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1 Introduction

The availability of large samples of high energy pp collision data has allowed significant

improvements in the experimental studies of b baryons. The masses and lifetimes of the

Λ0
b , Ξ

0
b and Ξ−b particles are all now known to within a few percent or better [1–5], and

excited Λ0
b and Ξb baryons have been discovered [6–8]. However, relatively few decay

modes of the b baryons have yet been studied. In particular, among the possible charmless

hadronic final states, only the two-body Λ0
b → pK− and Λ0

b → pπ− decays [9], the quasi-

two-body Λ0
b → Λφ decay [10] and the three-body Λ0

b → K0
Spπ

− decay [11] have been

observed, while evidence has been reported for the Λ0
b → Λη decay [12]. No decay of a Ξb

baryon to a charmless final state has yet been observed. Such decays are of great interest as

they proceed either by tree-level decays involving the Cabibbo-Kobayashi-Maskawa [13, 14]

matrix element Vub or by loop-induced amplitudes, and they are consequently expected to

have suppressed decay rates in the Standard Model. Their study may also provide insights

into the mechanisms of hadronisation in b baryon decays. Moreover, charmless hadronic

b baryon decays provide interesting possibilities to search for CP violation effects, as have

been seen in the corresponding B meson decays [15–19].

In this paper, a search is reported for charmless decays of the Λ0
b and Ξ0

b baryons to the

final states Λπ+π−, ΛK±π∓ and ΛK+K−. The inclusion of charge conjugate processes is

implied throughout, except where the determination of asymmetries is discussed. Interme-

diate states containing charmed hadrons are excluded from the signal sample and studied
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separately: transitions involving a Λ+
c → Λπ+ decay are used as a control sample and to

normalise the measured branching fractions, and those with Λ+
c → ΛK+ decays provide

cross-checks of the analysis procedure. In all cases the Λ baryon is reconstructed in the

pπ− final state. Although b baryon decays to the ΛK+π− and ΛK−π+ final states can

be distinguished through correlation of the proton and kaon charges, they are combined

together in the ΛK±π∓ sample to improve the stability of the fit to the mass spectra.

The Λ0
b → ΛK+π− and Ξ0

b → ΛK−π+ decays are expected to dominate over the modes

with swapped kaon and pion charges, and therefore the results are presented assuming the

suppressed contribution is negligible, as is commonly done in similar cases [16, 17, 20, 21].

No previous experimental information exists on the charmless hadronic decays being

studied; theoretical predictions for the branching fraction of the Λ0
b → Λπ+π− decay are

in the range 10−9–10−7 [22–24].

The paper is organised as follows. A description of the LHCb detector and the dataset

used for the analysis is given in section 2. The selection algorithms, the method to de-

termine signal yields, and the systematic uncertainties on the results are discussed in sec-

tions 3–5. The measured branching fractions are presented in section 6. Since significant

signals are observed for the Λ0
b → ΛK+π− and Λ0

b → ΛK+K− channels, measurements

of the phase-space integrated CP asymmetry parameters of these modes are reported in

section 7. Conclusions are given in section 8.

2 Detector and dataset

The analysis is based on pp collision data collected with the LHCb detector, corresponding

to 1.0 fb−1 at a centre of mass energy of 7 TeV in 2011, and 2.0 fb−1 at a centre of mass

energy of 8 TeV in 2012. The LHCb detector [25, 26] is a single-arm forward spectrometer

covering the pseudorapidity range 2 < η < 5, designed for the study of particles containing

b or c quarks. The detector includes a high-precision tracking system consisting of a

silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-

strip detector located upstream of a dipole magnet with a bending power of about 4 Tm,

and three stations of silicon-strip detectors and straw drift tubes placed downstream of

the magnet. The tracking system provides a measurement of momentum, p, of charged

particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at

200 GeV/c. The minimum distance of a track to a primary vertex, the impact parameter

(IP), is measured with a resolution of (15 + 29/pT)µm, where pT is the component of

the momentum transverse to the beam, in GeV/c. Different types of charged hadrons

are distinguished using information from two ring-imaging Cherenkov detectors. Photons,

electrons and hadrons are identified by a calorimeter system consisting of scintillating-

pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter.

Muons are identified by a system composed of alternating layers of iron and multiwire

proportional chambers.

The online event selection is performed by a trigger [27, 28], which consists of a hard-

ware stage, based on information from the calorimeter and muon systems, followed by a

software stage, in which all charged particles with pT > 500 (300) MeV/c are reconstructed
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for 2011 (2012) data. At the hardware trigger stage, events are required to have a muon

with high pT or a hadron, photon or electron with high transverse energy in the calorime-

ters. For hadrons, the transverse energy threshold is 3.5 GeV. The software trigger requires

a two-, three- or four-track secondary vertex with significant displacement from the pri-

mary pp interaction vertices (PVs). At least one charged particle must have transverse

momentum pT > 1.7 GeV/c and be inconsistent with originating from any PV. A multi-

variate algorithm [29] is used for the identification of secondary vertices consistent with

the decay of a b hadron.

The efficiency with which the software trigger selected the signal modes varied during

the data-taking period, for reasons that are related to the reconstruction of the long-lived

Λ baryon. Such decays are reconstructed in two different categories, the first involving

Λ particles that decay early enough for the produced particles to be reconstructed in the

vertex detector, and the second containing Λ baryons that decay later such that track

segments cannot be formed in the vertex detector. These categories are referred to as long

and downstream, respectively. During 2011, downstream tracks were not reconstructed in

the software trigger. Such tracks were included in the trigger logic during 2012 data-taking;

however, a significant improvement in the algorithms was implemented during a technical

stop period. Consequently, the data are subdivided into three data-taking periods (2011,

2012a and 2012b) as well as the two reconstruction categories (long and downstream). The

2012b sample has the best trigger efficiency, especially in the downstream category, and

is also the largest sample, corresponding to 1.4 fb−1. The long category has better mass,

momentum and vertex resolution than the downstream category.

Simulated data samples are used to study the response of the detector and to investi-

gate certain categories of background. In the simulation, pp collisions are generated using

Pythia [30, 31] with a specific LHCb configuration [32]. Decays of hadronic particles are

described by EvtGen [33], in which final-state radiation is generated using Photos [34].

The interaction of the generated particles with the detector, and its response, are imple-

mented using the Geant4 toolkit [35, 36] as described in ref. [37].

3 Selection requirements and efficiency modelling

The selection exploits the topology of the three-body decay and the b baryon kinematic

properties, first in a preselection stage, with minimal effect on signal efficiency, and subse-

quently in a multivariate classifier. Each b baryon candidate is reconstructed by combining

two oppositely charged tracks with a Λ candidate. The Λ decay products are both required

to have momentum greater than 2 GeV/c and to form a vertex with low χ2
vtx.

In addition, the tracks must not be associated with any PV as quantified by the χ2
IP

variable, defined as the difference in χ2 of a given PV reconstructed with and without the

considered track.

The track pair must satisfy |m(pπ−) −mΛ| < 20 (15) MeV/c2 for downstream (long)

candidates, where mΛ is the known Λ mass [38]. The Λ candidate is associated to the PV

which gives the smallest χ2
IP, and significant vertex separation is ensured with a requirement

on χ2
VS, the square of the separation distance between the Λ vertex and the associated
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PV divided by its uncertainty. A loose particle identification (PID) requirement, based

primarily on information from the ring-imaging Cherenkov detectors, is imposed on the

proton candidate to remove background from K0
S decays. For downstream Λ candidates

pΛ > 8 GeV/c is also required.

The scalar sum of the transverse momenta of the Λ candidate and the two h+h′− tracks

is required to be greater than 3 GeV/c (4.2 GeV/c for downstream candidates).

The IP of the charged track with the largest pT is required to be greater than 0.05 mm.

The minimum, for any pair from (Λ, h+, h′−), of the square of the distance of closest

approach divided by its uncertainty must be less than 5. The b baryon candidate must have

a good quality vertex, be significantly displaced from the PV, and have pT > 1.5 GeV/c.

Furthermore, it must have low values of both χ2
IP and pointing angle (i.e. the angle between

the b baryon momentum vector and the line joining its production and decay vertices),

which ensure that it points back to the PV. Additionally, the Λ and b baryon candidate

vertices must be separated by at least 30 mm along the beam direction. The candidates are

separated with PID criteria (discussed below) into the three different final states: Λπ+π−,

ΛK±π∓ and ΛK+K−. Candidates where any of the tracks is identified as a muon are

rejected; this removes backgrounds resulting from semimuonic b baryon decays, J/ψ →
µ+µ− decays, or Λ0

b → Λµ+µ− decays [39]. Decays involving intermediate Λ+
c baryons are

removed from the signal sample with a veto that is applied within ±30 MeV/c2 of the known

Λ+
c mass [38]; in the case of Λ+

c → Λπ+ however, these candidates are retained and used as

a control sample. A similar veto window is applied around the Ξ+
c mass, and backgrounds

from the Λ0
b → ΛD0 decay with D0 → h+h′− are also removed with a ±30 MeV/c2 window

around the known D0 mass.

The b baryon candidates are required to have invariant mass within the range 5300 <

m(Λh+h′−) < 6100 MeV/c2, when reconstructed with the appropriate mass hypothesis for

the h+ and h′− tracks. To avoid potential biases during the selection optimisation, regions

of ±50 MeV/c2, to be compared to the typical resolution of 15 MeV/c2, around both the Λ0
b

and Ξ0
b masses were not examined until the selection criteria were established.

Further separation of signal from combinatorial background candidates is achieved

with a boosted decision tree (BDT) multivariate classifier [40, 41]. The BDT is trained

using a simulated Λ0
b → Λπ+π− signal sample and data from the sideband region 5838 <

m(Λπ+π−) < 6100 MeV/c2 for the background. To prevent bias, each sample is split into

two disjoint subsets and two separate classifiers are each trained and evaluated on different

subsets, such that events used to train one BDT are classified using the other.

The set of input variables is chosen to optimise the performance of the algorithm, and

to minimise variation of the efficiency across the phase space. The input variables for the

BDTs are: pT, η, χ2
IP, χ2

VS, pointing angle and χ2
vtx of the b baryon candidate; the sum of

the χ2
IP values of the h+ and h′− tracks; and the χ2

IP, χ2
VS and χ2

vtx of the Λ candidate.

Separate BDT classifiers are trained for each data-taking period and for the downstream

and long categories.

The optimal BDT and PID cut values are determined separately for each subsample

by optimising the figure of merit εsig/
(
a
2 +
√
B
)

[42], where a = 5 quantifies the target
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level of significance in units of standard deviations (σ), εsig is the efficiency of the signal

selection determined from simulated events, and B is the expected number of background

events in the signal region, which is estimated by extrapolating the result of a fit to the

invariant mass distribution of the data sidebands. In the optimisation of the PID criteria,

possible cross-feed backgrounds from misidentified decays to the other signal final states

are also considered; their relative rates are obtained from data using the control modes

containing Λ+
c decays. The optimised BDT requirements typically have signal efficiencies

of around 50 % whilst rejecting over 90 % of the combinatorial background. The optimised

PID requirements have efficiencies around 60 % and reject over 95 % (80 %) of π → K

(K → π) cross-feed. If more than one candidate is selected in any event, one is chosen at

random and all others discarded — this occurs in less than 2 % of selected events.

The efficiency of the selection requirements is studied using simulated events and, for

the PID requirements, high-yield data control samples of D0 → K−π+ and Λ → pπ−

decays [43]. A multibody decay can in general proceed through intermediate states as well

as through nonresonant amplitudes. It is therefore necessary to model the variation of

the efficiency, and to account for the distribution of signal events, over the phase space

of the decay. This is achieved, in a similar way as done for previous studies of b baryon

decays [11, 44, 45], by factorising the efficiency into a two-dimensional function of vari-

ables that describe the Dalitz plot [46] and three one-dimensional functions for the angular

variables. Simulated events are binned in these variables in order to determine the se-

lection efficiencies. If no significant b baryon signal is seen, the efficiency corresponding

to a uniform phase-space distribution is used, and a systematic uncertainty is assigned to

account for the variation across the phase space. For modes with a significant yield, the

distribution in the phase space is obtained with the sPlot technique [47] with the b baryon

candidate invariant mass used as the control variable, and the efficiency corresponding to

the observed distribution is used.

4 Fit model and results

All signal and background yields, as well as the yields of Λ0
b → Λ+

c h
− decays, are de-

termined using a single simultaneous unbinned extended maximum likelihood fit to the b

baryon candidate invariant mass distributions for each final state in the six subsamples,

which correspond to the three data-taking periods and two reconstruction categories. The

probability density function (PDF) in each invariant mass distribution is defined as the

sum of components accounting for signals, cross-feed contributions, combinatorial back-

ground and other backgrounds. Fitting the subsamples simultaneously allows the use of

common shape parameters, while fitting the different final states simultaneously facilitates

the imposition of constraints on the level of cross-feed backgrounds.

Signal PDFs are known to have asymmetric tails that result from a combination of

the effects of final-state radiation and stochastic tracking imperfections. The signal mass

distributions are each modelled by the sum of two Crystal Ball (CB) functions [48] with

a common mean and tails on opposite sides, where the high-mass tail accounts for non-

Gaussian reconstruction effects. The peak positions and overall widths of the CB functions
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are free parameters of the fit to data, while other shape parameters are determined from

simulated samples, separately for each subsample, and are fixed in the fit to data.

Cross-feed backgrounds are also modelled by the sum of two CB functions. The shape

parameters are determined from simulation, separately for each subsample, and calibrated

with the high-yield data control samples to account for the effects of the PID criteria. In

the fit to data, the misidentification rates are constrained to be consistent with expectation.

An exponential function is used to describe the combinatorial background, the yield of

which is treated as independent for each subsample. The shape parameter is taken to be

the same for all data-taking periods, independently for each final state and reconstruction

category. In addition, components are included to account for possible backgrounds from b

baryon decays giving the same final state but with an extra soft (low energy) particle that

is not reconstructed; examples include the photon that arises from Σ0 → Λγ decay and

the neutral pion in the K∗+ → K+π0 decay. Such partially reconstructed backgrounds

are modelled by a generalised ARGUS function [49] convolved with a Gaussian function,

except in the case of the Λ0
b → (Λπ+)Λ+

c
π− control mode where a nonparametric den-

sity estimate is used. The shape parameters are determined from simulation, separately

for the two reconstruction categories but for the data-taking periods combined, and are

fixed in the fit to data; however, the yield of each partially reconstructed background is

unconstrained in the fit.

In order to limit the number of free parameters in the fit, several additional constraints

are imposed. The yield of each cross-feed contribution is constrained within uncertainty to

the yield of the corresponding correctly reconstructed decay multiplied by the appropriate

misidentification rate. The peak value of the signal shape is fixed to be the same for all Λ0
b

decays, and the difference in peak values for Ξ0
b and Λ0

b decays is fixed to the known mass

difference [4]. The widths of the signal shapes differ only between the two reconstruction

categories, with a small correction factor, obtained from simulation, applied for the control

channel modes with an intermediate Λ+
c decay.

In the ΛK+K− final state, little or no background is expected in the Ξ0
b signal region.

Since likelihood fits cannot give reliable results if there are neither signal nor background

candidates, the signal yields for Ξ0
b → ΛK+K− decays in the long reconstruction category

are constrained to be non-negative. All other signal yields are unconstrained. The fit model

and its stability are validated with ensembles of pseudoexperiments that are generated

according to the fit model, with yields allowed to fluctuate around their expected values

according to Poisson statistics. No significant bias is found.

The results of the fit to data are given in table 1 and shown, for all subsamples

combined, in figure 1 for the Λ0
b → (Λπ+)Λ+

c
π− control mode and the Λπ+π− signal final

state, and in figure 2 for the ΛK±π∓ and ΛK+K− signal final states. The expected yield

of misidentified Λ0
b → Λπ+π− decays in the Λ0

b → ΛK+π− spectrum is 2.9 ± 0.7; that of

Λ0
b → ΛK+π− decays in the Λ0

b → ΛK+K− spectrum is 3.2 ± 0.5; that of Λ0
b → ΛK+π−

decays in the Λ0
b → Λπ+π− spectrum is 14.0 ± 2.0; and that of Λ0

b → ΛK+K− decays in

the Λ0
b → ΛK+π− spectrum is 35.3± 2.8. All other cross-feed contributions are negligible.

The statistical significances of the Λ0
b → Λπ+π−, Λ0

b → ΛK+π−, and Λ0
b → ΛK+K−

decays, estimated from the change in log-likelihood between fits with and without these

– 6 –
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Mode Run period Yield

Λ0
b Ξ0

b

downstream long downstream long

2011 10.2± 5.5 8.7± 4.7 −0.6± 2.4 4.9± 3.2

Λπ+π− 2012a 9.1± 5.2 13.6± 5.7 5.3± 3.6 1.0± 2.6

2012b 17.2± 7.1 6.2± 4.6 3.9± 4.0 4.1± 2.7

Total 65± 14 19± 8

2011 20.9± 6.4 8.2± 3.5 3.5± 3.7 −0.7± 2.4

ΛK±π∓ 2012a 9.3± 3.7 1.7± 3.6 −0.1± 1.7 0.3± 1.5

2012b 39.7± 8.9 16.9± 5.1 2.9± 4.5 −1.8± 1.5

Total 97± 14 4± 7

2011 32.3± 6.4 20.1± 4.6 0.6± 2.3 0.0± 0.6

ΛK+K− 2012a 22.2± 5.3 15.9± 4.2 0.5± 2.4 0.0± 0.5

2012b 60.5± 8.5 34.4± 6.1 3.0± 2.7 0.0± 0.6

Total 185± 15 4± 4

2011 78.1± 9.1 78.9± 9.2

(Λπ+)Λ+
c
π− 2012a 45.0± 7.0 63.0± 8.3

2012b 115.3± 11.1 90.7± 9.8

Total 471± 22

Table 1. Signal yields for the Λ0
b and Ξ0

b decay modes under investigation. The totals are simple

sums and are not used in the analysis.
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Figure 1. Results of the fit for the (left) Λ0
b → (Λπ+)Λ+

c
π− control mode and (right) Λπ+π−

signal final states, for all subsamples combined. Superimposed on the data are the total result of

the fit as a solid blue line, the Λ0
b (Ξ0

b ) decay as a short-dashed black (double dot-dashed grey) line,

cross-feed as triple dot-dashed brown lines, the combinatorial background as a long-dashed green

line, and partially reconstructed background components with either a missing neutral pion as a

dot-dashed purple line or a missing soft photon as a dotted cyan line.

signal components, are 5.2σ, 8.5σ, and 20.5σ respectively. The effects of systematic

uncertainties on these values are given in section 6. The statistical significances for all Ξ0
b

decays are less than 3 σ.
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Figure 2. Results of the fit for the (left) ΛK±π∓ and (right) ΛK+K− final states, for all

subsamples combined. Superimposed on the data are the total result of the fit as a solid blue

line, the Λ0
b (Ξ0

b ) decay as a short-dashed black (double dot-dashed grey) line, cross-feed as triple

dot-dashed brown lines, the combinatorial background as a long-dashed green line, and partially

reconstructed background components with either a missing neutral pion as a dot-dashed purple

line or a missing soft photon as a dotted cyan line.
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Figure 3. Background-subtracted and efficiency-corrected Dalitz plot distributions for (left)

Λ0
b → ΛK+π− and (right) Λ0

b → ΛK+K− with data from all subsamples combined. Boxes with a

cross indicate negative values.

As significant yields are obtained for Λ0
b → ΛK+π− and Λ0

b → ΛK+K− decays, their

Dalitz plot distributions are obtained from data using the sPlot technique and applying

event-by-event efficiency corrections based on the position of the decay in the phase space.

These distributions are used to determine the average efficiencies for these channels, and

are shown in figure 3, where the negative (crossed) bins occur due to the statistical nature

of the background subtraction. The Λ0
b → ΛK+K− signal seen at low m2(K+K−) is

consistent with the recent observation of the Λ0
b → Λφ decay [10]. Although the statistical

significance of the Λ0
b → Λπ+π− channel is over 5 σ, the uncertainty on its Dalitz plot

distribution is too large for this method of determining the average efficiency to be viable.
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Fit Efficiency Phase space PID Vetoes Λ+
c π
− yield Total

Λ0
b → Λπ+π− 8.4 2.0 19.7 0.4 2.2 3.5 21.9

Λ0
b → ΛK+π− 1.7 11.7 — 2.9 1.3 4.6 13.1

Λ0
b → ΛK+K− 6.7 5.4 — 4.2 2.2 15.9 18.7

Ξ0
b → Λπ+π− 4.1 0.7 7.0 0.1 — 1.2 8.2

Ξ0
b → Λπ+K− 1.5 0.4 3.5 0.1 — 0.7 4.0

Ξ0
b → ΛK+K− 0.1 0.1 0.8 0.0 — 0.2 0.8

Table 2. Systematic uncertainties (in units of 10−3) on the branching fraction ratios reported in

section 6. The total is the sum in quadrature of all contributions.

5 Systematic uncertainties

Systematic uncertainties in the branching fraction measurements are minimised by the

choice of a normalisation channel with similar topology and final-state particles. There are

residual uncertainties due to approximations made in the fit model, imperfect knowledge

of the efficiency, and the uncertainty on the normalisation channel yield. The systematic

uncertainties are evaluated separately for each subsample, with correlations taken into

account in the combination of results. A summary of the uncertainties assigned on the

combined results is given in table 2.

The systematic uncertainty from the fit model is evaluated by using alternative shapes

for each of the components, for both the charmless and Λ+
c spectra. The double Crystal

Ball function used for the signal component is replaced with the sum of two Gaussian func-

tions with a common mean. The partially reconstructed background shapes are replaced

with nonparametric functions determined from simulation. The combinatorial background

model is changed from an exponential function to a second-order polynomial shape. In

addition, the effect of varying fixed parameters of the model within their uncertainties is

evaluated with pseudoexperiments and added in quadrature to the fit model systematic

uncertainty.

There are several sources of systematic uncertainty related to the evaluation of the

relative efficiency. The first is due to the finite size of the simulation samples, and is

determined from the effect of fluctuating the efficiency, within uncertainties, in each phase-

space bin. The second is determined from the variation of the efficiency across the phase

space, and is relevant only for modes without a significant signal yield. The third, from the

uncertainty on the kinematical agreement between the signal mode and the PID control

modes, is determined by varying the binning of these control samples. Finally, the effects

of the vetoes applied to remove charmed intermediate states are investigated by studying

the variation in the result with different requirements.

In order to determine relative branching fractions, it is necessary to account also for

the statistical uncertainty in the yield of the Λ0
b → (Λπ+)Λ+

c
π− normalisation channel.

The uncertainty on its branching fraction is included when converting results to abso-

lute branching fractions. The total systematic uncertainty is determined as the sum in

quadrature of all contributions.
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6 Branching fraction results

The relative branching fractions for the Λ0
b decay modes are determined according to

B(Λ0
b → Λh+h′−)

B(Λ0
b → (Λπ+)Λ+

c
π−)

=
N(Λ0

b → Λh+h′−)

N(Λ0
b → (Λπ+)Λ+

c
π−)
×
ε(Λ0

b → (Λπ+)Λ+
c
π−)

ε(Λ0
b → Λh+h′−)

, (6.1)

whereN denotes the yield determined from the maximum likelihood fit to data, as described

in section 4, and ε denotes the efficiency, as described in section 3. For the Ξ0
b decay modes

the expression is modified to account for the fragmentation fractions fΞ0
b

and fΛ0
b
, i.e. the

probability that a b quark hadronises into either a Ξ0
b or Λ0

b baryon,

fΞ0
b

fΛ0
b

×
B(Ξ0

b → Λh+h′−)

B(Λ0
b → (Λπ+)Λ+

c
π−)

=
N(Ξ0

b → Λh+h′−)

N(Λ0
b → (Λπ+)Λ+

c
π−)
×
ε(Λ0

b → (Λπ+)Λ+
c
π−)

ε(Ξ0
b → Λh+h′−)

. (6.2)

Since fΞ0
b

is yet to be measured, the product of quantities on the left-hand side of eq. (6.2)

is reported.

The ratios in eq. (6.1) and eq. (6.2) are determined separately for each subsample, and

the independent measurements of each quantity are found to be consistent. The results for

the subsamples are then combined, taking correlations among the systematic uncertainties

into account, giving

B(Λ0
b→Λπ

+π−)

B(Λ0
b→(Λπ+)

Λ+
c
π−)

= (7.3± 1.9± 2.2)× 10−2 ,

B(Λ0
b→ΛK

+π−)

B(Λ0
b→(Λπ+)

Λ+
c
π−)

= (8.9± 1.2± 1.3)× 10−2 ,

B(Λ0
b→ΛK

+K−)

B(Λ0
b→(Λπ+)

Λ+
c
π−)

= (25.3± 1.9± 1.9)× 10−2 ,

f
Ξ0
b

f
Λ0
b

× B(Ξ0
b→Λπ

+π−)

B(Λ0
b→(Λπ+)

Λ+
c
π−)

= (2.0± 1.0± 0.8)× 10−2 ,

f
Ξ0
b

f
Λ0
b

× B(Ξ0
b→ΛK

−π+)

B(Λ0
b→(Λπ+)

Λ+
c
π−)

= (−0.1± 0.8± 0.4)× 10−2 ,

where the first quoted uncertainty is statistical and the second is systematic. The signif-

icances for the Λ0
b → Λπ+π−, Λ0

b → ΛK+π−, and Λ0
b → ΛK+K− modes, including the

effects of systematic uncertainties on the yields, are 4.7σ, 8.1σ, and 15.8σ respectively.

These are calculated from the change in log-likelihood, after the likelihood obtained from

the fit is convolved with a Gaussian function with width corresponding to the systematic

uncertainty on the yield.

The relative branching fractions are multiplied by B(Λ0
b → (Λπ+)Λ+

c
π−) to obtain

absolute branching fractions. The normalisation channel product branching fraction is

evaluated to be (6.29± 0.78)× 10−5 from measurements of B(Λ0
b → Λ+

c π
−) [50], B(Λ+

c →
Λπ+)/B(Λ+

c → pK−π+) [51] and B(Λ+
c → pK−π+) [52].

As the likelihood function for Ξ0
b → ΛK+K− decays is not reliable, owing to the

absence of data in the signal region in the long reconstruction category, a Bayesian ap-

proach [53] is used to obtain an upper limit on the branching fraction of this decay mode.
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The Ξ0
b signal region, 5763 < m(Λh+h−) < 5823 MeV/c2, is assumed to contain the Poisson

distributed sum of background and signal components. The prior probability distribution

for the signal rate is flat, whereas the prior for the background rate is a Gaussian distribu-

tion based on the expectation from the maximum likelihood fit, found by extrapolating the

combinatorial background component from the fit into the signal region. Both of these prior

distributions are truncated to remove the unphysical (negative) region. Log-normal priors

are used for the normalisation mode yield, the signal and normalisation channel efficiencies,

and all other sources of systematic uncertainty. The posterior probability distribution is

obtained by integrating over the nuisance parameters using Markov chain Monte Carlo [54].

For consistency, the same method is used to obtain upper limits on the branching fractions

of all modes which do not have significant yields.

The results for the absolute branching fractions are

B(Λ0
b → Λπ+π−) = (4.6± 1.2± 1.4± 0.6)× 10−6 ,

B(Λ0
b → ΛK+π−) = (5.6± 0.8± 0.8± 0.7)× 10−6 ,

B(Λ0
b → ΛK+K−) = (15.9± 1.2± 1.2± 2.0)× 10−6 ,

f
Ξ0
b

f
Λ0
b

× B(Ξ0
b → Λπ+π−) = (1.3± 0.6± 0.5± 0.2)× 10−6 ,

< 1.7 (2.1)× 10−6 at 90 (95) % confidence level ,

f
Ξ0
b

f
Λ0
b

× B(Ξ0
b → ΛK−π+) = (−0.6± 0.5± 0.3± 0.1)× 10−6 ,

< 0.8 (1.0)× 10−6 at 90 (95) % confidence level ,

f
Ξ0
b

f
Λ0
b

× B(Ξ0
b → ΛK+K−) < 0.3 (0.4)× 10−6 at 90 (95) % confidence level ,

where the last quoted uncertainty is due to the precision with which the normalisation

channel branching fraction is known.

7 CP asymmetry measurements

The significant yields observed for the Λ0
b → ΛK+π− and ΛK+K− decays allow mea-

surements of their phase-space integrated CP asymmetries. The simultaneous extended

maximum likelihood fit is modified to allow the determination of the raw asymmetry, de-

fined as

Araw
CP =

N corr
f −N corr

f̄

N corr
f +N corr

f̄

, (7.1)

where N corr
f (N corr

f̄
) is the efficiency-corrected yield for Λ0

b (Λ0
b) decays. The use of the

efficiency-corrected yields accounts for the possibility that there may be larger CP violation

effects in certain regions of phase space, as seen in other charmless three-body b hadron

decays [19].

To measure the parameter of the underlying CP violation, the raw asymmetry has to

be corrected for possible small detection (AD) and production (AP) asymmetries, ACP =

Araw
CP − (AP +AD). This can be conveniently achieved with the Λ0

b → (Λπ+)Λ+
c
π− control
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ACP (Λ0
b → ΛK+π−) ACP (Λ0

b → ΛK+K−)

Control mode 66 57

PID asymmetry 20 –

Fit model 27 32

Fit bias 14 4

Efficiency uncertainty 80 28

Total 110 71

Table 3. Systematic uncertainties on ACP (in units of 10−3).

mode, which is expected to have negligible CP violation. Since this mode shares the same

initial state as the decay of interest, it has the same production asymmetry; moreover,

the final-state selection differs only in the PID requirements and therefore most detection

asymmetry effects also cancel. Thus,

ACP (Λ0
b → Λh+h′−) = Araw

CP (Λ0
b → Λh+h′−)−Araw

CP (Λ0
b →

(
Λπ+

)
Λ+
c
π−) . (7.2)

The measured raw asymmetries, including the efficiency correction for the signal modes,

for Λ0
b → ΛK+π−, Λ0

b → ΛK+K−, and Λ0
b → (Λπ+)Λ+

c
π− are determined by performing

the fit with the data separated into Λ0
b or Λ0

b candidates, depending on the charge of the

p from the Λ → pπ− decay. They are found to be Araw
CP (Λ0

b → ΛK+π−) = −0.46 ± 0.23,

Araw
CP (Λ0

b → ΛK+K−) = −0.21 ± 0.10 and Araw
CP (Λ0

b → (Λπ+)Λ+
c
π−) = 0.07 ± 0.07, where

the uncertainties are statistical only. The asymmetries for the background components are

found to be consistent with zero, as expected.

Several sources of systematic uncertainty are considered, as summarised in table 3.

The uncertainty on AP +AD comes directly from the result of the fit to Λ0
b → (Λπ+)Λ+

c
π−

decays. The effect of variations of the detection asymmetry with the decay kinematics,

which can be slightly different for reconstructed signal and control modes, is negligible.

However, for the Λ0
b → ΛK+π− channel, a possible asymmetry in kaon detection, which

is taken to be 2 % [55], has to be accounted for. Effects related to the choices of signal

and background models, possible intrinsic fit biases, and uncertainties in the efficiencies

are evaluated in a similar way as for the branching fraction measurements. The total

systematic uncertainty is obtained by summing all contributions in quadrature.

The results for the phase-space integrated CP asymmetries, with correlations taken

into account, are

ACP (Λ0
b → ΛK+π−) = −0.53± 0.23± 0.11 ,

ACP (Λ0
b → ΛK+K−) = −0.28± 0.10± 0.07 ,

where the uncertainties are statistical and systematic, respectively. These are both less

than 3σ from zero, indicating consistency with CP symmetry.
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8 Conclusions

Using a data sample collected by the LHCb experiment corresponding to an integrated

luminosity of 3 fb−1 of high-energy pp collisions, a search for charmless three-body decays

of b baryons to the Λπ+π−, ΛK±π∓ and ΛK+K− final states has been performed. The

Λ0
b → ΛK+π− and Λ0

b → ΛK+K− decay modes are observed for the first time, and their

branching fractions and CP asymmetry parameters are measured. No evidence is seen for

CP asymmetry in the phase-space integrated decay rates of these modes. Evidence is seen

for the Λ0
b → Λπ+π− decay, with a branching fraction somewhat larger than predicted

by theoretical calculations [22–24], and limits are set on the branching fractions of Ξ0
b →

Λπ+π−, Ξ0
b → ΛK−π+, and Ξ0

b → ΛK+K− decays. These results motivate further studies,

both experimental and theoretical, into Λ0
b and Ξ0

b decays to Λh+h′− final states.
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f Università di Cagliari, Cagliari, Italy
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m Università di Roma La Sapienza, Roma, Italy
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