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Abstract. Most evolutionary multiobjective optimisation (EMO) algo-
rithms explicitly or implicitly maintain an archive for an approxima-
tion of the Pareto front. A question arising is whether existing archiving
methods are reliable with respect to their convergence and approxima-
tion ability. Despite theoretical results available, it remains unknown how
these archivers actually perform in practice. In particular, what percent-
age of solutions in their final archive are Pareto optimal? How frequently
do they experience deterioration during the archiving process? Deteriora-
tion means archiving a new solution which is dominated by some solution
discarded previously. This paper answers the above questions through a
systematic investigation of eight representative archivers on 37 test in-
stances with two to five objectives. We have found that 1) deterioration
happens to all the archivers; 2) the deterioration degree can vary dra-
matically on different problems; 3) some archivers clearly perform better
than others; and 4) several popular archivers sometime return a popula-
tion with most solutions being the non-optimal. All of these suggest the
need of improvement of current archiving methods.

Keywords: multi-objective optimisation, archive, optimality, monotonic-
ity, empirical investigation, evolutionary computation

1 Introduction

Most evolutionary multiobjective optimisation (EMO) algorithms, and other
multiobjective search techniques, keep an archive3 to capture the output of the
search process. Such an archiver is typically used to approximate the Pareto
front and/or as a collection of the current most promising solutions to guide
next step search. Archiving can be seen as a process of taking new points from a

3 For EMO algorithms without considering an external archive (e.g., NSGA-II [8]),
their population can also be seen as an implicit archive where the selection operation
is performed to preserve the best solutions ever produced [40].
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point sequence, comparing them with the old points in the archive and deciding
how to update the archive.

An archive of bounded size is of importance due to not only the consideration
of computational resource but also search performance and later decision-making
process. As such, numerous archiving methods (or archivers) emerge, known as
elite preservation or environmental selection in evolutionary algorithms. They
all serve the purpose of maintaining a set of well-converged and well-diversified
solutions to represent the Pareto front.

However, an important issue of archiving has received relatively little atten-
tion — the optimality/monotonicity properties of archivers. In particular, one
may be curious about whether an archiving method is able to return a subset
of the Pareto optimal solutions discovered so far. This matters as the decision
maker certainly does not want to face a situation that s/he has to select an
inferior solution in the archive but misses a Pareto optimal solution once pro-
duced. In fact, many papers have observed that EMO algorithms whose archiving
has no theoretical quality guarantee can suffer from dramatic performance os-
cillation during the search process on various instances, such as synthetic input
sequences [21, 31], benchmark test problems [25, 11, 2], and real life scenarios [10,
32].

Unfortunately, most modern archivers do not have such optimality/monotonicity
properties. They fail to ensure a subset of the Pareto optimal points with respect
to an input sequence. Points can be preserved even when they are dominated by
the points eliminated previously in the archiving process. A subsequent archive
can be worse than an earlier archive. These drawbacks have been well illustrated
in the literature, on different types of archiving methods, such as Pareto-based
archiver [14, 25, 11], indicator-based archiver [22, 31], and decomposition-based
archiver [10]. López-Ibáñez et al. [31] have made a comprehensive summary of
the approximation properties for popular archiving methods.

On the other hand, some work focused on development of monotonic archiv-
ing methods, including theoretical analysis [14, 33, 6, 20] and algorithm design [25,
35, 18, 26]. However, without problem-specific knowledge available a priori, mono-
tonic archiving methods often fail to maintain a diverse solution set and may end
up with very few solutions in the archive (see [21, 31]). As such, non-monotonic
archiving methods are still dominantly used everywhere.

Given the above, one interesting question raised is how current state-of-the-
art archiving methods, despite their theoretical drawbacks, perform in practice.
In particular, do archivers, in most cases, actually return a subset of the Pareto
optimal solutions discovered so far; in other words, what percentage of solutions
in the final archive are Pareto optimal? How frequently do archivers experience
deterioration during the search process, in the sense that a point will still be
preserved even if dominated by points which were discarded in the previous
archiving? In this paper, we aim to answer the above questions. These corre-
spond to two properties defined in [31]: 1) ⊆ Y ∗ (i.e., the returning archive is a
subset of the Pareto optimal solutions found so far) and 2) monotone (i.e., the
deterioration never happens in the archiving process) We systematically inves-
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tigate archiving methods associated with eight representative EMO algorithms
on 37 test problems with from two to five objectives.

2 Experimental Design

2.1 Assessment Indexes

We consider two indexes, optimal ratio (OR) and deterioration ratio (DR). OR
is, for one run of an EMO algorithm, the percentage of the nondominated solu-
tions in the final archive/population are Pareto optimal with respect to all the
solutions produced in this run. DR is, for one run of an EMO algorithm, the
ratio of the times of deterioration occurring in the archiving process to the num-
ber of solutions considered to enter the archive, where the deterioration means
that archiving a solution which is dominated by some solution discarded in the
previous archiving process.

2.2 Archivers Investigated

We consider four classes of eight archiving methods: 1) Pareto-based archivers
used in NSGA-II [8] and SPEA2 [41]; 2) indicator-based archivers in IBEA [39]
and SMS-EMOA4 [3]; 3) decomposition-based archivers in MOEA/D [37] and
NSGA-III [7]; 4) enhanced Pareto-based archivers for many-objective optimisa-
tion (i.e., modifying Pareto dominance or density estimation) used in NSGA-
II+ǫ [23] and SPEA2+SDE [28].

Pareto-based archivers first compare the Pareto dominance relation between
solutions, and when the solutions have the same Pareto-based fitness (e.g., the
non-dominated front in NSGA-II and the Pareto strength in SPEA2) their es-
timated density values are used to further distinguish between them. Indicator-
based archivers adopt a performance indicator to optimise a certain preference
of the solution set. In IBEA, the ǫ or dominated hypervolume indicator, based
on solutions’ pairwise comparison, is used, while in SMS-EMOA the set-based
dominated hypervolume is used. Decomposition-based archivers decompose the
space into a set of subspaces, ideally each solution representing one subspace.
One difference between MOEA/D and NSGA-III is that the latter first sorts all
solutions on the basis of Pareto dominance, and then decomposes the solutions
on the same layer. Enhanced Pareto-based archivers increase the selection pres-
sure of the Pareto-based archiving by either modifying the Pareto dominance
criterion or modifying the crowding degree of solutions. NSGA-II+ǫ belongs to
the former where the ǫ dominance [25] is used to replace crowding distance in
NSGA-II, and SPEA2+SDE belongs to the latter where a position shift strategy
is used to estimate solutions’ density in order to make it cover both convergence
and diversity.

4 The method of computing the dominated hypervolume in SMS-EMOA was from [13],
available at http://iridia.ulb.ac.be/~manuel/hypervolume.



4 M. Li and X. Yao

2.3 Test Problems

A set of 37 problem instances were tested, including popular benchmark suites,
early-developed problems and recently-developed ones. Specifically, we consid-
ered three popular suites, ZDT [38], WFG [15] and DTLZ [9]; seven early-
developed problems, SCH1–SCH2 [34], FON [12], KUR [24] and VNT1–VNT3 [36];
seven recently-developed problems, convex DTLZ2 (denoted by CDTLZ2), in-
verted DTLZ1 (IDTLZ1), inverted DTLZ2 (IDTLZ2), scaled DTLZ1 (IDTLZ1),
scaled DTLZ2 (IDTLZ2) [7, 17], multiple point distance minimisation problem
(MPDMP) [23, 16], and multiple line distance minimisation problem (MLDMP) [27].
As to objective dimensionality settings of the scalable problems, the 2-objective
WFG, the 3-objective DTLZ, and the 4-objective MPDMP and MLDMP (aka
the rectangle problem [29]) were used; we also considered the 5-objective DTLZ1
and DTLZ2.

2.4 General Experimental Settings

All the results presented were obtained by executing 30 independent runs of
each algorithm on each problem with the termination criterion of 30,000 evalu-
ations. The population/archive size was set to 100 for all the algorithms except
MOEA/D and NSGA-III where a closest number to 100 amongst the possi-
ble values was selected. To perform variation, simulated binary crossover with
probability pc = 1.0 and polynomial mutation with probability pm = 1/d (d
denotes the number of decision variables) were considered in all the algorithms.
The indicator ǫ was used in IBEA, and the PBI scalarising function was used in
MOEA/D. All the parameters of the algorithms were configured as the same as
in their original papers.

3 Results

3.1 Optimal Ratio

Table 1 shows the average optimal ratio (OR) of 30 runs of the eight algorithms
on all the 37 problems. As can be seen, SMS-EMOA performs best, followed
by SPEA2+SDE and NSGA-III; MOEA/D, NSGA-II and SPEA2 are among
the worst algorithms, with only over 70% solutions being Pareto optimal5 in
their final archive on average. Taking a particular look at SMS-EMOA, unlike
other algorithms whose OR varies on different problems, SMS-EMOA always
achieves over 99.9% OR values on all the problems. This excellent ability may be
attributed to the fact that the hypervolume value of the SMS-EMOA’s archive
never (or very rarely [19]) decreases and the archiving is of ⊳-monotonicity
(see [31]) when the reference point is stable, leading to the dominated solutions
hard to stay in the archive.

5 Here, “Pareto optimal” means being nondominated to all the solutions found during
the run, rather than the problem’s Pareto optimal solutions.
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Table 1. The average optimal ratio (OR) of 30 runs of the eight algorithms. The
higher the better; 100% (in boldface) means that all the solutions in the final archive
or population are Pareto optimal with respect to the produced solutions (i.e., their
input sequence).

Problem NSGA-II NSGA-II+ǫ SPEA2 SPEA2+SDE IBEA SMS-EMOA MOEA/D NSGA-III
SCH1 100.0% 99.8% 100.0% 99.8% 99.8% 100.0% 100.0% 100.0%
SCH2 100.0% 99.4% 99.9% 99.4% 91.0% 100.0% 98.4% 100.0%
FON 33.6% 36.5% 43.8% 60.8% 92.5% 99.4% 43.1% 86.8%
KUR 51.9% 48.1% 67.0% 69.5% 85.2% 99.9% 47.1% 75.3%
ZDT1 81.7% 86.7% 91.8% 96.4% 97.3% 100.0% 54.4% 99.6%
ZDT2 87.6% 91.1% 93.3% 98.4% 85.8% 100.0% 62.8% 99.3%
ZDT3 80.5% 86.9% 89.9% 92.1% 97.8% 99.9% 72.6% 93.5%
ZDT4 96.8% 97.2% 97.1% 99.3% 80.7% 99.9% 64.1% 96.9%
ZDT6 97.7% 98.2% 96.6% 99.6% 94.4% 100.0% 36.8% 98.7%
WFG1 95.7% 97.8% 98.3% 99.7% 71.8% 100.0% 43.2% 96.8%
WFG2 83.6% 86.8% 90.4% 92.8% 88.5% 100.0% 72.9% 83.9%
WFG3 61.2% 75.3% 70.3% 86.4% 93.9% 99.9% 45.0% 92.4%
WFG4 55.9% 69.1% 65.7% 83.9% 78.6% 99.7% 52.2% 91.1%
WFG5 57.8% 67.9% 72.8% 84.8% 80.1% 100.0% 49.0% 95.1%
WFG6 69.4% 80.6% 79.9% 92.3% 79.2% 99.9% 55.2% 93.8%
WFG7 51.3% 61.4% 60.8% 84.6% 79.0% 100.0% 48.9% 88.5%
WFG8 68.0% 72.0% 81.9% 94.5% 59.1% 99.8% 54.2% 85.8%
WFG9 50.8% 61.3% 55.6% 77.2% 81.0% 100.0% 40.4% 83.6%
VNT1 71.4% 94.7% 64.8% 96.8% 97.9% 100.0% 81.3% 82.3%
VNT2 56.5% 85.8% 59.0% 90.2% 91.7% 100.0% 67.0% 78.8%
VNT3 53.5% 37.6% 72.1% 66.0% 90.3% 99.8% 92.6% 57.5%
DTLZ1 96.2% 99.1% 90.2% 99.9% 40.7% 100.0% 90.1% 98.3%
DTLZ2 63.1% 69.8% 67.0% 88.9% 94.6% 100.0% 90.3% 77.8%
DTLZ3 94.4% 97.9% 97.6% 99.8% 27.0% 99.8% 87.3% 96.4%
DTLZ4 60.8% 71.4% 70.1% 89.8% 90.4% 100.0% 94.0% 78.7%
DTLZ5 58.1% 66.6% 72.0% 87.1% 80.9% 100.0% 97.8% 52.0%
DTLZ6 100.0% 99.1% 94.1% 100.0% 99.9% 100.0% 90.7% 93.9%
DTLZ7 56.2% 82.5% 67.6% 94.2% 97.1% 100.0% 49.8% 68.2%
CDTLZ2 59.2% 78.0% 63.8% 94.5% 97.9% 100.0% 84.4% 79.7%
IDTLZ1 93.3% 99.5% 97.1% 99.9% 15.9% 100.0% 97.7% 98.0%
IDTLZ2 64.9% 80.3% 71.6% 93.3% 97.4% 100.0% 96.6% 67.3%
SDTLZ1 96.2% 99.0% 93.8% 99.3% 42.9% 100.0% 75.1% 98.3%
SDTLZ2 60.3% 74.6% 62.5% 82.2% 94.6% 99.3% 71.6% 77.6%
MPDMP 90.0% 94.8% 85.0% 99.4% 72.8% 100.0% 98.9% 93.5%
MLDMP 99.5% 99.1% 98.0% 100.0% 74.4% 100.0% 82.0% 98.6%
DTLZ1-5 57.6% 99.7% 15.9% 100.0% 83.9% 100.0% 96.8% 98.3%
DTLZ2-5 66.3% 90.1% 20.2% 94.2% 98.3% 100.0% 91.1% 86.6%
Average 73.54% 82.05% 76.15% 91.54% 81.62% 99.93% 72.31% 87.65%

The other seven archivers do not have these desirable properties. They can
reach/approach 100% OR values on some problems (e.g., SCH1, SCH2 and
DTLZ6), but perform rather poorly on some other problems (e.g., FON, KUR,
WFG8 andWFG9). In addition, some archivers appear to behave quite distinctly
from others on a couple of problems. For example, SPEA2 and NSGA-II per-
form considerably worse than the other archivers on the 5-objective DTLZ1 and
DTLZ2; IBEA performs on DTLZ1, DTLZ3, IDTLZ1, and SDTLZ1; MOEA/D
performs on ZDT6 and WFG1. Figure 1 shows the final population obtained
by MOEA/D in a typical run on WFG1 and also all the solutions produced in
this run and the Pareto optimal ones. As can be seen in the figure, many solu-
tions of the final population of MOEA/D are not Pareto optimal of the whole
set of solutions produced, particularly in the bottom right and top left of the
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Fig. 1. Final population obtained by MOEA/D in a typical run on WFG1, coupled
with (a) all the solutions produced in this run and (b) all the Pareto optimal solutions
in this run.

figure, where they are dominated by some solutions which are eliminated in the
archiving process of MOEA/D.

Since all the archivers (except SMS-EMOA) are the same in terms of theo-
retical properties, the observations of the different behaviours are from specific
problems and archiving methodologies. In general, there are several situations
that lead to an archive to only/mostly contain the Pareto optimal solutions.
The first is that the newly produced solutions are typically dominated by some
solutions in the archive. This happens on the test instance SCH1. The second
situation is that a certain amount of newly produced solutions dominate some
solutions in the archive even at the end of the evolution process. This happens
often when the archive does not approach the Pareto front yet, such as Pareto-
based algorithms on DTLZ1 and DTLZ3. The last situation is that the newly
produced solutions are usually nondominated to the solutions in the archive, and
also nondominated to any previously produced one. This happens either when
the produced solutions are already Pareto optimal to the given problem (such
as SCH2 and DTLZ6), or when they are stuck in the local optimum (such as
Pareto-based algorithms on MLDMP).

Now, comparing different classes of the archiving methods, enhanced Pareto-
based archivers generally outperform Pareto-based ones, with NSGA-II+ǫ and
SPEA2+SDE improving the original NSGA-II and SPEA2 on average by around
10% and 15% respectively. This means that the density-based secondary archiv-
ing criterion (without incorporating convergence information) leads to OR de-
generating. As to the three mainstream archiving classes, the Pareto-based, the
indicator-based, and the decomposition-based, there is no clear pattern between
their OR values. But we can infer the importance of Pareto dominance as the first
archiving criterion in decomposition-based archiver, as NSGA-III, equipped with
the Pareto nondominated sorting, performs significantly better than MOEA/D.
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3.2 Deterioration Ratio

Next, let us move to the deterioration ratio (DR) results. DR denotes the ratio of
the times of deterioration occurring in the archiving process to the total times of
the archiving operations, and DR = 0% implies OR = 100%. It is then expected
that a similar pattern to OR will be observed. Table 2 gives the average DR of
30 runs of the eight algorithms. Surprisingly, IBEA, which takes the fifth place
on the average OR result, performs best here, slightly better than SMS-EMOA.
One possible explanation is that the deterioration occurs mainly during the late
phase of IBEA’s evolutionary process, thereby some dominated solutions (in
a global sense) remaining in the final archive. In contrast, in SMS-EMOA the
deterioration occurs mainly during the evolutionary phase when the archive does
not approach the Pareto front. This is also supported by the poor DR values of
SMS-EMOA on WFG1 and DTLZ3 where the final archive is still far from the
Pareto front.

It is noticed that MOEA/D reaches nearly 10% DR on average, significantly
higher than the other algorithms, indicating that its archiving process preserves
many dominated solutions with respect to the input sequence. This, interestingly,
is contrary to the observations in [2], where the authors have seen that MOEA/D
perform well (against Pareto-based, indicator-based and enhance Pareto-based
EMO algorithms) in archiving the Pareto optimal solutions found on the MNK-
landscape problem [1]. One possible reason for this could be different behaviours
of MOEA/D between on continuous problems and on combinatorial problems.
Another more likely explanation is the different performances of MOEA/D in
exploration and archiving. The matting selection which considers neighbouring
solutions in MOEA/D could be promising in generating Pareto optimal solutions,
but it is difficult for the archive (here the population) to always keep them; i.e.,
good solutions can be easily generated and easily discarded as well.

3.3 Summary

Now we make a summary of the above observations.

– Consistent with the theoretical results, deterioration can happen to all the
archivers in practice. However, the deterioration degree may vary dramati-
cally on different test problems.

– SMS-EMOA performs best, especially in preserving the Pareto optimal so-
lutions in the final archive. This is probably due to the desirable prop-
erty of its hypervolume-based archiving — the ⊳-monotonicity [31]. Such a
hypervolume-based bounded-size archiving, originally proposed in [22], can
significantly reduce the occurrences of deterioration.

– IBEA does well in preventing the dominated solutions (with respect to the
input sequence) from entering the archive, but it works mainly at the early
phase of the evolution. This leads to the archive often ending up not being
a subset of the Pareto optimal solutions.
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Table 2. The average deterioration ratio (DR) of 30 runs of the eight algorithms. The
lower the better; 0.00% (in boldface) means that there is no archived solution which is
dominated by the solutions eliminated in the previous archiving process.

Problem NSGA-II NSGA-II+ǫ SPEA2 SPEA2+SDE IBEA SMS-EMOA MOEA/D NSGA-III
SCH1 0.00% 0.10% 0.00% 0.08% 0.20% 0.00% 0.25% 0.00%
SCH2 0.00% 0.22% 0.00% 0.14% 0.36% 0.00% 0.50% 0.00%
FON 10.21% 10.66% 4.05% 5.13% 1.02% 0.02% 2.99% 0.66%
KUR 5.06% 6.12% 1.83% 2.05% 0.49% 0.05% 5.86% 3.74%
ZDT1 3.79% 2.78% 1.90% 0.94% 0.05% 0.67% 21.65% 0.68%
ZDT2 2.42% 1.74% 1.23% 0.47% 0.11% 0.42% 29.26% 0.77%
ZDT3 3.46% 2.42% 1.92% 1.48% 0.06% 0.85% 22.98% 2.64%
ZDT4 0.58% 0.41% 0.40% 0.21% 0.26% 0.73% 12.25% 0.53%
ZDT6 0.97% 0.67% 0.62% 0.20% 0.00% 0.72% 19.00% 0.60%
WFG1 1.11% 0.60% 1.13% 0.30% 0.00% 3.96% 16.16% 2.11%
WFG2 1.81% 1.37% 1.20% 0.75% 0.03% 1.02% 17.45% 2.64%
WFG3 7.48% 4.75% 4.22% 1.71% 0.05% 0.45% 16.89% 1.72%
WFG4 8.34% 5.25% 4.70% 2.50% 0.08% 0.45% 15.81% 3.81%
WFG5 10.46% 8.00% 5.06% 4.12% 0.09% 0.31% 18.16% 2.13%
WFG6 4.88% 3.32% 2.57% 1.49% 0.04% 0.51% 17.97% 2.26%
WFG7 10.22% 7.97% 5.86% 3.02% 0.08% 0.21% 17.29% 2.86%
WFG8 2.68% 2.36% 1.37% 0.56% 0.09% 0.56% 18.69% 2.43%
WFG9 12.04% 8.51% 6.84% 4.64% 0.48% 0.19% 13.86% 3.17%
VNT1 7.65% 2.13% 9.01% 1.38% 0.93% 0.00% 1.65% 6.64%
VNT2 6.44% 4.27% 4.39% 2.88% 3.07% 0.01% 2.41% 8.61%
VNT3 7.24% 10.18% 2.70% 3.94% 2.19% 0.02% 0.65% 11.85%
DTLZ1 1.25% 0.41% 1.49% 0.30% 0.55% 0.74% 2.78% 1.08%
DTLZ2 9.55% 7.45% 7.66% 2.77% 0.34% 0.08% 2.93% 3.03%
DTLZ3 1.22% 0.68% 1.10% 1.08% 0.97% 2.26% 6.44% 2.08%
DTLZ4 9.53% 7.85% 6.56% 2.52% 0.36% 0.14% 5.81% 3.57%
DTLZ5 9.11% 7.52% 5.84% 2.82% 0.17% 0.13% 5.10% 12.68%
DTLZ6 0.01% 0.50% 2.35% 0.31% 0.05% 0.66% 5.29% 2.50%
DTLZ7 10.07% 3.72% 5.77% 1.22% 0.13% 0.19% 12.14% 8.46%
CDTLZ2 9.88% 5.62% 9.34% 1.46% 0.35% 0.07% 2.63% 3.70%
IDTLZ1 1.22% 0.37% 0.68% 0.33% 0.86% 0.46% 6.13% 0.95%
IDTLZ2 9.96% 5.21% 7.11% 1.54% 0.55% 0.06% 1.38% 9.79%
SDTLZ1 1.25% 0.37% 1.38% 0.43% 0.56% 0.73% 8.81% 1.01%
SDTLZ2 9.45% 5.72% 7.62% 3.68% 0.33% 0.31% 11.58% 3.38%
MPDMP 1.17% 0.65% 1.27% 0.11% 0.01% 0.01% 0.58% 0.91%
MLDMP 0.11% 0.17% 0.28% 0.00% 0.08% 0.01% 0.78% 0.36%
DTLZ1-5 7.53% 0.22% 19.18% 0.05% 0.42% 0.11% 1.28% 1.47%
DTLZ2-5 12.55% 2.40% 18.23% 1.14% 0.17% 0.02% 1.13% 2.69%
Average 5.424% 3.586% 4.240% 1.561% 0.421% 0.461% 9.366% 3.176%

– Pareto-based archivers NSGA-II and SPEA2 generally perform poorly as
the density-based criterion can lead to the dominated solutions frequently
to enter the archive.

– Inserting convergence information into the density-based criterion of Pareto-
based archivers can reduce the deteriorations. This has been shown in NSGA-
II+ǫ and SPEA2+SDE.

– For indicator-based and decomposition-based archivers, Pareto dominance
should still be necessary as the first criterion to select solutions. This can be
inferred from the comparison between MOEA/D and NSGA-III.
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4 Concluding Remarks

An archiver with theoretical quality guarantee is of high importance. It can
improve search efficiency, prevent performance oscillation, and return a subset
of the Pareto optimal solutions found so far. This paper has made a practical
investigation of the optimality/monotonicity properties of eight representative
archivers on 37 test instances. The results have shown that deterioration happens
most of the time, and some archivers only return a population with less than
half solutions being optimal.

It is worth pointing out that our investigation is based on the whole EMO
algorithms rather than on archiving methods alone. That is, each EMO algorithm
generates a different sequence of solutions that is presented to its archiving
component. As such, the results (OR and DR) could be affected by the algorithm
performance of producing solutions. An investigation of archiving methods under
the same input sequence of solutions, independent of any EMO algorithm, can
better tell their differences, which will be our next work.

Finally, note that we cannot say that a population consisting of a significantly
large proportion of the current Pareto optimal solutions already well converges
into the Pareto front, as it might be in the “middle” of the evolution, for exam-
ple, for the Pareto-based algorithms on WFG1 and DTLZ3. But, an algorithm
with a low percentage of the Pareto optimal solutions should have lots of room
to be improved. In this regards, MOEA/D is an interesting example, in which
good solutions can be easily generated but easily discarded as well. A combina-
tion of MOEA/D and SMS-EMOA could be potentially promising, in the sense
that MOEA/D is responsible for generating solutions and updating population,
while an extra archive based on the archiving method of SMS-EMOA is used
to keep solutions. This would lead to different archiving methods for the differ-
ent purposes in EMO — internal archiving for fostering exploration and external
archiving for reducing deterioration, as suggested in [4, 5]. It is worth mentioning
that a similar algorithm framework, called bi-criterion evolution [30], has been
presented recently, where MOEA/D can mainly be used to generate solutions
and a Pareto-based archiving method is used to keep solutions. However, this
cannot prevent the occurrence of deterioration as the Pareto dominance relation
and individuals’ crowding degree are used to maintain the archive just like in
NSGA-II and SPEA2.
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23. Mario Köppen and Kaori Yoshida. Substitute distance assignments in NSGA-II for
handling many-objective optimization problems. In Evolutionary Multi-Criterion
Optimization, pages 727–741. Springer Berlin / Heidelberg, 2007.

24. Frank Kursawe. A variant of evolution strategies for vector optimization. In
International Conference on Parallel Problem Solving from Nature, pages 193–197.
Springer, 1990.

25. Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. Combining
convergence and diversity in evolutionary multiobjective optimization. Evolution-
ary Computation, 10(3):263–282, 2002.

26. Marco Laumanns and Rico Zenklusen. Stochastic convergence of random search
methods to fixed size Pareto front approximations. European Journal of Opera-
tional Research, 213(2):414–421, 2011.

27. Miqing Li, Crina Grosan, Shengxiang Yang, Xiaohui Liu, and Xin Yao. Multi-
line distance minimization: A visualized many-objective test problem suite. IEEE
Transactions on Evolutionary Computation, 22(1):61–78, 2018.

28. Miqing Li, Shengxiang Yang, and Xiaohui Liu. Shift-based density estimation for
Pareto-based algorithms in many-objective optimization. IEEE Transactions on
Evolutionary Computation, 18(3):348–365, 2014.

29. Miqing Li, Shengxiang Yang, and Xiaohui Liu. A test problem for visual inves-
tigation of high-dimensional multi-objective search. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), pages 2140–2147, 2014.

30. Miqing Li, Shengxiang Yang, and Xiaohui Liu. Pareto or non-pareto: Bi-criterion
evolution in multiobjective optimization. IEEE Transactions on Evolutionary
Computation, 20(5):645–665, 2016.
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