the PF. As the DM
expects the ROI to be 20% of the whole PF, solutions found
by the decomposition-based EMO algorithms assisted by the
NUMS are the best candidates with respect to the DM’s expec-
tation. Fig. 7 shows the scatter plots of solutions obtained
by all algorithms with respect to zr = (0.05, 0.05, 0.2).
From this figure, we can see that solutions obtained by three
decomposition-based EMO algorithms assisted by the NUMS
are consistent and well distributed. In contrast, although the
solutions found by R-NSGA-II are in the ROI, they crowd in
a narrow region. In this case, R-NSGA-II cannot provide as
many tradeoff alternatives as the decomposition-based EMO
algorithms assisted by the NUMS. As shown in Fig. 7, solu-
tions found by r-NSGA-II do not converge to the ROI. With
the increase of the number of objectives, g-NSGA-II and
r-NSGA-II have difficulty in driving solutions toward the PF
due to the multimodal property of DTLZ1. As for R-NSGA-II,
solutions are even more focused in the high-dimensional
space as shown in Fig. 8, an 8-objective example with
zr = (0.01, 0.02, 0.07, 0.02, 0.06, 0.2, 0.1, 0.01)T . Although
the spread of the preferred solutions obtained by R-NSGA-II
can be controlled by its ε parameter, there is no rule-of-thumb
for tuning it to adapt to the DM’ expected extent of the ROI.

DTLZ2 is a relatively simple test problem, where the
objective functions of a Pareto-optimal solution x∗ satisfies:
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Fig. 7. Scatter plots of solutions on 3-objective DTLZ1 where zr =
(0.05, 0.05, 0.2).

(a) (b) (c)

(d) (e) (f)

Fig. 8. PCP of solutions on 8-objective DTLZ1 where
zr = (0.01, 0.02, 0.07, 0.02, 0.06, 0.2, 0.1, 0.01)T . (a) MOEA/D-STM.
(b) MOEA/D. (c) NSGA-III. (d) R-NSGA-II. (e) g-NSGA-II. (f) r-NSGA-II.

Fig. 9. Scatter plots of solutions on 3-objective DTLZ2 where zr =
(0.2, 0.5, 0.6).

∑m
i=1 f 2

i (x
∗) = 1. All algorithms do not have too much

difficulty in driving solutions toward the PF. As the exam-
ples shown in Figs. 9 and 10, the performance of three
decomposition-based EMO algorithms assisted by the NUMS
are consistent. In contrast, the spread of the solutions obtained
by the other three preference-based EMO algorithms is not
fully controllable. In particular, solutions found R-NSGA-II
and r-NSGA-II are very focused while those found by g-
NSGA-II scattered in a wide region.

(a) (b) (c)

(d) (e) (f)

Fig. 10. PCP of solutions on 8-objective DTLZ2 where zr =
(0.3, 0.1, 0.4, 0.25, 0.1, 0.15, 0.4, 0.25)T . (a) MOEA/D-STM. (b) MOEA/D.
(c) NSGA-III. (d) R-NSGA-II. (e) g-NSGA-II. (f) r-NSGA-II.

The PF of DTLZ3 is the same as DTLZ2. But its search
space contains many local optima which can make an EMO
algorithm get stuck at any local PF before converging to the
global PF. Similar to the observations in DTLZ1, g-NSGA-II
cannot find any converged solutions in all 3- to 10-objective
cases. The performance of the decomposition-based EMO
algorithms assisted by the NUMS is very robust. It is interest-
ing to note that, as the example shown in Fig. 11, solutions
found by r-NSGA-II do not converge well to the ROI in the
3-objective case. This might be caused by the failure of its
adaptive parameter control given a limited number of FEs.
As shown in Fig. 12, we also notice that solutions found by
r-NSGA-II do not converge to the PF when the number of
objectives becomes large.

DTLZ4 also has the identical PF shape as DTLZ2. However,
in order to investigate an EMO algorithm’s ability to maintain
a good distribution of solutions, DTLZ4 introduces a para-
metric variable mapping to the objective functions of DTLZ2.
This modification allows a biased density of points away from
fm(x) = 0. It is interesting to note that the performance of all
these algorithms are similar to the DTLZ2. As the examples
shown in Figs. 13 and 14, g-NSGA-II cannot drive all solu-
tions converge to the PF due to the biased density of solutions.
As shown in Fig. 13, some solutions found by r-NSGA-II are
still drifted away from the PF when encountering an attain-
able aspiration-level vector, i.e., zr = (0.7, 0.8, 0.5), in the
3-objective case.

B. Summary of the Experimental Results

Based on the observations in Section IV-A, we summarize
the comparisons between the decomposition-based EMO algo-
rithms assisted by the NUMS and the other preference-based
EMO algorithms as follows.

1) Solutions found by three decomposition-based EMO
algorithms assisted by the NUMS are consistent. This
is because the search directions of a decomposition-
based EMO algorithm is determined by the reference
points. By using the NUMS, the reference points are
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Fig. 11. Scatter plots of solutions on 3-objective DTLZ3 where zr =
(0.2, 0.5, 0.6).

(a) (b) (c)

(d) (e) (f)

Fig. 12. PCP of solutions on 8-objective DTLZ3 where zr =
(0.3, 0.1, 0.4, 0.25, 0.1, 0.15, 0.4, 0.25)T . (a) MOEA/D-STM. (b) MOEA/D.
(c) NSGA-III. (d) R-NSGA-II. (e) g-NSGA-II. (f) r-NSGA-II.

Fig. 13. Scatter plots of solutions on 3-objective DTLZ4 where zr =
(0.7, 0.8, 0.5).

transformed from an even distribution to a biased distri-
bution toward the DM-supplied aspiration-level vector.
In contrast, the driving force of the other preference-
based EMO algorithms is to find solutions close to the
DM-supplied aspiration-level vector. Since this “close-
ness” by itself is vague, it brings uncertainty to the
search process.

2) For the decomposition-based EMO algorithms assisted
by the NUMS, the extent of the approximated ROI is

(a) (b) (c)

(d) (e) (f)

Fig. 14. PCP of solutions on 8-objective DTLZ4 where zr =
(0.3, 0.1, 0.4, 0.25, 0.1, 0.15, 0.4, 0.25)T . (a) MOEA/D-STM. (b) MOEA/D.
(c) NSGA-III. (d) R-NSGA-II. (e) g-NSGA-II. (f) r-NSGA-II.

controlled by the DM in an intuitively understandable
manner. For the other preference-based EMO algo-
rithms, the approximated ROI can be any crowd of
solutions “close” to the DM-supplied aspiration-level
vector. Although there are some parameters that con-
trol this extent, there is no rule-of-thumb to tweak those
parameters.

3) As shown in the proof-of-principle results shown in
the supplementary material, the NUMS can help a
decomposition-based EMO algorithm not only find solu-
tions in the ROI but also those lying on the boundary
of the PF. In contrast, The other preference-based EMO
algorithms can only approximate the ROI.

4) Different from the other preference-based EMO algo-
rithms, the NUMS does not incur additional com-
putations to the baseline algorithm. As introduced
in Section III-G, we only need to change the dis-
tribution of the reference points to be biased toward
the ROI. As shown in Table V of the supplementary
material, the average CPU time costs of the NUMS
assisted algorithms are almost the same as the baseline
algorithms.

V. CONCLUSION

This paper present a systematic way to incorporate the
DM’s preference information into the decomposition-based
EMO methods in either a priori or interactive manner. In
particular, the DM’s preference information is modeled as an
aspiration-level vector which represents the DM’s expected
value on each objective. Our basic idea is an NUMS that
transforms the originally evenly distributed reference points
into a biased distribution. In particular, the closer to the DM
specified aspiration-level vector, the more reference points in
view of their higher relevance to the DM’s preference infor-
mation. Different from the existing literature, the ROI’s size
is fully controllable and intuitively understandable accord-
ing to a quantitative definition. To facilitate the interactive
decision-making process, our proposed NUMS is able to pre-
serve the ones located on the boundary as well, given the



LI et al.: INTEGRATION OF PREFERENCES IN DECOMPOSITION MULTIOBJECTIVE OPTIMIZATION 3369

DM’s requirements. By incorporating the NUMS into some
decomposition-based EMO algorithms, i.e., MOEA/D-STM,
MOEA/D, and NSGA-III, its effectiveness is validated by
proof-of-principle experiments and comparative studies with
other state-of-the-art preference-based EMO algorithms on a
variety of benchmark problems with 2 to 10 objectives.

It is clear that the distribution of the biased reference
points is determined by the transformation function defined
in (2). One direct extension of this paper is to use some
other distribution functions that are tailored according to the
DM’s requirements. As discussed in Section II, there are sev-
eral other ways of eliciting the DM’s preference information.
The other extension of this paper is the adaptation of the
NUMS to other types of preference model. To further facilitate
the interactive process, it is worth considering the combina-
tion of human computer interaction techniques [57] and the
preference-based EMO. Moreover, discrete and mixed variable
optimization problems are ubiquitous in real-world applica-
tions, e.g., scheduling [58], [59]. It is interesting to study the
application of the NUMS for finding DM preferred solutions
in those cases.
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