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Abstract

Rapid, accurate prediction of protein structure from amino acid sequence would accelerate

fields as diverse as drug discovery, synthetic biology and disease diagnosis. Massively

improved prediction of protein structures has been driven by improving the prediction of

the amino acid residues that contact in their 3D structure. For an average globular protein,

around 92% of all residue pairs are non-contacting, therefore accurate prediction of only a

small percentage of inter-amino acid distances could increase the number of constraints to

guide structure determination. We have trained deep neural networks to predict inter-resi-

due contacts and distances. Distances are predicted with an accuracy better than most

contact prediction techniques. Addition of distance constraints improved de novo structure

predictions for test sets of 158 protein structures, as compared to using the best contact

prediction methods alone. Importantly, usage of distance predictions allows the selection

of better models from the structure pool without a need for an external model assessment

tool. The results also indicate how the accuracy of distance prediction methods might be

improved further.

Introduction

The problem of predicting protein structure from amino acid sequence has been transformed

in the last decade from one of aspiration to one of application, although prediction methods

are not yet a routine laboratory tool. Recently, well founded predictions of 137 novel folds

were published [1]. The authors benchmarked the time for predicting the structure of a 200

amino acid protein as� 13 000 CPU core hours, which amounts to around 5 days of process-

ing on 100 cores in a supercomputing cluster, or around 50 to 100 days on a typical desktop

machine. This limitation makes structure prediction inaccessible for non-specialists and pre-

vents broader exploitation, e.g. for high-throughput protein structure prediction. Elofsson and
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co-workers developed a faster high throughput modelling pipeline, but using a less accurate

structure prediction protocol, and predicted several hundred novel folds [2]. Here we demon-

strate that successful prediction of the distances between residues allows one to predict better

structural models. More accurate structures can be generated and better models can be

selected from a pool of possible structures than when contact predictions alone are used to

constrain the models in the pool. Inter-residue distance predictions thus enhance the ability to

generate and select good quality models.

Contacts in a protein structure often involve amino acids that vary across homologs in a

correlated way, which is attributed to evolution selecting contacting amino acids to maintain

the structural stability of the protein [3] (Fig 1A). However, strong correlation can arise due

to two residues contacting a common third amino acid, referred to as a transitive effect, and

these residues can thus be falsely predicted as being in contact. During the last decade, efficient

global statistical techniques for removing the transitive effect have been developed, thus allow-

ing one to identify clearly the directly coupled positions in multiple sequence alignments

(MSAs) [3–7]. For an alignment of length L, such statistical techniques can now predict L/10

contact pairs with accuracies as high as 70 to 80% [8]. A direct result of this has been a rapid

improvement in de novo structure prediction, e.g. [1, 2], thus fulfilling the original hopes of

Valencia and co-workers [9].

Training neural networks provides further improvement to the accuracy of contact pre-

dictions. MetaPSICOV [8] uses a two-layer neural network for contact prediction (i.e. input

layer, hidden layer, output layer), with an input vector of 672 features. This feature vector

includes local properties of the amino acids under consideration, such as predicted second-

ary structure and solvent accessibility, properties of the whole sequence, such as the average

of the predicted solvent exposure, and coevolutionary scores for directly coupled amino acid

Fig 1. Co-variance between columns of a multiple sequence alignment can be used to predict inter-residue contacts and

distances and thence protein structure.

https://doi.org/10.1371/journal.pone.0205214.g001
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positions inferred from the aforementioned global statistical techniques. MetaPSICOV

pushes the accuracy of contact prediction to over 90% for the predicted top L/10 contacts,

where L in the number of amino acids in the target protein sequence [8]. Very recent applica-

tions of deep learning, i.e. multi-layered neural networks, are reported as surpassing the pre-

diction accuracy of MetaPSICOV by 16 to 23% for the top L/5 long range contacts, for the

CASP11 protein sets [10–12]. Deep learning increases the number of processing layers so the

network can learn to abstract features from the input data, which the final layer can then use

for classification. Another recent paper uses a naïve Bayes classifier to calculate the posterior

probabilities of eight coevolution analysis, which are then processed by a shallow feed-for-

ward neural network [13].

We hypothesised that pairs of spatially distant amino acids may also co-evolve. Indeed, the

literature has some evidence for this [14–16] and Pollastri and co-workers have published dis-

tance predictions [17, 18]. However, the RMSD between the actual distance and the predicted

distance by this method was over 8 for residues separated by 23 or more residues in sequence.

Moreover, ab initio models generated with this data had TM-scores of a little over 0.2. TM-

score measures the similarity of two protein structures, with 0.2 meaning the predicted struc-

ture and the native structure are unrelated. 0.5 indicating that the structures are more likely to

be the same fold than not and 0.7 or greater indicating that proteins are almost certainly the

same fold [19]. In test systems, adding distance information to contact information could

improve structure predictions significantly compared to using contacts alone, even when the

distance information was noisy [17, 18]. Thus, accurately predicting precise inter-residue dis-

tance from sequence would provide further constraints during structure prediction, with the

possibility of increased speed and accuracy (Fig 1B).

We trained four feed-forward neural network based models to distinguish residue pairs in

spatial distance ranges of 0-8 Å (i.e. contact), 8-13 Å, 13-18 Å and 18-23 Å, which together we

call DeepCDpred (deep contact distance prediction). Our method uses a similar feature vector

to MetaPSICOV but with eight hidden layers and with only one prediction stage (while MetaP-

SICOV uses two). The key development is that we predict accurate inter-residue distances,

which we show improve structure prediction, and the ability to choose better models from a

pool of candidate models.

Methods

Neural network feature vector and set up

Seven neural networks were produced, four for predicting contacting residues, as described

later in this paragraph, and one per each of the inter-residue distance bins. All networks were

trained using the same neural network architecture and inputs, but with training data appro-

priate to that distance interval. Distances were measured between the Cβ atoms (or Cα in the

case of glycine) of a pair of residues. There are 733 features as input, described in the supple-

mentary methods, and a nine-layer neural network model (i.e. one input layer, one output

layer and eight hidden layers where the first layer has 120, second has 50 and the rest have 30

neurons, S1 Fig). For the contact prediction model, networks were trained on distance inter-

vals of (0-7.9]Å, (0-8.0]Å, (0-8.1]Å and (0-8.2]Å, with the final score for any residue pair being

the average output value of all these four. For each of the three non-contact distance prediction

models (i.e. the distance intervals (8-13], (13-18], (18-23]), the final models had only one neu-

ral network per distance.

We implemented here the QUIC algorithm [20] for sparse inverse covariance estimation

to calculate amino acid direct couplings for inclusion in the feature vectors. QUIC is

similar to PSICOV [5], solving a GLASSO problem, but our tests show that it is much faster
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than PSICOV, taking on average a quarter of the time to calculate contacts for a 300 amino

acid protein, with negligible loss of amino acid contact prediction accuracy (S2 Fig). This

allows us to perform calculations on longer amino acid sequences than are achievable with

PSICOV.

Residue positions that are very close in protein sequence would be expected to be close in

the 3D structure without any need for sophisticated prediction tools. Thus, since they may

mask other significant co-evolutionary signals during neural network training, residue pairs

separated by 5 or fewer residues were ignored during training and testing, as was also done by

others [5–8].

Similarly, it is trivial to predict the distance between two residues on the same secondary

structure element, if their sequence separation is known. For the distance predictions, resi-

due pairs on the same predicted alpha helix or beta strand were ignored, to stop their trivial

distance prediction; this was done for the training, test and validation sets. In addition, a dif-

ferent minimum sequence separation was set for each distance bin. If the sequence separa-

tion of a pair is 5 amino acids, even once residues on the same secondary structure have

been ignored, their spatial separation can still be trivially predicted as highly likely to be in

distance bin 8-13 Å (S3 Fig). With a sequence separation of 8 amino acids, the distance

between them is likely to be in the range of 10-18 Å (S3 Fig, the left blue highlighted bar).

Thus, a sequence separation cut-off of 8 or more residues was used for distance bin 8-13 Å
and similarly, 13 was the minimum sequence separation for distance bin 13-18 Å. For the

18-23 Å bin a separation of 15 amino acids or more was chosen. For contact predictions, we

kept in the data set residue pairs that were predicted to be on the same secondary structure

element.

Training and testing

The main test set consists of 108 from the 150 proteins of the MetaPSICOV test set, so we can

be sure that the test proteins are not in the training set of either MetaPSICOV or DeepCDpred.

Additionally, these 108 proteins are not listed in the training set of RaptorX [11]. A chain was

removed from the MetaPSICOV test set when a sequence with>25% identity to it was found

in the training set of SPIDER2 [21], since we used SPIDER2 for secondary structure predic-

tion, which is included in our feature vector and for subsequent structural modelling. This

gave 108 protein chains ranging from 52 to 266 amino acids with 25% or less sequence identity

to each other. Based on annotation in the PDB, 87 chains are monomers in the biological unit,

and 21 are from multimeric complexes of some sort, one chain is a membrane protein. The

PDB IDs of these 108 protein chains are listed in S3 Table.

Even though the maximum sequence identity is 25% between the training and the test sets,

some of the proteins in our test set have common topology classes (and homologous superfam-

ily classes) with the training set proteins, based on CATH classification [22]. In order to test

whether our trained model has a bias towards predicting contacts and distances for structures

with training set topologies, we generated another test set, as described in supplementary

material, with 50 proteins that do not have the same topology as any of the training set proteins

of DeepCDpred, RaptorX and MetaPSICOV, which are listed in S4 Table.

The training set was chosen from the PISCES set [23], downloaded in November 2016. The

selected training set protein chains and 50 topologically independent test protein structures

were solved with no worse than 2 Å resolution, a maximum R value of 0.25, with no more than

25% pairwise sequence identity to each other or the test set, and with fewer than 400 amino

acids. Of these structures, 1701 chains were arbitrarily selected.

DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure
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The neural network training protocols are described in supplementary methods. The accu-

racy of the test set predictions was calculated as

Accuracy ¼
CorrectPredictions
AllPredictions

� 100 ¼
TruePositivesþ TrueNegatives

AllPredictions
� 100: ð1Þ

Since we make no negative predictions, i.e. we are only predicting residues to be in the dis-

tance bin, then true negatives and false negatives are both zero, and the standard formulae for

accuracy and precision (PPV) become identical.

Comparison with other methods

Structure predictions were made using only DeepCDpred contact predictions, using

DeepCDpred contact and distance predictions, MetaPSICOV predictions, NeBcon predic-

tions, RaptorX contact predictions and RaptorX contact predictions with DeepCDpred

distance predictions. As constraints, the top 3L/2 scoring contacts were used for structure pre-

dictions, irrespective of network score. The same Rosetta protocol was applied for all predic-

tions, as described in the next subsection. Residue pairs predicted in the 8-13 Å, 13-18 Å and

18-23 Å distance ranges were selected when they had a neural network score of greater than or

equal to 0.6, 0.6 and 0.7, up to a maximum of 1.5L, L, and 0.5L pairs, respectively, for 8-13 Å,

13-18 Å and 18-23 Å bins, as further described in supplementary material. For comparison,

the RaptorX server was also used for structure predictions.

Structure prediction protocol

All structures were predicted with AbinitioRelax from Rosetta [24], with constraints applied to

enforce predicted secondary structure, contacts and inter-residue distances, as described in

Supplementary Methods. Three-residue and nine-residue fragments were created using the

program make_fragments.pl from the Rosetta suite with the option excluding homologous

structures. We generated a pool of 100 candidate structures for each test protein and the

one with the lowest total Rosetta energy, including constraint energy, was selected as the pre-

diction, unless otherwise stated. The script for the protocol is given in the supplementary

material.

Determining whether certain residue types are over represented in our

predictions

Correctly predicted distances and contacts were examined for biases towards certain residue

types. For a score from our neural network of>= 0.7, we examined the ratio of the expected

distribution (E) in a given distance bin for a given structure, assuming all residue pairs were

predicted equally well, to the bias in the distribution that was actually observed (O).

E ¼
P

AB 2 d
P

all residue pairs 2 d
ð2Þ

O ¼
P

AB correctly predicted 2 d
P

all residue pairs correctly predicted 2 d
ð3Þ

In the above equations, AB is a given residue pair type and d is the distance bin to which

they are assigned based on their spatial separation in the structure under consideration. The

mean O/E over all structures was calculated for each pair type, AB. We also calculated the frac-

tion of predictions that were true positives for each pair of residue types in each distance bin.

DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0205214 January 8, 2019 5 / 15

https://doi.org/10.1371/journal.pone.0205214


Results

Distance predictions lead to improved structure prediction

Our nine-layer neural network was tested on two sets of proteins. The first set tests the net-

work’s ability on the types of proteins that it might encounter in practice, and the second set

tests the network’s ability to deal with totally novel folds. The first test set consisted of 108

proteins with 25% or less sequence identity to each other, of which 80 belong to a CATH

family homologous to one of the training proteins, 90 have the same CATH topology as a

training protein, and the remaining 18 being neither topological nor homologous to our

training set. This group represents the sort of sequences that might routinely be submitted

to a contact/structure prediction algorithm, 25% sequence identity generally being consid-

ered too low for a reliable homology model, even where family homology can be detected

[25]. The second test set was 50 proteins topologically different from the training set pro-

teins of our network and of the MetaPSICOV and RaptorX contact prediction neural

networks.

The accuracies of the distance predictions for the 108 protein test set are higher than the

accuracies of the 50 protein set (Fig 2). For the test set with 108 proteins, distance prediction

accuracies are better than the contact prediction accuracies of many other methods. For the

test set with 50 proteins, distance prediction accuracies are better than the contact prediction

accuracies of MetaPSICOV, but not as high as the RaptorX convolutional neural network (S4

Fig). Comparing with Fig 2 and S4 Fig, the accuracy of the distance predictions falls off much

more slowly than the contact predictions, e.g. for the 50 protein set, for the 8-13 Å distance

bin, there is a drop of 20 percentage points in accuracy between L/10 predictions and 1.5L pre-

dictions, whereas the equivalent drop for contact predictions for RaptorX, DeepCDpred and

MetaPSICOV is 40 percentage points.

Fig 2. DeepCDpred predicts distances with high average accuracy for both the 108 protein and 50 protein test sets used here.

https://doi.org/10.1371/journal.pone.0205214.g002
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Distance predictions lead to improved structure prediction, primarily via

better model selection

The model with the lowest Rosetta energy when modelled using distance and contact con-

straints, from DeepCDpred and RaptorX respectively, is more similar to the experimental

structure than when using contact constraints alone. This is true for both the 108 protein test

set (Fig 3A) and the set of 50 proteins topologously distinct from the training sets of RaptorX,

MetaPSICOV and DeepCDpred (Fig 3C).

Fig 3. Distance constraints improve structure predictions using Rosetta AbinitioRelax. Addition of distance constraints

improves the accuracy of the model with the lowest Rosetta energy (A) and the model closest to the experimental structure (B) for

the test set with 108 proteins. For the test set of 50 proteins, distance constraints improve the models with the lowest Rosetta energy

(C), but there is small but statistically insignificant improvement in the best model (D). For each test protein 200 structures were

generated by Rosetta. The red ‘+’ sign indicates the average TM-score.

https://doi.org/10.1371/journal.pone.0205214.g003
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Selecting models by the lowest Rosetta energy, distance constraints in addition to contact

constraints improved the mean TM-score compared to experiment by� 0.07 in the 108 pro-

tein set and� 0.03 in the 50 protein set (p-value = 9x10−9 and p-value = 0.004 in two paired t-

tests, respectively). Inclusion of distance constraints on average improves the best model (i.e.

highest TM-score compared to experiment) produced for the 108 protein test set, compared

to using constraints only (a p-value of 0.001 in a paired t-test), and has a small but statistically

insignificant improvement on the set of 50 proteins (p-value 0.158), with average TM-scores

increased by� 0.01 and� 0.008 respectively (Fig 3B and 3D).

We increased the size of the non-topologous test set of proteins from 50 to 61. The extra 11

proteins had common topology with proteins in the MetaPSICOV training set, but not with

the training set of RaptorX or DeepCDpred. The average improvement in TM score compared

to experiment for the set of 61 was� 0.02, with a p-value of 0.01 in a paired t-test. The best

model for each protein improved its TM score by an average of� 0.01, which is statistically

insignificant (paired t-test p-value 0.231). Since expanding the size of the non-topologous test

by 20% provided no additional statistical power, further analysis in the paper considers the set

of 50 non-topologous proteins. This allows a comparison with MetaPSICOV, which the set of

61 does not, due to the overlap with the training set.

Applying distance constraints in addition to contact constraints improves the quality of

models produced, increasing average TM-scores by� 11% and� 4% for the 108 and 50 pro-

tein sets, respectively, although much of this effect is achieved by the model with the lowest

Rosetta energy being close to the best model in the ensemble of models produced by Rosetta,

which is not true when contact constraints alone are used (Fig 4). With both test sets� 1.4%

of the improvement is attributable to improved modelling, with the rest attributable to model

selection.

Aliphatic residues are predicted in the contact bins more than expected by

chance, but all residue types are equally accurately predicted

To see if any pairs of residue types were disproportionately represented in our predictions,

for the 108 protein test set, we analysed all predictions with a neural network score of>= 0.7.

The contact predictions have a higher proportion of hydrophobic interactions than would

be expected given the structures under consideration, with aliphatic residues in particular

being highly represented (Fig 5). As the inter-residue distance increases, hydrophilic residues

become more prevalent in the predictions, but aliphatic residues are over-represented up to a

distance of 18 Å, with the 18-23 Å range having hydrophilic interactions disproportionately

represented, albeit not as strongly as the 0-8 range is dominated by aliphatic residues. Lysine,

and to some degree arginine and glutamate are the most disproportionately represented in the

13-18 and 18-23 Å distance ranges, with valine also continuing to be over-represented. How-

ever, the accuracy of a prediction for a given neural network score is largely independent of

the residue pair under consideration (S7 Fig).

Discussion

There is a large disparity between the accuracy of the predictions of the 108 and 50 protein test

sets for distance, contact and structure prediction. In our contact prediction data (S4 Fig), a

large part of the difference is due to the set of 50 having much lower Nf values compared to

the set of 108 (S9 Fig), where Nf is the number of non-redundant sequences (Meff) in the MSA

divided by the square root of the protein length; Meff is the number of sequences with< 80%

sequence identity with respect to each other [6]. It has been shown that there is a correlation

between the Nf value and the structure prediction accuracy [26]. Sequences were randomly

DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure
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removed from the alignments of the 108 protein set to give them the same Nf as the set of 50,

which reduced the accuracy of contact prediction by DeepCDpred, but this only accounts for

half of the difference between our two test sets (S4 Fig). The accuracy of contacts predicted by

the RaptorX server is also affected by reducing the Nf value; the size of this effect for the top

1.5L predictions is approximately a quarter of that seen in the DeepCDpred contact predic-

tions (S4 Fig).

It seems unlikely that DeepCDpred is overfitting the examples, since it was trained with

early stopping, and validation and test results give similar prediction accuracies to those of the

Fig 4. The models with the lowest Rosetta energies, when using distance together with contact constraints, are closer to the best

model in the ensemble of models than when using contact constraints alone. For each test protein 200 structures were generated

by Rosetta. The red ‘+’ sign indicates the average TM-score.

https://doi.org/10.1371/journal.pone.0205214.g004
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training data. Nonetheless, the results point to DeepCDpred having poorer generality than

RaptorX. Two obvious differences between the prediction methods are that RaptorX uses 6767

training proteins compared to 1701 used for DeepCDpred, and that RaptorX uses a residual

neural network, a type of convolutional neural network, whereas DeepCDpred uses a feed-for-

ward network. Increasing the size of the DeepCDpred training set is likely to improve its accu-

racy for contact and distance prediction. Similarly, investigating the use of alternative neural

network architectures, may also lead to improved distance predictions.

One hundred is a small number of models for the pool of candidate structures, but similar

numbers were used by others, e.g. Michel et al.[2] used 200 and Wang et al.[11] used 20. The

smaller pool size allows us to model a large number of structures quickly and thus to identify

trends. It also shows that high quality models can be produced for relatively small computa-

tional overhead showing the way to high throughput de novo modelling.

Increasing the number of candidate models from 100 to 200 gave a pool with the best mod-

els more similar to the experimental structure. This was true when using only contact con-

straints and when using contact and distance constraints, as show in Fig 4, S5 Fig and S2 Table.

Fig 5. The propensity of correctly predicted contact pairs to be of a given residue type in a given distance bin range. A: 0-8 Å, B:

8-13 Å C: 13-18 Å D: 18-23 Å. Coloured squares represent log2(<O/E>) as shown on the right hand scale. Single letter amino acid

codes are coloured according to the default ClustalX colouring scheme, i.e. hydrophobic as dark blue; tyrosine and histidine in cyan;

non-charged polar amino acids in green; acidic residues as magenta; basic aliphatic residues as red; glycine: orange; proline: yellow.

https://doi.org/10.1371/journal.pone.0205214.g005
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Increasing the pool size further might thus lead to even better models in the pool. Moreover,

for the 108 protein set, adding distance constraints unequivocally leads to the better models

having a lower Rosetta energy score and thus being quick and simple to select, as compared to

other best model selection methods (e.g. Modfold [27]). There will presumably be a point of

saturation, where the best model in the pool shows little to no improvement with increasing

pool size. We have not tested where that point lies since here the questions of interest were:

Can inter-residue distances be predicted? Will including distance constraints in a de novo
modelling protocol improve model quality? The answer to both questions seems to be yes, with

further work required to optimise protocols.

It is reasonable to question whether there is a need to pursue improved predictions of inter-

residue distance, since one might assume that it is sufficient to be able to predict all contacting

residues. It seems unlikely that the goal of predicting all contacting residues will be achievable,

since it depends currently on co-variance in residue substitution patterns and there will gener-

ally be many positions in a sequence alignment that are totally or highly conserved. The results

here demonstrate that using distance prediction can help in model selection and thus improve

the prediction of model structure above what can be achieved by the best contact prediction

method that was available at the time we undertook this work. Moreover, others report that

even in the event of knowledge of all contacts further distance information can improve de
novo modelling [17, 18]. Knowledge of why the distance between non-contacting residues can

be predicted is of interest for trying to improve predictions and also for the potential insight

into protein structure and function.

It may be anticipated that distance prediction could be achieved simply by realising that

hydrophilic residues have longer inter-residue distances, since they are on the surface and thus

in many cases on the far extreme ends of the protein from each other. However, some hydro-

philic residues are also in contact with each other on the surface of the protein and thus also

form contacts. Constant precision values across all residue pair types (S7 Fig) imply that the

fraction of correct predictions is the same irrespective of the residue types. For contacting resi-

due pairs, hydrophobic residues make up a higher proportion of correctly predicted contacts

than would be expected based on their frequency of occurrence in the proteins under analysis,

i.e. at shorter distance the network has more sensitivity for finding hydrophobic pairs. As the

distance increases the network becomes more sensitive for finding hydrophilic residue pairs. It

is not clear why there should be this difference in sensitivity, although it may reflect the relative

number of examples of the different residue pair types in each distance range, i.e. the network

can optimise its error function most easily by becoming more confident at predicting the most

abundant residue pair types in a given distance range.

Conclusion

The data show that inter-residue distances can be predicted reliably using DeepCDpred, the

method introduced here. The consequent addition of distance constraints into de novo struc-

tural modelling leads to better models than when contact predictions alone are used. Including

distance constraint terms leads to the models with the lowest Rosetta energy being much closer

to the experimental structure than when using only contact constraints together with the

Rosetta forcefield. Although others have previously pointed towards the usefulness of distance

prediction [17, 18], to our knowledge, this is the first demonstration of the practical benefit

of inter-residue distance prediction in the structure prediction problem. We anticipate that

improved prediction of inter-residue distance is possible via the most recent developments in

deep learning and by understanding the intrinsic bias in amino-acid distribution within pro-

tein structures and the effect that has on the accuracy of deep learning methods.
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Supporting information

S1 Text. Detailed explanation of the implementation. Full details of the feature vector and

network architectures for DeepCDpred are explained further here, including the software used

for the generation of the feature vector. Details of the structure prediction protocol and a sam-

ple from a constraint file are also given.

(PDF)

S1 Table. Parameters of the contact and distance constraints.

(PDF)

S2 Table. Comparison of average TM-scores of the structure pools with 100 vs. 200 models.

(PDF)

S3 Table. PDB ID list of the test set with 108 proteins.

(PDF)

S4 Table. PDB ID list of the test set with 50 proteins.

(PDF)

S5 Table. PDB ID list of additional test set with 11 proteins.

(PDF)

S1 Fig. The architecture of the neural network model adopted for amino acid contact and

distance predictions in this study.

(TIF)

S2 Fig. Contact prediction accuracy and speed comparisons between PSICOV and QUIC.

221 proteins from the training set were chosen for the comparisons and the accuracies of the

top 1.5L amino acid contact predictions of each protein for both PSICOV and QUIC is shown

in graph (a). Graph (b) shows the average contact prediction accuracies of the top scoring 1.5L

amino acid pairs. (a) and (b) indicate there is little difference between PSICOV and QUIC for

amino acid contact prediction. (c), based on the same computer (8-core i7-3770, 32 GB RAM),

PSICOV took 16.9 minutes to complete the contact prediction for each protein, on average;

while QUIC only took 6.9 minutes; especially for large proteins (>300 amino acids), QUIC is

much faster than PSICOV.

(TIF)

S3 Fig. The distribution of inter-residue distance with respect to the sequence separation

of a pair of residues. The mean and standard deviation for 435 experimental protein struc-

tures from the training set are shown. The three blue highlighted sequence separations (8, 13

and 15) are the minimum sequence separation cut-offs chosen for distance predictions in bin

8-13, 13-18 and 18-23, respectively.

(TIF)

S4 Fig. Contact prediction accuracies of both test sets (with 108 and 50 proteins). The aver-

age accuracies for the test set with 108 proteins is higher than the test set with 50 proteins. The

108 protein test set had the number of sequences in each MSA reduced to give an average Nf

value similar to that of the MSAs for the 50 protein test set. Reducing the Nf value decreased

the prediction accuracy of DeepCDpred and RaptorX, however the drop in accuracy of the for-

mer was much larger than that of the latter.

(TIF)

S5 Fig. Addition of distance constraints improves the model quality of both DeepCDpred

and RaptorX when the model is selected with Rosetta energy score. The calculations are
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for the test set of 108 proteins. The graphs show comparison of the TM-score with respect to

experimental structures of lowest energy models predicted using constraints from RaptorX,

DeepCDpred contact only, DeepCDpred contact + distance and RaptorX contact +

DeepCDpred distance predictions. For each test protein 100 structures were generated by

Rosetta.

(TIF)

S6 Fig. Addition of distance constraints improves the model quality of both DeepCDpred

and RaptorX when the model with highest TM-score is selected. The calculations are for the

test set of 108 proteins. The graphs show comparison of the TM-score with respect to experi-

mental structures of the best models predicted using constraints from RaptorX, DeepCDpred

contact only, DeepCDpred contact + distance and RaptorX contact + DeepCDpred distance

predictions. For each test protein 100 structures were generated by Rosetta.

(TIF)

S7 Fig. The precision of predicting contacts and distances between different residue types

for (a) 0-8 Å, (b) 8-13 Å, (c) 13-18 Å, (d) 18-23 Å. The scale is given on the right hand side

for each plot. Precision is calculated as the number of correctly predicted contacts for that pair

of amino acid types divided by the total number of contact predictions for that pair for the pre-

dictions with>= 0.7 network score.

(TIF)

S8 Fig. TM-scores of the models generated with different tools. Structure predictions for

Rosetta contact and Rosetta contact plus DeepCDpred distances were replicated (replica1

(r1) and replica2 (r2)). For Rosetta server predictions models were selected either by the low-

est energy score (CNS score) or the best model among the 5 structures that the server pro-

vides. For all other prediction methods, models were selected either with the lowest Rosetta

energy or the best TM-score. The calculations were performed for the test set of 108 proteins.

The upper and the lower edges of the boxes indicate the 25th and 75th percentiles, respec-

tively. The medians are shown with the central lines, the means are shown with black ‘+’

signs and the outliers are shown with red ‘+’ signs. Even though the first set of best models

which were generated with the restraints of RaptorX contact predictions (RaptorX r1) are

significantly better than the best models generated with DeepCDpred contact predictions,

replication of the structure predictions with RaptorX contacts (RaptorX r2) resulted in no

significantly different average TM-score than the predictions performed with DeepCDpred

contacts (paired t-test p-value: 0.507). The results from the RaptorX server were on average

worse than all other calculations except the use of MetaPSICOV contact restraints together

with Rosetta, presumably because CNS, used by the RaptorX server, is not as good at model-

ling structures as Rosetta is.

(TIF)

S9 Fig. Nf value distributions of both test sets (with 108 and 50 proteins). The upper and

the lower edges of the boxes indicate the 25th and 75th percentiles, respectively. The medians

are shown with the central lines, the means are shown with black ‘+’ signs and the outliers are

shown with red ‘+’ signs.

(TIF)

S1 Compressed Folder. Scripts for Rosetta structure prediction and training the neural

network.

(GZ)
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