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Compact interferometers, called phasemeters, make it possible to operate over a large range while
ensuring a high resolution. Such performance is required for the stabilization of large instruments
dedicated to experimental physics such as gravitational wave detectors. This paper aims at presenting
the working principle of the different types of phasemeters developed in the literature. These devices
can be classified into two categories: homodyne and heterodyne interferometers. Improvement of
resolution and accuracy has been studied for both devices. Resolution is related to the noise sources
that are added to the signal. Accuracy corresponds to distortion of the phase measured with respect
to the real phase, called non-linearity. The solutions proposed to improve the device resolution and
accuracy are discussed based on a comparison of the reached resolutions and of the residual non-
linearities. Published by AIP Publishing. https://doi.org/10.1063/1.5052042

I. INTRODUCTION

Relative motion between two points can be measured by
a number of transducers, converting the variation of a phys-
ical quantity into some useful voltage. Some examples of
commonly used sensors are capacitive sensors, linear variable
differential transformers (LVDT), and eddy current sensors.
For each application, the adequate choice depends on many
criteria, including resolution, dynamic range, space available,
price, and compatibility with operating environments. While
based on very different working principles, all of these sensors
are fundamentally limited by a trade-off between resolution
and dynamic range. In other words, none of them can pro-
cess both small and large quantities. Moreover, even the most
sensitive of these techniques have limited resolution and are
not reliable in operating environments with stray magnetic
fields.

These two aforementioned limitations prevent them from
being used in many applications like high precision machine
tools or production chains.

Interferometers are an excellent alternative due to their
high sensitivity, non-contact measurement, and immunity
to magnetic couplings. Conventional interferometers have a
small working range, but when the optical phase is measured
in two quadratures, the output can be unwrapped creating a
large working range optical-phasemeter.

Compact optical-phasemeters are of increasing interest to
physics and precision engineering communities. In this paper,
we review a range of devices that can be called “compact,”
which implies that the interferometer is an enabling tool and
that either the complete system or an optical head can be
deployed onto an apparatus. While not all reviewed studies
clearly specify the size and form of the interferometer, we
have attempted to apply these two criteria to determine their

a)Electronic mail: jwatchi@ulb.ac.be

relevance. For convenience, we often refer to the complete
signal chain from the interferometer to the unwrapped phase
readout simply as a phasemeter.

Many prototypes of compact interferometers have been
developed for two principal types of applications. The first
application is as a simple position sensor. Such sensors have
been used in gravitational wave detectors for local damping1

or on the Intra-vacuum Seismic Isolators (ISI).2,3 The second
application is in the development of high-resolution inertial
sensors, where one mirror is fixed on an inertial mass.4 These
sensors are useful for the stabilization of gravitational wave
detectors,5,6 gravimeters,7–11 or particle accelerators.12

The objective of this paper is to provide a comparison
of compact interferometers in terms of resolution, dynamic
range, and linearity. The focus is on devices with a work-
ing range of more than one fringe. The paper starts with a
brief section explaining the working principle and limitations
of conventional two-beam and resonant interferometers. It is
followed by Secs. III and IV dedicated to homodyne- and
heterodyne-phasemeters. For each of them, the working prin-
ciple is presented and several examples from relevant literature
are described.

Sections V and VI discuss problems that are common to
all types of phasemeters and counter measures that mitigate
these problems. Section V discusses the limited accuracy due
to the non-linearities in the phase measurement. Section VI is
a short review of the main noise sources in interferometers.
The paper concludes with historical trends and a discussion
on the dimensions of compact interferometers.

II. SMALL RANGE INTERFEROMETERS

The focus of this paper is on large-range interferome-
ters, capable of tracking the position of a target mirror with
resolution much smaller than a wavelength over a working
range of (much) more than a wavelength. In this section, the
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key interferometry concepts and nomenclature are introduced
with examples for standard small-range (sub-wavelength)
interferometers. We consider two-beam interferometers, such
as Michelson, Mach-Zender, and Sagnac interferometers, sep-
arately from resonant (or multi-bounce) interferometers. The
function of actuators to increase the working range of devices
is briefly introduced.

The standard nomenclature for analysing laser-
interferometers is a form of short-hand that simplifies the
electric field into a single-sided, complex function that is inte-
grated over the transverse profile and re-normalised such that
the power, P, of a beam is the mod-square of the field, E.
The complex form is especially useful since the field can be
represented by phasors and interference as the vector sum of
phasors. Mirrors (and beam splitters) can then be treated as
having a field reflectivity, r, that is the square root of the power
reflectivity, R, and a field transmission of t =

√
T =
√

1 − R.
We use the convention that a phase shift of i is gathered
after transmission through an interface. An excellent introduc-
tion to interferometry, including nomenclature, can be found
in Ref. 52.

The transverse profile of the electric field is not con-
sidered in this section, an approximation that is valid when
both the paraxial approximation holds and when all interfer-
ing beams have significant spatial overlap efficiency, greater
than ∼10%. Details on transverse modes, and their inter-
actions with resonators, can be found in, for example,
Refs. 13–15.

A. Two-beam interferometers

For the Michelson interferometer shown in Fig. 1, the
output field is

Eout = irtEin(eiφx + eiφx ), (1)

where φx ,y is the round-trip phase acquired in the respective
arm. It is useful to express this in terms of the sum (φs) and
difference (φd) of the phases such that

φx =
φs + φd

2
, φy =

φs − φd

2
. (2)

Assuming the beam splitter is lossless and has R = T = 0.5, the
output power, Pout = |Eout|2, as a function of the input power,
Pin, is

FIG. 1. A simple Michelson interferometer with input and output fields Ein
and Eout, with a (non-polarising) beamsplitter (BS) of power-reflectivity R,
and arms of length Lx and Ly. The power measured on the photodiode (PD)
is dependent on the phase shift acquired in the arms.

Pout =
Pin

2
(1 + cos(φd)). (3)

This dependence of power on the differential phase applies
generally to two-beam interferometers, including Sagnac and
Mach-Zender devices, although the fringe visibility may be
affected by the beam splitter ratio. However in some config-
urations, such as the Sagnac interferometer, the coupling of
displacement (or laser frequency) to the differential phase is
substantially different, and the analysis below is limited to the
Michelson interferometer.

With Eq. (3), we see that the output power is independent
of the sum (or common) arm length. For a monochromatic
light source with wavelength λ, and wavenumber k = 2π/λ,
the optical phase difference is simply

φd = 2k∆L, (4)

proportional to the arm length difference, ∆L = Lx − Ly.
Since the output power is sinusoidal, at the turning points,
the sensitivity to length goes to zero and the direction of
motion becomes ambiguous. For these reasons, normal two-
beam interferometers that measure the output power have a
small operating range of less than half a wavelength. How-
ever, Secs. III and IV will show that it is possible to extract
the optical phase by using a combination of additional optical
components and signal processing to produce a phasemeter
instead of an interference-meter.

Since even narrow linewidth lasers are not monochro-
matic, and frequency fluctuations are often a significant source
of noise in many precision interferometry experiments, it is
useful to determine how frequency fluctuations couple to the
optical phase. We can do this by separating the wavenumber
into an average component, k0, and a time-fluctuating com-
ponent, δk. The length difference is similarly divided into
constant, L0, and fluctuating δL components. In both cases,
the time-fluctuating component is assumed to be much smaller
than the constant value. Combining these terms, the differential
phase is now

φd = 2(k0 + δk)(L0 + δL) (5)

≈ 2(k0L0 + k0δL + δkL0), (6)

where the three terms in the second line are the static offset of
the interferometer (sometimes called the “operating point” or
“tuning”), the length signal, and the frequency fluctuations
(δk = 2πδf /c for frequency fluctuations δf ) coupling
to the differential phase. For a commercial, free-running
Nd:YAG 1064 nm laser, the frequency noise is approximately
104 Hz/

√
Hz at 1 Hz, with a characteristic 1/f slope.16

B. Optical resonators

In its standard form, an optical resonator consists of two
mirrors, as shown in Fig. 2. It is conceptually simple to analyse
a resonator as a multiple “bounce” system.17 In Fig. 2, light
is transmitted through the mirror, circulates around the cav-
ity, and interferes with the time-delayed incoming light. The
field is vector-summed until a steady-state solution is reached.
Resonator quality can be quantified by the effective number of
bounces required to reach steady-state, but it is most typically
defined by the finesse, F, which is the ratio of the linewidth (or
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FIG. 2. A 2-mirror cavity forming an optical resonator. The labels indicate
the input, circulating, transmitted, and reflected optical fields. The two mirrors
have power reflectivity R1 and R2.

full-width at half-maximum height, FWHM) of the resonator
to the free spectral range (FSR)52

F=
FSR

FWHM
≈
π
√

r1r2

1 − r1r2
, (7)

where the approximation is valid for two-mirror resonators
with high reflectivity mirrors, T1, T2 � 1.

If the phasors for all the packets inside the cavity add
coherently, the circulating field will increase until the power
lost in each round trip is equal to the input power. This con-
dition defines resonance—when the circulating field is at its
maximum for a given input field.

There are two requirements for a cavity to be on reso-
nance: the field must self-reproduce spatially (the transverse
mode condition) and the circulating field must interfere
constructively with the input field (the longitudinal mode
condition).

The response time (the inverse of the linewidth) of small
resonators is typically very fast (10−6 to 10−10 s) compared
with the time scales in most sensing applications (typically
longer than 10−5 s), and as such the resonator can be assumed
to be in a steady-state. The cavity fields can then be determined
using a set of self-consistent equations.52 These equations are
derived in an intuitive way from the fields shown in Fig. 2. Note
that the input and reflected fields are defined immediately to
the left of R1, propagating to the right and left, respectively.
The circulating field is defined immediately to the right of R1,
propagating to the right. For a lossless system with round-trip
phase φ, the fields are

Erefl = r1Ein + ir2t1Ecirceiφ , (8)

Ecirc = it1Ein + r2r1Ecirceiφ , (9)

Etrans = it2Ecirceiφ/2, (10)

where rn =
√

Rn, tn =
√

1 − Rn, n = 1, 2. Solving in terms of the
input field gives

Erefl =Ein
r1 − r2eiφ

1 − r1r2eiφ
, (11)

Ecirc =Ein
it1

1 − r1r2eiφ
, (12)

Etrans =Ein
−t1t2eiφ/2

1 − r1r2eiφ
. (13)

The upper plot in Fig. 3 shows the transmitted and
reflected power for low- and high-finesse cavities (30 and
300, respectively). As with the two-beam interferometer, if

FIG. 3. The reflected and transmitted power for lossless, impedance-matched,
low- and high-finesse cavities (30 and 300, respectively) along with the error
signal produced with the Pound-Drever-Hall technique.

one observes only the power, there is a loss of signal and
ambiguity at the turning point. It is possible to operate off-
set from the centre of resonance (sometimes called side-fringe
or mid-fringe readout) such that the power has a well-defined
gradient.18

The most common technique used in precision cavity
readout is the Pound-Drever-Hall (PDH) technique,19,20 where
the laser beam is phase-modulated at radio frequencies pro-
ducing an “error” signal that is dependent on the optical phase
when the laser is close to resonance. Typical PDH error signals,
calculated using equations in Sec. IV of Ref. 20, are shown in
the lower plot in Fig. 3, although the low-finesse case is not
strictly PDH since the modulation frequency is comparable to
the cavity linewidth.

Equations (11) and (13) relate the outgoing fields to the
optical phase of the resonator, and this can be converted into
power and length in a similar fashion to a two-beam inter-
ferometer. It is also common to measure the laser frequency
(or wavelength) rather than the phase,21–23 although rela-
tive length fluctuations can be simply equated to the relative
frequency and relative wavelength fluctuations by

δL
L
=
δf
f
=
δλ

λ
, (14)

assuming that δL � L. Long cavities are therefore better fre-
quency discriminators, while short cavities are less effected by
frequency fluctuations.

Optical resonators are commonly employed in sensing
applications where the multiple bounces from the mirrors
amplify the optical phase-shift. They can also be used to
simplify the optical construction by reducing the number of
elements. Sensing resonators can be free-space,24 where the
displacement of one optic changes the path-length, or solid-
state (such as fibre-resonators), where the dominant effect is
typically stress-induced refractive index changes. The increase
in sensitivity compared with two-beam interferometers comes
at the expense of the working range, which is smaller by a
factor of approximately F.
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C. Actuators to increase working range

In most practical applications, small-range interferomet-
ric sensors are operated using closed-loop feedback to hold
them within their working range. There are several possible
mechanisms. The length of the reference arm can be altered,
for example, with a piezo-electric transducer.25 The readout
of the target mirror position is then encoded in the actuation
voltage to the piezo, and the dynamic range is limited by the
driving electronics, which can be up to 9 orders of magnitude.

The laser frequency (or wavelength) can also be con-
trolled, and the phase change of the interferometer is extracted
in the frequency actuation. A recent example uses a laser
with a traceable wavelength calibration to link acceleration
measurements with existing standards.26

Alternatively, it is possible to act on the target mirror, cre-
ating a complete device that is operationally similar to force-
feedback seismometers.27,28 In all these cases, the dynamic
range and linearity of a complete system is limited by the actu-
ation mechanism, and any intrinsic noise in the actuator must
be considered. In contrast, phasemeters use fringe-counting
in signal processing, which in principle has a dynamic range
only limited by numerical precision and the tracking speed
of the fringe-counter. This allows phasemeters to use the full
dynamic range of the readout electronics [typically limited by
the ADC (analog to digital converter)] for each fringe.

The use of actuators is important for extending the range
of interferometric readout, but the limitations, linearity, and
range of closed-loop actuator-readout are beyond the scope of
this review. Sections III–V focus on optical readout based on
phasemeters that have an inherently large working range.

III. HOMODYNE PHASEMETERS

To increase the working range of a two-beam interferome-
ter, the phase must be unambiguously extracted over more than
one cycle, which is not possible by using Eq. (3). To increase
the interferometer dynamic range, the general idea consists of
creating two signals in quadrature, P1 and P2, given by

P1 =P0(1 + cos(φd)), (15)

P2 =P0(1 + sin(φd)), (16)

where P0 is determined by the optical power and the fraction
of it that reaches the sensors. Then, an arbitrarily large phase
can be calculated using

φd = a tan 2((P1 − P0), (P2 − P0)). (17)

Since the unwrapping occurs in signal processing, the
fringe-counting is noiseless as long as the direction of
the wrapping is known. The a tan 2 function provides the
unwrapped phase assuming that it is evaluated on a circle.
For the rest of this section, we will consider the ideal case
that corresponds to two perfect quadrature signals. Phase shift
issues and any other causes of circle distortion are discussed
in Sec. V.

In this section, different methods to generate quadrature
signals are presented. The quadrature signals can be carried
by the two polarization states of the beam of by two transverse

modes of the intensity beam profile. The advantages and draw-
backs of these methods are mainly related to the resolution of
the interferometer, which is the smallest physical quantity that
a sensor can measure.12 Here, the smallest physical quantity
is the noise of the measurand. The sources of noises will be
introduced in Sec. VI.

A. Quadrature signals carried by the polarization
states: Additional wave plates

Two quadrature signals can be generated by imposing a
phase shift of π/2 between the two polarization states of a
beam, thanks to a waveplate. The phase shift of π/2 can be
obtained either by passing once through a λ/4 waveplate or
twice through a λ/8 waveplate. The implementation of these
two options to obtain quadrature signals is detailed below.

1. λ/8 wave plate

A λ/8 wave plate is placed in one of the interferome-
ter’s arms to provide a differential (round-trip) phase shift of
π/2 between two linear polarizations.4,29,30 In fact, this creates
two co-located Michelson interferometers, one in each polar-
ization, which measure the target mirror. The outputs of these
interferometers are then separated by using a polarizing beam
splitter.

A schematic representation is shown in Fig. 4 where the
dot on the beam indicates the s-polarized axis and the perpen-
dicular line, the p-polarized axis. The beam is split by a non-
polarizing beam splitter and then one polarization is delayed
in the x-arm. After recombination at the beam splitter, the
two polarizations are measured independently at photodiodes
1 and 2.

An interferometer of this kind has been mounted in a seis-
mometer.4,30 It has a resolution of around 1 pm/

√
Hz at 1 Hz.

Several modifications of the optical path have been introduced
to reduce noises and hence improve the interferometer reso-
lution. These structure modifications are discussed hereafter.

FIG. 4. A homodyne phasemeter. The λ/8 wave plate in the x-arm has its
fast axis aligned with the s- (or p-) polarisation, effectively creating two
co-incident Michelson interferometers with π/2 different arm lengths. The
polarising beamsplitter (PBS) splits the two outputs onto photodiodes PD1
and PD2.
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a. Extra photodiodes to delete the DC component. Fringe
counting becomes complicated when the sinusoidal signals
are not oscillating around zero. Several methods have been
implemented to compensate this shift, but they are difficult
to apply for noise with a very low frequency.29 In Ref. 29,
three polarization states are measured by using two polarizing
beam splitters instead of one: two out of phase polarizations
and one orthogonal polarization are measured. If we do not
consider a gain mismatch between sensors, the three signals
can be written as follows:

PPD1 =P0(1 + sin(φd)), (18)

PPD2 =P0(1 + cos(φd)), (19)

PPD3 =P0(1 − cos(φd)). (20)

Thanks to a correct subtraction of the sine signal to the two
others, the two resulting signals are in quadrature and the DC
component is removed

P1 =PPD1 − PPD2 =
√

2P0 sin(φd −
π

4
), (21)

P2 =PPD1 − PPD3 =
√

2P0 sin(φd +
π

4
). (22)

As the phase is obtained from the a tan 2 of the ratio between
these two signals, the results become insensitive to the input
power fluctuations. Consequently, the resolution is not deteri-
orated even when the laser intensity drops down to 10%.29

The use of additional photodiodes also has certain advan-
tages for the reduction of non-linearities which is discussed in
Sec. V B 2.

b. Multiple-reflections in the measurement arm. One way
to improve the resolution is to increase the number of reflec-
tions on the target mirror by slightly tilting the mirror and
placing a fixed mirror in front of it (see Fig. 5). If the measure-
ment mirror moves along its normal axis, represented by δx
in Fig. 5, the phase change occurs at each reflection.31 Conse-
quently, the phase measured is proportional to Gδx, where G
corresponds to the number of reflections on the moving mirror
(see Fig. 5).

Consequently, the smallest phase increment measurable is
proportional to δx/G. It means that the resolution is improved

FIG. 5. A homodyne phasemeter using a λ/8 wave plate and multiple reflec-
tions on the target mirror to enhance sensitivity. Adapted from the experimental
setup figure in Ref. 31.

by a factor G in comparison with a single-bounce inter-
ferometer. In Ref. 31, this assumption has been verified
experimentally: a comparison between a simple Michelson
interferometer and a 60 reflection version has been presented.
Around 2 Hz, the new configuration resolution is 20 times bet-
ter than the classical version. At high frequencies, an improve-
ment of the resolution by a factor 60 is reached. The resolution
can still be improved because while using multiple-reflections
in one arm, the phase noise related to the unequal optical arm
length increases, which is introduced in Sec. VI A 2.

To increase the resolution, the number of reflections must
be as large as possible. However, the beam should not over-
shoot the size of the mirror. An optimum number of reflections
can be adjusted as explained in Ref. 32. In addition, the num-
ber of reflections cannot be too large to avoid being beyond the
laser coherence. In order to maintain the coherence between
the two paths, a Michelson interferometer with two multiple-
reflections arms has been studied.33 The two mirrors are rotated
with the same angle as they are coupled, thanks to a gear mech-
anism. Because the two beams are reflected the same number of
times, the intensity losses due to the multiple bounces are also
identical. In comparison, in the system with a single multiple-
reflection arm, the intensity loss must be estimated because it
reduces the fringe visibility.33

Finally, for a large number of reflections, the environ-
ment can induce phase jumps. Therefore, a compromise must
be found between an increase in resolution and a loss of
coherence. All these aspects and their impact on the delay
are discussed in articles31,33 describing multiple-reflection
interferometers.

c. Other configurations. Some additional modifications
can be found in the literature. Their impact on the resolution
is not clear or has not been verified experimentally. In Ref.
29, it is suggested that a lens can be used to reduce the beam
motion across the active area of the photodiode. Moreover, in
Refs. 34 and 35, the polarizing beam splitter used to separate
the two polarizations is replaced by a Wollaston prism. With
this prism, the two polarization states are emitted in the same
plane, but their direction varies with a defined angle.

2. λ/4 wave plate

Similarly, a λ/4 wave plate can also introduce the required
phase shift in the system. The phase shift is generated either
before entering the two arms1,36–38 or just before the signals are
measured.39,40 In the first case, the beam polarization state is
rotated before and after entering the interferometer so that both
polarizations enter the two arms: one polarization will carry the
phase shift π/2 through the whole optical path. In the second
case, after splitting the beam into two, thanks to a beam splitter,
the phase of one part is delayed by π/2 (see Fig. 6). Here,
the first PBS ensures the beam to have a clean polarization
state, and the λ/2 wave plate adjusts this state to ensure that
PBS2 splits the beam into two orthogonal polarization states.
Note that the configuration in Fig. 6 shows more than two
photodiodes. The additional photodiode is used to delete the
DC component as already explained in Sec. III A 1 a.

Some examples of resolution obtained with the homo-
dyne quadrature interferometers mentioned above are shown
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FIG. 6. Diagram of the homodyne Michelson interfer-
ometer with a λ/4 waveplate.

in Table I. Even though the use of a λ/8 waveplate eases the
optical path, this product is difficult to obtain as this product
is not generic. However, the improvements developed for the
λ/8 configuration can be easily implemented on the λ/4 one.
For example, the use of additional photodiodes to delete a DC
component presented in Sec. III A 1 a has been used in Ref.
40 where the π/2 phase shift is induced by means of a λ/4
waveplate.

3. Using a special beam splitter coating

In order to avoid the unwanted extra reflections that appear
when adding wave plates, an interferometer that uses beam
splitter plates and corner cubes has been developed46 (see
Fig. 7).

In this setup, the BS is replaced by two slightly wedged
plates coated with a three-layer metal film.46 The beam phase
is delayed differently when it is reflected or when it is trans-
mitted through the plates.47 With a careful choice of the plate

TABLE I. Chronological evolution of homodyne quadrature interferometers’
resolution and other properties. All devices cited use a waveplate to generate
a phase shift of π/2 between the two polarization states. The resolution is
given in Amplitude Spectral Density (ASD) for the interferometers found in
the literature and in Root Mean Square (RMS) for the commercial products.
The area corresponds to the surface occupied by the interferometer, without
the laser source and the data acquisition system.

Resolution (ASD) Wavelength Area
Year Device (pm/

√
Hz at 1 Hz) (nm) (cm2)

2008 Ponceau36 1 632.8 27× 27
2009 Pisani31 5 632.8 20× 20
2010 Zumberge41 0.3 632.8 12× 17
2011 Aston1 5 850 8.7× 4
2012 Acernese42 1 632.8 13.4× 13.4
2015 Bradwshaw37 420 1550 28× 16
2016 Watchi38 1 1550 14× 11
2017 Cooper40 0.1 1064 17× 10

Commercial Resolution Wavelength Area
Year product RMS (pm) (nm) (cm2)

2017
Renishaw43

38.6 632.8 9.8 × 5
RLD10

2018
Zygo44

60 633 60 × 34
DynaFiz

2018
Dayoptronics45

80 632.8 25 × 12.7
AK-40

coating, the phase shift between the two paths is π/2 and the
two signals are in quadrature. In Ref. 47, a method to pro-
duce the coating is explained. However, the authors can only
guarantee that the phase difference between the two signals is
included in the range 90◦ ± 10◦ which corresponds to a rela-
tive uncertainty of more than 10%. Consequently, such a beam
splitter plate cannot provide the phase shift with sufficient pre-
cision to ensure that this option can replace the use of wave
plates.

B. Quadrature signals carried by transverse
electromagnetic modes: Tilted mirror

In order to have quadrature signals, the previous method
aims to induce a phase shift of π/2 between the two polarization
states of the beam. A phase shift of π/2 can also be generated
between two modes of the intensity beam profile.48 In fact,
the intensity profile can be seen as a superposition of Trans-
verse Electromagnetic Modes (TEMs).49 When all optics are
well aligned with the cavity of the laser, the intensity distribu-
tion of the beam has a Gaussian profile, defined as the TEM00

mode.50 By slightly tilting the mirror of the interferometer, the
intensity distribution becomes the sum of a TEM00 mode and
a TEM01 mode. When propagating, these modes accumulate
a different phase, called a Gouy phase.49,51 After travelling,
the two mode Gouy phases have acquired a phase shift of π/2.
Consequently, two quadrature signals are measured by placing
one photodiode at the maximum intensity of each mode. A dia-
gram of such a device is shown in Fig. 8. The beam expander
plays two roles. First, it allows being in the condition where the
phase shift between the two modes is π/2.49 Second, it eases
the positioning of the two photodiodes.

FIG. 7. Diagram of the homodyne Michelson interferometer with a special
BS coating.
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FIG. 8. Diagram of the homodyne Michelson interferometer with a tilted
mirror.

No resolution using this method could be found in
the literature. Consequently, its performance will not be
discussed.

IV. HETERODYNE PHASEMETERS

This section will focus on heterodyne phasemeters; this
class of interferometers uses two frequencies in order to make
displacement measurements. The second frequency is gener-
ated either by an offset phase-locked laser,52,53 through the use
of acoustic-optic-modulators (AOMs),54,55 or using polariza-
tion to separate out the beams with different frequencies.56,57

There are too many different kinds of heterodyne interferom-
eters to explain them in detail, as such this section will focus
on the basic principles behind heterodyne interferometry and
go into detail on some specific types of devices.

A. Principle of operation

An example of a simple heterodyne interferometer is
shown in Fig. 9, where a single laser is split into two paths
by a non-polarising beam splitter. One of the arms includes an
AOM that shifts the laser frequency by Ω. When the beams
interfere, the signal is measured by a photodiode. The two
beams acquire phase shifts corresponding to the path lengths
of the two arms. However, unlike homodyne interferometers,
the beams also pick up an additional phase corresponding to

FIG. 9. A simple diagram of a heterodyne interferometer.

the difference in laser frequency. Assuming an input electric
field of E0, and using the nomenclature found in Sec. II A, the
output electric field is

Eout = irtE0eiφs
(
ei(ωt+Ωt+φd/2) + ei(ωt−φd/2)

)
. (23)

If we multiply the output electric field by its complex conju-
gate, the output power is

Pout =
Pin

2
(1 + cos(Ωt + φd)). (24)

It can now be seen that the output contains a beat-note at
the difference frequency Ω and that the differential phase of
the arms, φd, is encoded in the phase of this beat-note.

Unlike homodyne interferometers, heterodyne devices
only require a single photodiode in order to measure the differ-
ential distance between the two arms across multiple optical
fringes, as the beat-note can be demodulated with both sine and
cosine local oscillators, which is known as I/Q demodulation.

For the example given in Fig. 9, the signal used by the
AOM can be used to demodulate the photodiode output signal
as shown in Ref. 58. For the “in-phase,” I, term, we demodulate
with a cosine

I =
Pin

2
(1 + cos(Ωt + φd)) cos(Ωt) (25)

=
Pin

4
(2 cos(Ωt) + cos(2Ωt + φd) + cos(φd)). (26)

For the “quadrature,” Q, term, the local oscillator is phase-
shifted by 90◦ and we demodulate with a sine

Q=
Pin

2
(1 + cos(Ωt + φd)) sin(Ωt) (27)

=
Pin

4
(2 sin(Ωt) + sin(2Ωt + φd) − sin(φd)). (28)

Terms with multiples of Ωt are removed with an appropri-
ate low-pass filter, leaving only the final term containing the
optical phase. The frequency of the low pass filter and the
heterodyne frequency are interlinked, the value of the former
effectively sets the latter’s frequency. The optical phase can
then be unambiguously extracted over many wavelengths by
(unwrapping) the output of a 4-quadrature arctangent, as in the
homodyne phase meter case as shown in Sec. III.

Heterodyne interferometers are sometimes classed as AC
phasemeters, as the differential optical phase is encoded in the
phase of the beat frequency between the two lasers, as shown
in Eq. (24). This allows the interference to be measured at the
modulation frequency, typically in the kHz to MHz region,
away from low-frequency noise sources that may couple into
the measurement,59 such as laser intensity noise and electronic
“1/f ” noise, improving low-frequency performance.

The drawback is that they use additional optical and
opto-electronic components to generate the second frequency,
typically resulting in increased complexity, expense, and size
compared with homodyne phasemeters. Moreover, a suitable
lowpass filter needs to be chosen in accordance with the
demodulation frequency. These must be chosen appropriately
to remove the high frequency beat terms while still allowing
the optical phase to be read out unattenuated.
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B. Comparison of devices
1. Single photodiode devices

Early heterodyne interferometers, as the one shown in
Fig. 9, operated in the MHz-GHz frequency band, but over time
similar levels of resolution and reductions in non-linearity have
been achieved using lower modulation frequencies. In 1970,
HP released a commercial heterodyne interferometer boasting
an accuracy of 10−8 m, running at a modulation frequency of
a 2 MHz.60 In the work of de la Rue et al.,61 they employed
a Bragg cell heterodyne interferometer to measure acoustic
waves and they achieved a resolution of 0.2 pm/

√
Hz at 2 MHz.

Monchalin62 used a similar optical layout but with a commer-
cial available lock-in amplifier and achieved a detection limit
of 60 fm/

√
Hz at 1 Hz. Royer and Dieulesaint63 improved on

this resolution and presented a compact (8 × 5 × 3 cm) het-
erodyne interferometer, with a peak resolution of 30 fm/

√
Hz

at 1 Hz. This device offers improvements in terms of ease of
alignment and improved stability due to compactness of the
optics.

Martinussen et al.54 presented a heterodyne interferom-
eter with pico-meter resolution operating in the 0-1.2 GHz
regime to measure the properties of capacitive micro-machined
ultrasonic transducers and has a peak resolution of 4 pm in
this range. Here, the second laser frequency is generated in the
reference arm of the interferometer. Leirset et al.64 improved
upon this design by focusing the beam on the input of the
AOM and reported a significant resolution improvement of
7.1 fm/

√
Hz at 21 MHz. In the work of Willemin et al.,65 a

heterodyne interferometer was proposed to measure vibrations
in the inner ear, and the device used in these experiments has
a resolution of 30 pm/

√
Hz at 1 Hz.

2. Reference photodiode devices

Heterodyne phasemeters can achieve exceptional resolu-
tion at lower frequencies than those presented above by using a
reference photodiode, in addition to the signal photodiodes, to
increase common-mode rejection. Polarization or frequency
shifts that occur in the interferometer, but outside the mea-
surement arms, can be measured and cancelled. This can be
achieved by de-modulating the signal photodiode (PD2 in
Fig. 10) with the output of a reference photodiode (PD1 in
Fig. 10), suppressing common fluctuations in the base-band
output.66 An alternative and equivalent method is to indepen-
dently extract the phase of the light on the two photodiodes and
subtract them. These two approaches provide the same result,
although the second is conceptually simpler.

The LISA Pathfinder’s (LPF) optical readout, shown in
Fig. 11, employs the second technique. The power on the refer-
ence photodiode has a beat-note at the difference frequency and
a time-fluctuating phase that is common to all interferometers,
φc, due to fluctuations on the input beams

Pref ∝Pin(1 + cos(Ωt + φc)). (29)

If we then follow the path corresponding to the interfer-
ometer that measures the position of the first test mass, the x1
photodiode, the signal measured is simply

P=
Pin

8
(1 + cos(Ωt + φc + kL1)), (30)

FIG. 10. The readout scheme of a heterodyne phasemeter with two different
laser frequencies which are spatially separated, adapted from Ref. 37.

where Pin and ω are as before, k is the wave number, and
L1 is the path length between the optical board and the test
mass. Once the two phases have been extracted using the tech-
nique described previously, the common phase between the
two paths can be subtracted, leaving the optical phase caused
by the motion of the test mass. We find the two optical phases
and the resultant phase as follows:

φref =Ωt + φc, (31)

φx1 =Ωt + φc + kL1, (32)

φx1 − φref = kL1. (33)

Schuldt et al.67 reported on a heterodyne interferome-
ter designed as a demonstrator for proof mass translation
onboard the LISA satellites inside a vacuum chamber. With
intensity stabilisation, the interferometer achieves a resolu-
tion of 10 pm/

√
Hz and 2 pm/

√
Hz at 10 mHz and 1 Hz,

respectively.

FIG. 11. LISA Pathfinder employs four independent heterodyne phaseme-
ters. The two frequencies used to generate the beat-note are represented in red
and blue. The “reference” and “x1” paths are highlighted by solid lines, and
the other phasemeters are shown with dashed lines, adapted from Ref. 55.
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LISA Pathfinder is a space based mission to test tech-
nology prior to the launch of the LISA gravitational wave
detector, currently stated for launch in the 2030s. This grav-
itational wave detector aims to detect astrophysical events
at very low frequencies from 1 Hz down to 0.1 mHz. The
optical bench interferometer is composed of four hetero-
dyne interferometers;68 these operate over a large dynamic
range by using the reference interferometer to provide a
main phase reference. This common phase reference sup-
presses low frequency noise sources such as thermal expan-
sion of the optical fibres and noise due to the AOM driver
noise. Unlike the optical configurations presented previously,
the interferometers in LISA Pathfinder do not use polariza-
tion optics to separate out the reference and signal beams
as these may have induced too much low frequency noise
into the interferometer.55 Complete details of the optical
setup are described in Refs. 69–71. The phasemeter on-
board LISA pathfinder has a resolution of 1 pm/

√
Hz at

10 mHz.72

3. Polarization based devices

Devices such as those described in Refs. 56 and 73
employ polarization optics, and frequency and spatially sep-
arated beams (see Fig. 10). In this configuration, the sec-
ond laser frequency is spatially separated from the main
laser frequency and thus does not interact with the refer-
ence or target mirrors. This spatial separation is said to
avoid non-linearities caused by polarization and frequency
mixing. A reference beam is used to track the hetero-
dyne beat-note. The signal at the measurement photodiode,
PD2 in Fig. 10, can then be demodulated with the sig-
nal at PD1, effectively subtracting the common phase. The
reported resolution is 2 and 5 pm/

√
Hz at 1.7 and 5 kHz,

respectively, as in Ref. 56 and 3 pm/
√

Hz at 45 Hz as in
Ref. 73.

Hsu et al.53 presented a Sagnac interferometer, employ-
ing both polarization and a reference photodiode to reach
a peak resolution of 0.5 pm/

√
Hz above 10 Hz. The input

beam is split into two, counter propagate and pick up phase
shifts due to the 2 AOMs in the arms of the interferom-
eter. As well as its impressive resolution, the interferome-
ter also achieves more than 70 dB of common-mode noise
suppression.

In the past ten years, a major focus has been in the reduc-
tion of non-linearities in the readout as shown by Weichert
et al.74 and Pisani et al.31,75 These devices are based on a
single, frequency stabilised laser that is locked to a hyper-
fine structure line in iodine. The device contains two AOMs,
producing two separate frequency shifted beams at 78.4375
and 80 MHz, respectively. These two beams are split once
more forming two interferometers, one using the 80 MHz
beam in the reference arm, with the 78.4375 MHz beam
being used in the signal arm. In the second interferometer,
the roles of these beams are reversed. This method means
that each sub-interferometer can be considered to be inde-
pendent of the other, allowing drift in the AOM driving fre-
quency, which would otherwise couple into the readout to be
eliminated.76

Careful attention in this configuration was made to ensure
that the beat frequency was sufficiently higher than the reso-
nant frequencies of the input fibres and that the laser source was
spatially separated from the interferometer to minimise ther-
mal noise coupling. This configuration achieves a resolution
of 0.03 pm/

√
Hz at 1 kHz.

4. Deep phase modulation

In order to work over many fringes, the beam frequency
can also be modulated by a sinusoidal phase. This sinu-
soidal phase can be applied by two different ways to an
interferometer. First, assuming that in one part of the arms,
the beam propagates in an optical fiber, a piezo is apply-
ing a sinusoidal motion to the optical fibre.77 Second, an
electro-optical amplitude modulator is modifying the laser
frequency with a sinusoidal signal.21,78 The first method is
called Deep Phase Modulation (DPM), while the second one
is called Deep Frequency Modulation (DFM). The phase
is extracted similarly as for the other types of heterodyne
interferometers (see Sec. IV A): the in-phase and quadrature
terms are evaluated and then low-pass filtered to extract the
phase.

For both cases, the methods are combined with a non-
zero optical path length difference interferometer and an
appropriate demodulation algorithm which can be imple-
mented on a FPGA.77 Miniaturisation of the device is thus
possible.

In Ref. 21, it has been proven that DFM suppresses
fiber length noise. The remaining dominant noise source
which cannot be suppressed is the laser frequency noise. To
reduce this noise source, the laser is injected into a stable,
unequal arm length interferometer. In this reference interfer-
ometer, the laser frequency noise can be measured and the
associated optical phase can be subtracted from the DFM
interferometer.21

C. Conclusion

While operating at the beat-note is an advantage in terms
of simplicity of the readout, interferometers that use this tech-
nique are still subject to the same fundamental noise sources.
These include but are not limited to shot noise and length
noise coupling into the readout. The effective contribution of
laser frequency noise can be reduced as shown in Refs. 55
and 56. In terms of low frequency resolution, the phaseme-
ter on board of the LISA pathfinder spacecraft represents the
best heterodyne phasemeter in terms of linearity and sensi-
tivities below 1 Hz; however, the interferometer is expensive
when compared to other devices. The most compact interfer-
ometer reviewed here, with a specified size, is developed by
Royer and Dieulesaint;63 this device has an excellent resolu-
tion of 30 fm/

√
Hz at 70 MHz; however, the device does not

specify its linearity. The most linear interferometer is that pre-
sented by Weichert et al.76 with non-linearities less than 5 pm
and a noise floor of 30 fm/

√
Hz above 150 Hz, though it

lacks the simplicity of devices such as the one presented in
Ref. 64. A summary of the interferometers reviewed and their
subsequent sensitivities are shown in chronological order in
Table II.
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TABLE II. Chronological evolution of the resolution of heterodyne interferometers. The area corresponds to the surface occupied by the interferometer, without
the laser source and the data acquisition system.

Year Device Resolution (ASD) pm/
√

Hz Resolution measurement frequency Heterodyne frequency Wavelength (nm) Area (cm2)

1970 HP60 10 000 . . . 2 MHz 632 38 × 28
1972 de la Rue61 0.2 2 MHz 22.5 MHz 632 . . .

1984 Monchalin62 0.06 1 Hz 40 MHz 632 . . .

1986 Royer63 0.1 >100 kHz 70 MHz 632 8 × 5a

1987 Willemin65 10 1 kHz 1 MHz 632 . . .

2002 Wu56 2 1.7 kHz 80 kHz 632 40 × 40a

2007 Martinussen54 2 3.3 Hz 31 MHz 532 . . .

2009 Schuldt67 10 0.01 Hz 10 kHz 1064 30 × 40
2010 Hsu53 0.5 10 Hz 1.65 MHz 632 . . .

2012 Weichert,76 Pisani79 0.03 1 kHz 1.5625 MHz 532 . . .

2013 Leirset64 0.071 21 MHz 0-1.3 GHz 532 . . .

2016 LPF72 1 10 mHz . . . 1064 20 × 20a

aInterferometer plate only.

V. LINEARITY OF PHASEMETERS

Phasemeters recover the optical phase by evaluating the
four-quadrant arctangent of the ratio between two quadrature
signals. The relation between the real phase and the phase
measured should be linear, but there are often distortions
due to spurious effects in the optics or signal-processing of
the phase. These distortions correspond to non-linearities and
cause periodic errors of the relation between the real phase
and the measured phase. Techniques to reduce and quantify
non-linearities are the scope of this section.

The ideal signal of a homodyne interferometer is a sinu-
soidal shape [Eq. (3)]. For a quadrature homodyne interferom-
eter, it is a circular Lissajous figure [Eq. (16)]. These perfect
patterns are distorted by offset [Fig. 12(a)], quadrature imper-
fections [Fig. 12(b)], and gain imbalance of the signal due to
an intensity difference between the two arms of the interfer-
ometer [Fig. 12(c)]. The resulting Lissajous figure is a rotated
ellipse. The phase recovered from this figure is different from
the real phase,56 and the signals measured for a homodyne
interferometer have the following form:30

P1 =P0(1 + a cos(φd)), (34)

P2 = b P0(1 + a sin(φd + c)) + d, (35)

where P1 and P2 are the measured signals as in Eq. (16),
P0 is proportional to the laser power, a is the fringe visibility,
b is the gain mismatch between sensors, c is the quadrature
imperfection, and d is the differential offset.

Some heterodyne interferometers have the same non-
linear behaviour such as the one described in Fig. 9. However,
the optical configurations like the one in Fig. 10 encounter
other sources of non-linearities, mainly due to phase mixing
in the two arms of the interferometer. A complete description
of this last type of distortion can be found in Ref. 80. This
section will more focus on the non-linearities engendered in
homodyne-like interferometers.

As seen in Fig. 12, distortions due to translation and dilata-
tion of the Lissajous figure induce a periodic variation of
overestimation and underestimation of the phase. In fact, over
one period, the sine and/or cosine are alternatively smaller

and bigger than the ideal case. On the contrary, the rotation of
the figure corresponds to an additional constant phase applied
to one of the two signals. Depending on the phase sign, this
extra phase is responsible of either an overestimation or an
underestimation of the relation between the real and measured
phases.

Causes of non-linearities are as follows:

• elliptical polarization of the laser beam;80,81

• misalignment between the laser beam and the beam
splitter polarization axis;82,83

• imperfections in alignment or quality of optical compo-
nents;82,83

• non-orthogonality of the laser polarizations;82,84,85

• imperfect photodiode (responsivity and gain).86

This non-exhaustive list shows the complexity of the
non-linear origins.83 Moreover, one cause of non-linearity
engenders combinations of offset, quadrature, and gain imbal-
ance distortions. For example, if the two polarization states
are not perfectly orthogonal, the two polarizations measured
will not have the same intensity and they will not be in
quadrature.

In order to reduce the sources of non-linearities, several
solutions have been implemented: ellipse fitting algorithms,
phase-lock systems, and temperature isolation. The different
techniques and the improvements brought are listed below.
The corresponding residual non-linearities are provided in
Table III.

A. Ellipse fitting algorithms

In order to convert the ellipse into a unitary circle, the
ellipse parameters in Eqs. (34) and (35) need to be deter-
mined. This can be done by using ellipse fitting algorithms
either in post-processing or real-time. Algorithms that employ
the method of least squares have been used to reconstruct the
ellipse parameters87,88 and then recover the parameters from
Eqs. (34) and (35).4,30,82,85,89–93 In Ref. 94, the phase error is
compensated in the Fourier domain by a least squares approx-
imation of the first order errors. A clear explanation of this
ellipse fitting technique is contained in Ref. 87.
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FIG. 12. Plots of P1 against P2 (left)
and the effect of the non-linearity on
the relation between the real and the
measured phases (right). The effect of
offset (a), quadrature error (b), and gain
imbalance (c) can be seen in the Lis-
sajous figures when compared with an
ideal circle. For simplification, the cir-
cles and ellipses are centred at the origin.
The right figures allow us to identify
the order of the non-linearity in com-
parison to the period of the sinusoidal
signals: the offset has an order 1, and
the quadrature and the gain imbalance
have an order 2.

In order to identify the ellipse parameters, a cost term, S,
is minimised. Using the algebraic distance between data and
fit points Q(x, y),

S =
n∑

i=1

Q(xi, yi)
2. (36)

In Fig. 13, the reconstruction of circle, thanks to the ellipse
fitting algorithm, is illustrated on experimental data.38

In these algorithms, some parameters need to be correctly
chosen in order to reduce the non-linearities. First, the fit point
on the ellipse closest to the data point has to be properly cho-
sen.95 Second, the least squares method is very often used
and the residual non-linearities with this fitting method are

on average between 0.1 and 1 nm (see Table III). However,
other fitting methods exist which reduce the non-linearities. In
Ref. 96, the phase is fitted by a polynomial function, and in
Ref. 97, the parameters are dynamically re-evaluated by iter-
ative refinement. An iterative evaluation is also presented in
Ref. 98 where Kalman filters are used to estimate the ellipse
parameters. Moreover, the size and shape of the window sam-
pling function used is a crucial parameter for the algorithm
performance. The influence of the window function on the
phase error has already been studied theoretically and exper-
imentally:99,100 rectangular windows are more sensitive to
high-frequency phase errors than bell-shape windows like Von
Hann99 and Hanning100 windows.
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TABLE III. Residual non-linearities. Displacement error improvement by
means of correction algorithms and other improvements are also listed. The
“real time” column shows if the algorithm can be applied to correct in real
time the error. The RMS values plotted are directly taken from the papers.

Residual
displacement Real

Year Type Method error (RMS) time

198189 Homodyne Least square 104 pm No
1987107 Homodyne 1.32 × 105 pm . . .

199690 Homodyne Least square 700 pm No
199985 Homodyne <500 pm No
2001101 Homodyne Least square 400 pm Yes
200991 Homodyne Least square 3 × 103 pm Yes
201028 Homodyne Phase-lock 104 pm . . .

2010108 Homodyne Capacitive reference 200 pm Yes
sensor

2011109 Homodyne Capacitive reference 10 pm Yes
sensor + improved
algorithm from Ref. 108

201192 Homodyne Least square 103 pm No
201275 Homodyne Common path 5 pm . . .

201275 Homodyne Capacitive sensor corr. 14 pm . . .

201493 Homodyne Least square 22 pm No

1989110 Heterodyne <104 pm No
199282 Heterodyne 1st order phase 1.2 × 103 pm Yes

error compensation
2009111 Heterodyne Phase-lock 5 pm . . .

201275,76 Heterodyne Spatial separation <10 pm . . .

201275 Heterodyne Phase-lock 150 pm . . .

201275,103 FPI Phase-lock 2 pm . . .

201380 Heterodyne Adjustable λ/2 9 pm . . .

B. Non-linearities reduction methods

Correcting the signal measured is not the only mean to
reduce non-linearities. Modifications of the optical path in the

FIG. 13. Transformation of the ellipse, the signal directly measured by the
two photodiodes PD1 and PD2 (blue curve), into a unitary circle (green curve)
using the ellipse fitting algorithm.38

interferometer can also improve the signal. Proposed solutions
and their performance are discussed in Secs. V B 1–V B 4.

1. Multiple reflection in the measurement arm

In Sec. III A 1 b, it has been shown that the multi-
ple reflection technique improves the resolution of homodyne
interferometer of a factor G.31 With this configuration, the dis-
tortions on the resulting signals are similar to the ones obtained
with a simple homodyne interferometer. However, as the sig-
nal has travelled a longer distance, it has crossed more fringes.
From Fig. 12, we can see that non-linearities are periodic and
do not increase depending on the number of fringes crossed.
Consequently, the ratio between the non-linearities and the
whole signal is reduced of a factor G in a multiple reflection
interferometer. However, this assumption has not been verified
experimentally.

2. Additional sensors

As the laser intensity fluctuates, the use of one35,36 or
two39,101 additional signals to normalize the measurements
reduces the gain imbalance, seen in Fig. 12(c). In term of accu-
racy, two additional photodiodes is more effective because it
does not require additional modelling to reduce all types of
non-linearities, as explained in Ref. 39.

The four photodiodes’ design can recover in real time all
the ellipse parameters of Eqs. (34) and (35), thanks to an elec-
tronic circuit. To obtain four signals, two for each polarization
state, two PBSs are used. This technique reduces all the major
types of non-linearity, and the resulting signal had a phase
error reduced by a factor 10.101

One additional photodiode can be used in two different
ways to cancel or reduce intensity fluctuation and offset. In Ref.
36, the additional signal is used to monitor the input power and
normalise the outputs from the signal photodiodes. This makes
the two signals independent of intensity fluctuations, and in a
secondary way, this reduces gain imbalance. Moreover, the
offset non-linearity is reduced as the signal is divided to make
the normalisation. In Refs. 29 and 40, two signals measured are
out of phase and one signal is in quadrature with the two others
as already explained in Sec. III A 1 a. If we do not consider
a gain mismatch between sensors [see Eqs. (34) and (35)],
quadrature imperfection, and a differential offset (as they are
not altered with this method), Eqs. (21) and (22) become

P1 =
√

2aP0 sin(φd −
π

4
), (37)

P2 =
√

2aP0 sin(φd +
π

4
). (38)

As the phase is obtained from the a tan 2 of the ratio between
these two signals expressed in Eqs. (37) and (38), the results
become insensitive to the input power fluctuations, which is
the parameter a in these equations.

3. Reduction of the phase mixing

In homodyne interferometers, when a fraction of one
polarization state propagates in the other interferometer arm,
we talk about phase mixing. In fact, both polarization states
will then carry information about the reference and measure-
ment arm as they have propagated in both arms. Heterodyne
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interferometers are also subjected to phase mixing when one
of the two frequencies is transmitted to the other path. This
phase mixing is responsible for imperfect quadrature and gain
imbalance as shown in Ref. 80. Phase mixing can come from
imperfect optical elements84 such as PBS or optical fibers.

In order to avoid the injection of one polarization state (or
wavelength for the heterodyne interferometer) into the other
arm, one solution is to make the signals travel into two spatially
separated paths and measure the signals with two independent
photodiodes. One example of spatial separation can be found
in Ref. 79: the central part of the beam cross section is reflected
by the measuring mirror and measured by one photodiode. The
outer part of the beam is reflected by the reference mirror and
recorded by a second photodiode. Note that with this config-
uration, some diffraction at the separating optics can cause
injection of one phase into the other arm but this effect can be
reduced, thanks to a careful sizing of the setup.79

Spatial separation is also implemented in Refs. 56 and 76
where two lasers with different frequencies propagate in two
different interferometers: the only common element between
the two interferometers is the moving mirror, but the beams
are not reflected at the same position on the mirror. With this
configuration, interference occurs at the photodiodes where
the two beams recombine.

4. Actuators to decrease the non-linearities

a. Frequency correction. It is well known that the laser
frequency oscillates around a fixed value. This fluctuation cre-
ates some phase shift that can be misinterpreted as being a
displacement signal. To avoid these fluctuations, the frequency
of some interferometer lasers is locked by means of a phase-
lock system: a reference signal, measured before the beam
enters the interferometer, is used to drive the laser cavity.
This method is used for homodyne interferometers,77 het-
erodyne interferometers,21,68,80,102 and resonators.26,75,103–106

Some papers discuss the implementation of frequency lock
techniques.21,26,77,105

The disadvantage of actuating the laser frequency is that
the non-linearity of the measured signal is transmitted to the

actuator which will then have a non-linear behaviour. How-
ever, as already mentioned, this paper is focussed on wide
range readout and not on wide range closed loop readout. The
transmission of the non-linearities to the actuator will thus not
be further discussed.

Note that the undesired frequencies can be rejected with-
out any control. In Ref. 92, an optical narrow band pass filter is
placed before the photodiodes. This filter reduces beam signals
which do not have the desired wavelength.

b. Polarization correction. Misalignment between the
polarization states of the incoming beam and the polarizing
beam splitter causes phase shift [Fig. 12(b)] and gain imbal-
ance [Fig. 12(c)]. The incoming polarization state orientation
can be controlled using a λ/2 wave plate. The wave plate orien-
tation is permanently controlled4,80 to keep the beam aligned
with the beam splitter. In Ref. 80, a one wave plate adjust-
ment technique is described. An extra beam with a known
linear polarization at π/4 is injected into the interferometer. A
feedback loop adjusts the angle of the wave plate to ensure
that the polarization state of this reference signal is not mod-
ified by the interferometer. The interferometer made of the
reference beam, the optical path, and the polarimeter is called
a polarimetric interferometer. In Ref. 80, the polarimetric
interferometer has an accuracy of 9 pm.

C. Performance of the different interferometers

The performance of the different versions of interferom-
eters are listed in Table III and chronologically represented
in Fig. 14. The RMS (root mean square) of the residual non-
linearities has decreased four orders of magnitude since 1980.
After 2010, several new non-linearity reduction techniques
have emerged for both homodyne and heterodyne interferom-
eters. From Fig. 14, the Fabry-Pérot interferometer including
the phase-lock method shows better results than the Michelson
interferometer version.

Several papers were agreeing that the primary origin of
noise comes from the non-orthogonality of the two linear
polarizations measured.82,84,85 The use of an adjustable λ/2

FIG. 14. Time evolution of the non-
linearities in RMS. The RMS values
plotted are directly taken from the
papers. The shape of the marker cor-
responds to an improvement or a fea-
ture of the interferometer as explained
in the legend. Note that the diamond
marker corresponds to simple Michel-
son interferometers without any addi-
tional features.
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wave plate can correct this issue. From Fig. 14, this method
leads indeed to one of the lowest residual non-linearities.

D. Non-linearities measurement techniques

The RMS of the residual non-linearities has all been
measured experimentally. Consequently, this section briefly
summarizes the different methods used. In the 1980s, spectrum
analyzers were used to identify the non linearities due to phase
mixing in heterodyne interferometers.110 One of the two fre-
quencies is blocked and the remaining beat signal is measured.
In the case of phase mixing, the amplitude measured at the
beat frequency provides the phase mixing amplitude. An addi-
tional measurement is performed when the two frequencies
are blocked to verify that no other frequency is injected.
During the next decades, the evaluation of non-linearities has
led to the development of other measurement techniques. All
these techniques are based on a comparison between signals:
the studied one and either a reference signal or the studied
signal itself but in another polarization state.

1. Comparison with a reference signal

Measurement of interferometer non-linearities is per-
formed by comparison with a supposed error-free X-Ray
Interferometer (XRI).75,76,104 The XRI used is linear to the
picometre range and can work over 10 µm. Non-linearities are
also measured by a comparison between the interferometer
and an error-free Fabry-Pérot interferometer112,113 or with a
second Michelson interferometer.83,107

Note that most of the residual RMS measured recently
have been identified by comparison with a reference sensor.

2. Comparison with the signal itself

The simplest way to identify the non-linearity is to com-
pare the phase of the two orthogonal polarizations exiting the
interferometer.82

Finally, the residual non-linearity can be quantified based
on the visibility parameter:112 this parameter corresponds to
the difference between the maximum and minimum values
measured. The bigger the visibility parameter is, the lower the
non-linearity remains in the signal.

VI. NOISE SOURCES

There are many different noise sources present in inter-
ferometry systems.114 In this section, noise from the following
sources will be mainly discussed: laser source, interferometer,
photodiodes, and data acquisition (DAQ) systems. The com-
ponents in the interferometer are considered as perfect ones.
Meanwhile, non-linearities generated by the imperfect align-
ment, which also appears as noise, are treated separately in
Sec. V. The different sources of noise will be expressed in
power spectral density (PSD).

A. Laser noise

Different laser sources with different working principles
are discussed in Ref. 115. Among them, solid-state lasers are
desirable for interferometer systems because of their robust

and compact setup, lower laser noise, and long lifetime to
name a few. Intensity noise and frequency noise are the main
noises generated by a laser source. However, these two noises
can be rejected by properly designing the interferometer: an
additional photodiode to monitor the input power and normal-
ize the signals is a good method to reduce the intensity noise,
which is detailed in Sec. V B 2. Moreover, a well-aligned inter-
ferometer with equivalent arm length is immune to frequency
noise.

1. Intensity noise

Laser intensity noise (or amplitude noise) is a typical noise
generated by a single-frequency laser source. The origin of
intensity noise could be various, which has been investigated
in Ref. 116. In practice, the relative intensity noise (RIN),
specified by laser manufacturers, is often preferred to express
the intensity noise and is calculated by117

RIN=
ΦI

〈P0〉
2

(dB/Hz), (39)

where ΦI is the PSD of the photocurrent (W2/Hz) and
〈P0〉 is the optical power (W) averaged with respect to the
measurement time.

2. Frequency noise

Another type of noise arising from laser sources is the fre-
quency noise, which comes from thermal effect, mechanical
vibration of components, and properties of the laser oscilla-
tor.118 Therefore, frequency noise is inherent to the emission
fluctuation of single-frequency laser sources.119 In practice,
interferometers with equivalent arms are immune to frequency
noise. If the two arms are not of the same length, as discussed
in Sec. II, the frequency noise, Φν in unit of Hz2/Hz, appears
and can be converted to displacement, Φd , in unit of m2/Hz,
by Eq. (14), which is

Φd =
Φν

ν2
L2

0 (m2/Hz), (40)

where ν is the central laser frequency (Hz) and L0 is the static
arm length difference (m).

B. Photodiode detection system noise

The noise of a photodiode detection system includes not
only the photodiode noise but also the noise from the other
components in the circuits. Therefore, this section will discuss
about dark current, shot noise, thermal noise on load resistance,
and 1/f noise on semiconductors.

1. Dark current

The amplifiers used for photodetectors are of two types:
photoconductive and photovoltaic.86 Photoconductive ampli-
fiers, like pn-junctions, need a bias voltage to create the deple-
tion region, the detection area. Consequently, the bias voltage
is responsible for some current leakage called dark current
(because it exists even when no light is detected). The dark
current, ID, can be defined as120

ID = ISAT (e
qV

kBT − 1), (41)
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where ISAT is the reverse saturation current (A), V is the
bias voltage applied (V), q is the electron charge (C), kB is
Boltzmann’s constant (J/K), and T is the temperature (K).

Photovoltaic detectors, on the other hand, do not require
a bias voltage. Consequently, they do not present any current
leakage.

2. Shot noise

Shot noise, or Schottky noise, is caused by the discrete
nature of photons and electric charges across potential barriers,
such as diodes, transistors, or p-n junctions.120 Two photons
with the same energy will not create the same number of
electron-hole pairs. Consequently, the photocurrent generated
is fluctuating. The PSD of the shot noise is given by

ΦS = 2qIPD (A2/Hz), (42)

where IPD is the average photocurrent (A) that crosses the
barrier and q is the electron charge (C). From Eq. (42), we
can say that shot noise is a white noise. Moreover, as it is
proportional to the photocurrent value, a higher current causes
more random motion which leads to a higher shot noise.

3. Thermoelectrical noise

Thermoelectrical noise or Johnson noise121 is gener-
ated by the thermal fluctuation of electrons passing through
resistive components of the sensor circuits. The PSD of
thermoelectrical noise is given by

ΦT = 4kBTZR (V2/Hz), (43)

where kB is Boltzmann’s constant (J/K), T is the Kelvin tem-
perature (K), and ZR is the equivalent resistance (Ω) of the
whole system. Equation (43) shows that the thermoelectrical
noise is a white noise. It also depends on the temperature and
the resistive load of the circuit.

4. 1/f noise

Flicker noise, or 1/f noise, corresponds to fluctuations in
the resistance of semiconductors and occurs in all electronic
components.120,122 The main characteristic of the 1/f noise is
that its power spectral density is inversely proportional to the
frequency. The model of the 1/f noise can be expressed as

Φ1/f =K/f a (V2/Hz), (44)

where K is a constant related to the circuit, f is the fre-
quency, and a is a coefficient between 0 and 2, and usually
close to 1.

C. Data acquisition system noise

Data acquisition (DAQ) system and its Analog to Dig-
ital Converters (ADCs) have a certain noise floor, which is
related to the input referred noises and its quantization noise.
The sources of the input referred noise in the data acquisition
system are similar to the sources discussed in Sec. VI B 4. If
the sampling frequency and the bits of the ADC are not high
enough, its quantization noise dominates the noise floor. The
quantization noise induced by the ADC can be measured by
disconnecting all other inputs and outputs from the ADC and

recording the signal directly. The PSD of the theoretical ADC
noise is given by

ΦADC =
q2

12fn
(V2/Hz), (45)

where q = 2∆V /2n+1 is the quantization interval, ∆V is the half
of voltage range, n is the number of bits available to the Data
Acquisition (DAQ) card, and fn is the Nyquist frequency.123

In addition, the sampling time and the time processing to
extract the phase induce some delay.86 This delay induces an
uncertainty on the phase measured and consequently on the
displacement of the moving mirror at a certain time. The error
on the displacement is called the data age error and is larger if
the speed of the mirror is higher.86

D. Ambient noise

Fluctuations of temperature and pressure are responsi-
ble for signal variations and can thus be considered as an
additional source of noise. In fact, they modify the refrac-
tivity of the air which makes the optical path length vary.81

In order to reduce the temperature influence, the interferom-
eter can be placed inside a vacuum chamber. Another option
is to use a weather station and correct the signal based on the
pressure, temperature, and humidity measurements.75,80,124 In
addition, the optical elements have to be placed in a compact56

monolithic block made of a material with a low thermal expan-
sion coefficient, e.g., Zerodur, fused silica.125 The resolution
reached with this last improvement is lower than 5 pm/

√
Hz

above 10 mHz.126

Ambient light is also responsible for some spurious cur-
rent injected in the photodiodes. As we are discussing about
compact devices, it will be easy to reject this ambient light by
putting the interferometer in the dark.

Finally, electronics are responsible for acoustic noise. To
avoid its influence, the electronics have been placed in another
room as in Refs. 75 and 104.

E. Overall noise model

The flowchart of the noise model including the sources
of noise mentioned is shown in Fig. 15. The model is based
on several assumptions. The first one is that the sources of
electronic noise are uncorrelated. The second one is that the
input of the amplifier is the photocurrent and the output signal
is the voltage. The third one is that the ambient noise ΦA is
simplified as optical power fluctuation in the interferometer.
Moreover, the filters of the circuits are excluded. From the left
side to the right side, a laser beam containing intensity noise
and frequency noise is generated by the laser source and then
enters the interferometer. The ambient noise is added inside the
interferometer and can be seen as a laser power fluctuation. On
the photodiode, they are converted into a current fluctuation
by R. Moreover, the shot noise, which is a current, is generated
in the photodiode. Before being amplified, the currents corre-
sponding to the thermoelectrical noise and 1/f noise are added.
The current fluctuation is converted into voltage fluctuation by
the gain of the amplifier G. When the data are recorded by the
DAQ, the DAQ noise is added to the noise floor as well. The
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FIG. 15. Noises added to the interfer-
ometer system. The red arrow is the flow
of the laser, current, or data. R is the
responsivity of the photodiodes (A/W),
which converts the laser power into cur-
rent. ZR is the equivalent impedance of
the circuit (Ω), and G is the load resis-
tance of the amplifier (Ω), which is also
the gain of the circuit.

overall noise Φtotal in a consistent unit can be expressed as

Φtotal =G2 {R2[ΦI + ΦA] + ΦS

+ Z−2
R (Φ1/f + ΦT )

}
+ ΦDAQ (V2/Hz). (46)

In the analyzer, the noise unit is converted from V2/Hz
to m2/Hz by the data processing methods. The different data
processing methods corresponding to the different types of
interferometers are introduced in Secs. II–IV.

VII. SUMMARY

This paper has presented a review of “compact” interfer-
ometers that employ different methods to increase the dynamic
range compared with that of a simple interferometer. All tech-
niques are based on the same principle: create a phasemeter
by generating two (or more) quadrature signals from which
the phase, and as such the displacement, can be extracted
over more than one fringe by unwrapping the outputs with
a 4-quadrant arctangent.

To determine the size of systems, we searched for their
dimensions in the literature. From Table I, we see that in aver-
age the optical homodyne interferometer occupies an area of
approximately 17 × 17 cm2, with some substantial variation
in size. Heterodyne phasemeters are somewhat larger, typi-
cally 30 × 30 cm2, but in both cases, the “size” often neglects
the input beam preparation optics and data acquisition system.
Heterodyne devices typically require more space as either an
additional laser source or an AOM is required.

In most homodyne systems, two polarization states are
used to sample the target mirror with different phase shifts,
creating the quadrature outputs. For heterodyne interferome-
ters, two beams with different laser frequencies pass through
the interferometer and the quadrature signals are most com-
monly created by demodulating the beat signal with a sine and
a cosine.

The resolution of homodyne phasemeters has improved
considerably since their inception, largely due to decreasing
technical noises. Table I shows that several devices in the last
10 years have reached a sensitivity at or below 1 pm/

√
Hz

at 1 Hz. To improve sensitivity, it is possible to increase the
number of reflections in one or both arms of an interferom-
eter (Sec. III A 1 b). Several experiments have employed
additional photodiodes to reduce intensity-noise coupling
(Sec. III A 1 a).

Heterodyne phasemeters push (much of) the optical
complexity onto the input beam preparation and the signal
analysis. It is difficult to make a fair comparison between

devices to the very large range of design parameters, includ-
ing the heterodyne frequency and the measurement frequency,
but Table II shows that resolutions less than 1 pm/

√
Hz

are routinely achieved. Many of the devices reviewed were
not very compact, and it is difficult to determine the size
scale of the complete apparatus, including the input-beam
preparation.

Overall, heterodyne interferometers are larger and more
complex than their homodyne cousins, but they are less sus-
ceptible to a low-frequency readout noise. A brief summary
of the common noise sources that limit the resolution of
interferometers is included in Sec. VI.

A significant advantage of all phasemeters is that they are
inherently calibrated to the wavelength of the laser. There are,
however, several sources of non-linearity that affect their accu-
racy, and these have also been reviewed. Non-linearities can be
reduced in several ways. Ellipse fitting algorithms (Sec. V A)
are widely used to transform the phasemeters output into a
unitary circle centred at the origin, removing both the leading
order of non-linearity and the offsets inherent to measuring
intensity with photodiodes. Additional sensors (Sec. V B 2)
can reduce the residual non-linearity by reducing the effect of
power fluctuations or by subtracting large input phase-shifts.
Polarization mixing (homodyne) and phase mixing (hetero-
dyne) can be reduced, thanks to spatially separating beams
(Sec. V B 3). The most promising heterodyne technique for
reducing non-linearity is to employ a “phase lock” to hold
the signal in a single quadrature and read out the phase-
shift required to keep it there. From Fig. 14, it is clear that
non-linearities have been improving consistently during the
last decades and that modern interferometers can consistently
achieve single-digit picometer accuracy.

Heterodyne interferometers achieve a good resolution and
can inherently reject any DC component. However, there is still
room for improvement before they reach the level of compact-
ness of homodyne devices. As explained in this section, the
size of the beam preparation equipment limits the compact-
ness. Therefore, reducing the size of these devices should be
the concern of future research if they want to compete with the
size of the homodyne devices.

In addition, many designs have already been developed
which offer significant improvement in resolution and sen-
sitivity. Nevertheless, whether for homodyne or heterodyne
interferometers, a lot of parameters change from one device
to another (wavelength and type of photodetectors). In order
to have a fair comparison between the different solutions
proposed, they should be tested on the same setup. Such a pro-
totype should also allow us to see if certain solutions can be
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combined and whether the performance of the combined inter-
ferometer corresponds to the combination of the performance
obtained with the two solutions independently.
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(2014).
94K. A. Goldberg and J. Bokor, Appl. Opt. 40, 2886 (2001).
95M. J. Collett and G. J. Tee, J. Opt. Soc. Am. A 31, 2573 (2014).
96K. Emancipator and M. H. Kroll, Clin. Chem. 39, 766 (1993).
97M. J. Collett and L. R. Watkins, J. Opt. Soc. Am. A 32, 491 (2015).
98C. Wang, E. D. Burnham-Fay, and J. D. Ellis, Precis. Eng. 48, 133 (2017).

99P. de Groot, Appl. Opt. 34, 4723 (1995).
100J. Schmit and K. Creath, Appl. Opt. 35, 5642 (1996).
101T. Eom, J. Kim, and K. Jeong, Meas. Sci. Technol. 12, 1734 (2001).
102X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, and J. Zhang, Appl. Opt. 52, 2042

(2013).
103M. Celik, R. Hamid, U. Kuetgens, and A. Yacoot, Meas. Sci. Technol. 23,

085901 (2012).
104A. Yacoot, M. Pisani, G. B. Picotto, U. Kuetgens, J. Flügge, P. Kren, A.
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