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ARTICLE

Oxygen-dependent proteolysis regulates the
stability of angiosperm polycomb repressive
complex 2 subunit VERNALIZATION 2
Daniel J. Gibbs 1, Hannah M. Tedds 1, Anne-Marie Labandera1, Mark Bailey1, Mark D. White2,

Sjon Hartman 3, Colleen Sprigg1, Sophie L. Mogg 1, Rory Osborne1, Charlene Dambire4, Tinne Boeckx4,

Zachary Paling1, Laurentius A.C.J. Voesenek3, Emily Flashman2 & Michael J. Holdsworth 4

The polycomb repressive complex 2 (PRC2) regulates epigenetic gene repression in eukar-

yotes. Mechanisms controlling its developmental specificity and signal-responsiveness are

poorly understood. Here, we identify an oxygen-sensitive N-terminal (N-) degron in the plant

PRC2 subunit VERNALIZATION(VRN) 2, a homolog of animal Su(z)12, that promotes its

degradation via the N-end rule pathway. We provide evidence that this N-degron arose early

during angiosperm evolution via gene duplication and N-terminal truncation, facilitating

expansion of PRC2 function in flowering plants. We show that proteolysis via the N-end rule

pathway prevents ectopic VRN2 accumulation, and that hypoxia and long-term cold exposure

lead to increased VRN2 abundance, which we propose may be due to inhibition of VRN2

turnover via its N-degron. Furthermore, we identify an overlap in the transcriptional

responses to hypoxia and prolonged cold, and show that VRN2 promotes tolerance to

hypoxia. Our work reveals a mechanism for post-translational regulation of VRN2 stability

that could potentially link environmental inputs to the epigenetic control of plant

development.
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Polycomb group (PcG) proteins are essential regulators of
gene expression in eukaryotes, functioning as multiprotein
complexes to establish epigenetically silenced states on their

gene targets1–3. One of the best characterized of these complexes
is the polycomb repressive complex 2 (PRC2), which catalyses the
deposition of the repressive histone H3 lysine 27 trimethylation
(H3K27me3) mark on chromatin4,5. This modification is mito-
tically stable and therefore acts as a long-term (yet reversible)
suppressor of gene transcription. PRC2 activity controls cell
identity, developmental transitions and the establishment of
environmental memory across kingdoms4,5. Although many
PRC2 functions and gene targets have been identified, mechan-
isms underpinning signal perception and transduction via this
complex, as well as its developmental specificity, are still poorly
understood.

The canonical PRC2 comprises four subunits: ENHANCER OF
ZESTE [E(z)], SUPRESSOR OF ZESTE 12 [Su(z)12], EXTRA
SEX COMBS (Esc) and p552,4,5. E(z) is the catalytic component
with histone-methyltransferase (HMTase) activity, whilst Su(z)12
and Esc are both required for complex integrity and facilitating
methylation by E(z)2,6. A wide range of context-specific binding
partners also contribute to specificity, efficiency and robustness of
PRC2 activity2,5. In contrast to animals, plants encode multiple
copies of PRC2 subunits5,7, allowing the formation of different
complexes with distinct functions, although knowledge of how
and why these components diverged during evolution to acquire
new roles is limited. In Arabidopsis thaliana, PRC2 complexes are
classified depending on which one of three Su(z)12-like subunits
they recruit: FERTILIZATION INDEPENDENT 2 (FIS2),
EMBRYONIC FLOWER 2 (EMF2) or VERNALIZATION 2
(VRN2)5,7,8. FIS2-PRC2 inhibits seed development in the absence
of fertilization9, whilst EMF2-PRC2 promotes vegetative growth
through suppressing flowering10. VRN2-PRC2 has several
developmental functions11–13, but is best known as a key reg-
ulator of vernalization, the epigenetic process by which long-term
cold exposure promotes the transition from vegetative to repro-
ductive development14. During vernalization, VRN2-PRC2
methylates and silences the floral repressor gene FLOWERING
LOCUS C (FLC), thereby encoding a memory of cold that permits
flowering once warm temperatures return. A molecular
mechanism regulating the cold-triggered accumulation15 of
VRN2 required for this process is not known.

The evolutionarily conserved N-end rule pathway regulates pro-
tein destruction through the recognition of N-terminal degradation
sequences (N-degrons) in target proteins, which promote their
ubiquitylation by specific E3 ligases (N-recognins)16–18. Several
branches of the N-end rule pathway are known, which mediate a
broad range of growth, developmental and stress-associated pro-
cesses across kingdoms (reviewed in refs. 16,17). In plants, group VII
ETHYLENE RESPONSE FACTOR (ERFVII) transcription factors
are Methionine-Cysteine- (Met-Cys-; MC-) initiating substrates of
the arginylation (Arg)/N-end rule pathway19–21, which are regulated
by oxygen (O2) and nitric oxide (NO), similar to several REG-
ULATOR OF G PROTEIN SIGNALLING (RGS) proteins in
mammals22,23. ERFVIIs are targeted for destruction in normoxia via
O2-dependent oxidation of Nt-Cys, which involves the successive
actions of METHIONINE AMINOPEPTIDASES, PLANT
CYSTEINE OXIDASES (PCOs)24,25, ARGINYL TRANSFERASES
(ATEs), and recognition by the N-recognin PROTEOLYSIS6
(PRT6) (summarized in Fig. 1a). NO is also required for degrada-
tion21, although whether it is involved in Nt-Cys oxidation, or acts
indirectly via other factors is currently not known. Under low-O2

conditions (hypoxia), Nt-Cys oxidation is limited, leading to
increased protein accumulation and function. Thus, ERFVII stability
and activity is coupled to O2 (and NO) availability, which is

important for regulating the survival of flooding stress, other abiotic
and biotic stresses, and photomorphogenesis26–29. We hypothesized
that hypoxia may regulate further aspects of development or
environment-response through modulating the stability of other
MC-initiating regulatory proteins with different cellular functions.

Here, we identify the plant PRC2 subunit VRN2 as a substrate
of the Arg/N-end rule pathway via its conserved N-terminal Cys2
residue. Despite constitutive VRN2 expression, this post-
translational regulation confines VRN2 to the meristems of
roots and shoots under non-vernalizing and aerobic growth
conditions. We show that both submergence-induced hypoxia
and long-term cold exposure lead to enhanced VRN2 accumu-
lation throughout the plant. Cold-exposure induced several
transcriptional and post-translational changes typically associated
with hypoxia, including ERFVII stabilization and accumulation of
hypoxia-related transcripts, suggesting overlap in the cellular
response to both conditions. Thus our work identifies the N-end
rule pathway as a key determinant of tissue-specific and
environment-responsive VRN2-PRC2 activity. Furthermore,
phylogenetic and biochemical analyses provide evidence that the
N-degron of VRN2 was exposed early in angiosperm evolution
through gene duplication and N-terminal truncation of an
ancient homolog, which facilitated the expansion of PRC2 func-
tion in plants through linking the stability of Su(z)12 to the
perception of the environment.

Results
VRN2 is a substrate of the Arg/N-end rule pathway. We
identified VRN2 as a candidate target N-end rule substrate, due to
its MC-initiating N-terminus, which is conserved throughout
angiosperms (Fig. 1b). Wild type (WT) VRN2-HA expressed in an
in vitro rabbit reticulocyte system (containing functional N-end rule
pathway components19) was degraded following treatment with the
translation inhibitor cycloheximide (CHX), whereas co-treatment
with the proteasome inhibitor bortezomib (BZ), or mutation of
Cys2 to Alanine (Ala; a stabilizing residue), prevented this turnover
(Fig. 1c). VRN2-FLAG15 was also unstable in transgenic seedlings,
but stabilized by BZ, indicating it is regulated via the 26S protea-
some in vivo (Fig. 1d). To test if this regulation is linked to the N-
end rule pathway, we introduced VRN2-FLAG into prt6-1 (that
lacks PRT6 E3 ligase activity19), and observed increased protein
accumulation compared to WT (Fig. 1d). Next, we generated a
series of transgenic plants expressing WT or mutant (Ala2) VRN2-
GUS (β-glucuronidase) fusions driven by approximately 2 kb of the
native VRN2 promoter. Similarly to VRN2-FLAG, we observed
accumulation of VRN2-GUS in both prt6-1 and ate1 ate2 (that
lacks ATE activity19), as well as higher steady-state levels of mutant
Ala2-VRN2-GUS protein relative to WT VRN2-GUS in Col-0
(Fig. 1e–g and Supplementary Figure 1a, b). Transgene-specific RT-
PCR showed that there were no significant differences in WT-
VRN2-GUS or Ala2-VRN2-GUS expression in the different genetic
backgrounds, confirming that these changes in abundance relate to
post-translational control, and published microarray data19 con-
firmed that endogenous VRN2 mRNA levels are also similar across
genotypes (Fig. 1h). Histochemical staining of 7-day-old seedlings
showed that VRN2-GUS in WT is largely confined to the mer-
istematic regions of shoots and roots (Fig. 1i, j and Supplementary
Figure 2a, b). In contrast, treatment with BZ, expression in prt6-1,
or an Ala2 mutation, all led to enhanced stability and a much
broader domain of accumulation throughout seedlings and adult
plants (Fig. 1i, j and Supplementary Figure 2). This reveals that the
N-end rule pathway confines VRN2 accumulation to meristematic
tissues, despite constitutive VRN2 RNA expression19 (Supplemen-
tary Figure 3).
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VRN2 is regulated by O2 and contributes to hypoxia tolerance.
Since degradation of VRN2 via the N-end rule pathway is
dependent on its Cys2 residue, we examined the influence of O2

and NO on VRN2 stability. We observed strong post-
translational accumulation of VRN2-FLAG and VRN2-GUS in
seedlings exposed to submergence-induced hypoxia or the NO
scavenger cPTIO (Fig. 2a–d and Supplementary Figure 2a). We
also found that recombinant Arabidopsis PCOs could oxidize
in vitro the Nt-Cys residue of a peptide representing the Met1-
excised N-terminus of VRN2. Mass shifts of 32 Da were observed
in the presence of all 5 PCOs (Fig. 2e and Supplementary Fig-
ure 4a), signifying O2-dependent Cys-sulfinic acid generation,
which is required for subsequent ATE activity and recognition by
PRT625. Previous work showed that prt6-1 has enhanced hypoxia
resistance, due to the constitutive accumulation of ERFVIIs19. To

assess if ectopic VRN2 accumulation in prt6-1 also contributes to
this resilience, we isolated a new null T-DNA allele in Col-0,
vrn2-5 (Supplementary Figure 5), and generated combination
mutants for assessing seedling root tip survival following hypoxic
stress. Survival of root tips under hypoxia was much greater in
prt6-1 than Col-0, but was significantly reduced in the prt6-1
vrn2-5 double mutant (Fig. 2f). This double mutant was also more
sensitive than prt6-1 to root waterlogging (Fig. 2g), a distinct but
eco-physiologically relevant root hypoxia stress. Collectively,
these data define an O2-sensitive Cys2 N-degron in VRN2. This
N-degron restricts VRN2 accumulation to meristems, which are
proposed to be naturally hypoxic due to high metabolic activity
and oxygen consumption30. VRN2 is stabilized throughout the
plant in response to low-O2, where our genetic evidence suggests
it contributes to hypoxic stress-survival.
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Fig. 1 VRN2 is a substrate of the Arg/N-end rule pathway of proteolysis. a N-terminal processing events leading to degradation of Met-Cys- (MC)-proteins
via the Arg(R)/N-end rule pathway: MetAP methionine aminopeptidase, PCO plant cysteine oxidase (specific to plants), ATE arginyl transferase, PRT6
proteolysis 6, C* Cys-sulfinic acid (oxidised Cys); red box is gas-dependent step. b Probability plot of AA by position in VRN2-like sequences derived from
sequenced angiosperms following MUSCLE alignment, highlighting the conserved MC N-terminus (red bar). See Supplementary Data 2 for sequence data.
c In vitro cycloheximide (CHX) chase of WT and mutant (Ala2) VRN2-HA (±bortezomib; BZ). CBB Coomassie brilliant blue (showing equal loading).
d CHX-chase of VRN2-FLAG in 7-day-old seedlings ± BZ treatment, and steady state levels in prt6-1 vs WT. e, f Protein and mRNA levels of WT and mutant
(Ala2) VRN2-GUS in Col-0, prt6-1 and ate1 ate2 seedlings. g VRN2-GUS protein accumulation in Col-0, prt6-1 and ate1 ate2 shown as relative density. Data is
averaged from western blots for three independent lines for each transgene (see also Supplementary Figure 1a and b). Letters indicate one-way ANOVA;
Tukey’s test. h VRN2 mRNA expression levels in Col-0, prt6-1 and ate1 ate2, taken from published microarray data19. i Histochemical staining of 7-day-old
Col-0 or prt6-1 seedlings expressing WT or mutant (Ala2) VRN2-GUS ± BZ. Lines are the same as those presented in (e) and (f). Scale bar 500 μm. See also
supplementary Figure 2a for biological reps. j Histochemical staining of (i) 7-day-old seedling primary root tip, (ii) rosette leaf, (iii) cauline leaf and (iv)
inflorescence of Col-0 and prt6-1 lines expressing WT VRN2-GUS. Scale bar in (i), 500 μm. Source data are provided as a Source Data file
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VRN2 abundance is restricted in the absence of cold. We next
investigated whether the N-end rule pathway regulates the known
post-translational accumulation of VRN2 in response to long-
term cold exposure, which is required for vernalization14,15.
VRN2-GUS protein levels increased in Col-0 seedlings after
1 week at 5 °C, without any detectable mRNA changes (Fig. 3a).
In contrast, VRN2-GUS was already present at high levels in prt6-
1 at 22 °C, showing only a small increase during cold treatment.
This enhanced abundance was maintained throughout sub-
sequent continued cold exposure. The spatial patterning of
VRN2-GUS in seedlings after 4 weeks at 5 °C resembled that
observed in prt6-1 (or mutant Ala2-VRN2-GUS in WT) at 22 °C,
and was inversely correlated with cold-responsive pFLC::FLC-
GUS31 repression observed in the vernalization-dependent C24
background (Fig. 3b and Supplementary Figure 2c), in accordance
with FLC being repressed by VRN2-PRC2. A return to 22 °C after
4 weeks of cold exposure led to depletion of VRN2 in both WT
and prt6-1, indicating the presence of other degron(s) in VRN2
independent of the Arg/N-end rule pathway. These data reveal
that the N-end rule pathway limits VRN2 accumulation under
non-vernalizing conditions.

Molecular responses to cold-exposure and hypoxia. The pattern
of VRN2 protein accumulation in response to cold (Fig. 3b) is
similar to that observed in response to submergence (Fig. 2d). In
both conditions, the accumulation of VRN2 could be determined by
reduced degradation via its N-degron. We therefore considered
possible mechanism(s) by which long-term cold exposure might
promote stabilization of VRN2. Previous studies showed that
ALCOHOL DEHYDROGENASE (ADH), a key hypoxia-induced
protein, accumulates in cold-treated plants (including Arabidopsis,
maize and rice)32,33. Therefore, we investigated the potential
link between gene-expression regulation in response to long-term
cold and hypoxia. Using RNA seq analysis of non-vernalized vs
4-week-vernalized seedlings, we compared cold-induced transcripts
with those induced by hypoxia21. This revealed a significant overlap
in gene expression between the two conditions (p < 0.0015; hyper-
geometric test21). Approximately 20% of hypoxia-upregulated
genes21 were upregulated by long-term cold treatment, including
many of the core anaerobic-response genes that are universally
induced by low-O2

34 (Fig. 4a, b). Amongst the most highly upre-
gulated transcripts were mRNAs critical for the survival of anae-
robiosis (including ADH1 and PDC1), as well as VIN3, which
interacts with VRN2-PRC2 to promote FLC silencing during
vernalization15,35, and which was previously also shown to be
hypoxia-induced36 (Fig. 4a, b). We investigated the relationship
between vernalizing conditions and anaerobic gene expression in

more detail, by analyzing the expression of ADH1 using qPCR in
different genetic backgrounds. ADH1 was expressed at much higher
levels in prt6-1 and prt6-1 vrn2-5 compared to WT and vrn2-5
under non-vernalizing conditions (Fig. 4c), corroborating previous
studies showing ectopic accumulation of anaerobic genes in
prt6-119,20. Furthermore, ADH1 was still induced in vrn2-5 in
response to cold treatment, and was hyper-induced in prt6-1 and
prt6-1 vrn2-5 seedlings. This indicates that VRN2 accumulation in
the cold does not significantly influence ADH1 transcription, and
that other factors, which are altered in prt6-1, promote anaerobic
gene expression in response to cold.

Since ERFVII transcription factors are known substrates of
the N-end rule pathway that induce anaerobic gene expression
in response to O2-deprivation19,20,26, we examined their role in
regulating cold-triggered expression of hypoxia-associated
genes. Similarly to VRN2, cold temperatures led to strong
stabilization of the ERFVII proteins RAP2.3-HA and HRE2-HA
(Fig. 4d). Furthermore, the cold-responsive hyper-induction of
ADH1 and HB1 in prt6-1 was reverted in a prt6 erfVII27

sextuple mutant that lacks all 5 ERFVIIs (Fig. 4e, f and
Supplementary Figure 6), suggesting that the cold-induced
accumulation of ERFVIIs may control anaerobic gene induc-
tion. However, ADH1 and HB1 were still significantly
upregulated by cold exposure in prt6 erfVII, albeit to a lesser
extent than in WT (Fig. 4f and Supplementary Figure 6). These
data suggest that upregulation of anaerobic genes in the cold
could be potentiated by stabilized ERFVIIs, but that it is also
controlled by a mechanism that is independent of ERFVIIs and
the canonical hypoxia signalling pathway.

PRT6 expression is not significantly altered by cold tempera-
ture (Fig. 4b), indicating that enhanced stabilization of VRN2
and ERFVIIs is not a consequence of changes in N-recognin
E3 ligase levels. However, we found in vitro PCO enzyme
activities towards both VRN2 and ERFVII Nt-peptides were
significantly reduced at 5 °C relative to 22 °C (Fig. 4h and
Supplementary Figure 4b–d). Furthermore, NO levels were
significantly reduced in the roots of seedlings exposed to long-
term cold conditions (Fig. 4h). Since NO-depletion can
also promote accumulation of VRN2 (Fig. 2b, d) and ERFVIIs21,
we propose that cold-exposure may induce conditions that
enhance the stability of Cys-initiating N-end rule substrates,
including both VRN2 and the ERFVIIs, and that this stabiliza-
tion may be partly responsible for the observed overlap in gene
expression.

Angiosperm-specific recruitment of Su(z)12 to the N-end rule.
We explored the conservation and evolutionary origins of the
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connection between PRC2 and the N-end rule pathway. We
identified and cloned an MC-initiating VRN2-like protein
(HvEMF2c) from barley, a monocot species distantly related to
Arabidopsis, and confirmed in vitro that it harbors a functional
N-degron (Fig. 5a). However, we did not identify MC-initiating
Su(z)12 homologs in basal land-plants or in animals. This sug-
gests that O2-sensitive Su(z)12 proteins are only found in
angiosperms, although in some species, VRN2-like proteins
might evade degradation despite carrying this N-terminal
sequence, similar to the SUB1A ERFVII in rice19.

We investigated how Su(z)12 was recruited as a substrate of
the N-end rule pathway specifically in the flowering plant
lineage. VRN2 is proposed to have evolved following duplica-
tion of an ancient EMF2-like Su(z)12 gene37,38. Alignment of
Arabidopsis EMF2 and VRN2 protein sequences shows that the
MC-N-terminus of VRN2 is equivalent to an internal MC-
dipeptide in the N-terminal cap region of EMF2 21 amino acid
residues downstream of Met1 (Fig. 5b, c and Supplementary
Figure 7), that is also present in EMF2-like proteins from
gymnosperm taxa, but not in more basal land plants (Fig. 5c).
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This dipeptide sequence occurs in the basal angiosperm
Amborella trichopoda and many other angiosperm taxa, but
has diverged in some extant angiosperm groups, suggesting that
it is not important for EMF2 function (Fig. 5c and Supple-
mentary Figure 8). Collectively these phylogenetic data suggest
the internal MC dipeptide was fixed before angiosperms
evolved, giving the capacity for an ancient EMF2-like protein
to become an O2-regulated VRN2-like protein following
removal of the Nt-cap. To test this, we cloned Arabidopsis
EMF2 and showed full-length EMF2-HA was stable in vitro, but
N-terminally truncated EMF2-HA (tEMF2-HA; Fig. 5b) was
extremely unstable via its Cys2 residue (Fig. 5d, e). This was
confirmed in planta, where tEMF2-HA could only be detected
in the prt6-1 mutant despite equivalent transgene mRNA levels
in Col-0 (Fig. 5f). Moreover, this N-terminal truncation was
sufficient to couple tEMF2-HA protein accumulation to cold
exposure, similar to VRN2 (Fig. 5g). These data therefore
support a mechanism for the evolutionary co-option of Su(z)12
to the N-end rule pathway in angiosperms, via gene duplica-
tion37 and N-terminal truncation of an ancient EMF2-like
protein.

Discussion
Here, we report that flowering plants have uniquely evolved a
variant of the Su(z)12 PRC2 component—VRN2—that is regu-
lated by the O2- and NO-sensitive branch of the Arg/N-end rule
pathway. This proteolytic regulation is required to prevent ectopic
accumulation of VRN2 outside of meristems in the absence of
external stimuli such as cold or hypoxia, despite constitutive
VRN2 mRNA expression38. We show that both submergence and
cold-exposure promote VRN2 accumulation. It will now be
important to investigate in detail the connection between pro-
teolytic control of VRN2 by the N-end rule pathway and the
molecular changes that occur at known (e.g. FLC) and novel
genome-wide targets of VRN2-PRC2.

Hypoxia frequently occurs in plants during development and
in response to external abiotic stress such as flooding30,39.
Reduced oxygen availability is transduced into transcriptional
changes by the ERFVII transcription factors, which promote
hypoxia tolerance through enhancing expression of key genes
associated with anaerobiosis19,20. Here, we show that
VRN2 stability is also regulated by O2, and that it could con-
tribute to hypoxia stress-tolerance. As part of a chromatin-
modifying complex, it is possible that VRN2 may be involved in
the epigenetic control of gene expression linked to hypoxia
acclimation, or NO signalling40. Together with ERFVIIs, this
indicates that plants could modulate the transcriptional and
epigenetic control of gene expression in response to O2 and
NO availability by targeting functionally distinct proteins to the
same proteolytic pathway, and suggests others remain to be

identified41. Future studies examining the effect of physiological
fluctuations of these gases on VRN2 accumulation, and the
subsequent effect on the genome-wide targets of VRN2, may shed
light on this. It is interesting to note that VIN3, another key
protein that is transcriptionally induced by cold and essential for
the vernalization response35, is also upregulated by hypoxia and
may also therefore be required for VRN2 functions in response to
low-O2.

VRN2 was originally identified as a positive regulator of ver-
nalization, but a mechanism explaining its environmentally-
induced accumulation in response to cold temperatures has not
been described14,15. We found that long-term cold inhibits VRN2
proteolysis and that the N-end rule pathway is involved in
restricting the accumulation of VRN2 in the absence of cold
temperatures. Prolonged growth in the cold led not only to VRN2
accumulation, but also the induction of other molecular events
that are also triggered by hypoxia, including stabilization of
ERFVII transcription factors and upregulation of core anaerobic
response genes. Exposure to cold temperatures has previously
been shown to interfere with respiration through altering mem-
brane fluidity properties in mitochondria, which initiates a shift
to anaerobic metabolism32,33. Furthermore, transcriptional simi-
larities between plants subjected to either hypoxic stress, or
chemical inhibition of mitochondrial respiration, have also been
reported42. Recently it was hypothesized that cold and hypoxia
both represent an ‘energy crisis’ in plants, which may explain
similar metabolic responses43.

Given the observed similarities in the cellular response to
hypoxia and cold, we speculate that the accumulation of ERFVII
transcription factors and VRN2 during cold-exposure could be
related to biochemical changes that induce or mimic O2 limita-
tion. We also investigated O2-independent mechanisms to
explain cold-induced accumulation of VRN2 and ERFVIIs, and
found that PCO activities and NO levels are both reduced at
lower temperatures. Both of these situations could promote
accumulation of O2-sensitive N-end rule proteins even if O2 is
present. Nevertheless, further work is needed to show if and how
the N-end rule-dependent turnover of VRN2 and ERFVIIs is
modified during cold exposure.

To conclude, our work has uncovered a proteolytic mechanism
operating on the PRC2 machinery that functions specifically in
flowering plants. This was achieved through the lineage-specific
evolution of a conditional gas-sensitive N-degron in the Su(z)12
component, perhaps representing a step toward PRC2 neo-
functionalization in angiosperms. Given the key roles for VRN2
in regulating the coordination of flowering with seasonal cues,
this coupling of Su(z)12 to the Arg/N-end rule pathway may have
facilitated a connection between environmental conditions and
PRC2 activity, whilst also permitting further diversification of
PRC2 function.

Fig. 4 Transcriptional and post-translational responses to cold exposure. a Venn diagram showing overlap in upregulated genes between 4-week-
vernalized vs non-vernalized (4v > 0v) and hypoxia vs normoxia21 (hyp > norm) treated seedlings (n= 3 per treatment). Heat map shows Log2 expression
levels of 12 core anaerobic genes that are induced in both datasets (for numeric expression values, see Supplementary Data 1). b Semi-quantitative RT-PCR
analysis of genes in Col-0 seedlings treated±2 weeks vernalization, or 2 weeks vernalization followed by 1 week ‘recovery’ at 22 °C (2+ 1). VIN3 induction
serves as a control for cold exposure. c qPCR of ADH1 levels in Col-0, prt6-1, vrn2-5 and prt6-1 vrn2-5 seedlings with (4v) or without (0v) 4 weeks cold
treatment. Each bar shows the mean of 3 biological reps (dots). Expression values are shown underneath and letters indicate one-way ANOVA; Tukey’s
test (p < 0.01). d Steady state protein levels of the ERFVII transcription factors RAP2.3-HA and HRE2-HA in seedlings vernalized as in (b). e Semi-
quantitative RT-PCR analysis of genes in Col-0, prt6-1 and prt6 erfVII seedlings treated as in (b). f qPCR of ADH1 levels in Col-0, prt6-1 and prt6 erfVII
seedlings treated as in (b). Each bar shows the mean of 3 biological reps (dots). Expression values are shown underneath and letters indicate one-way
ANOVA; Tukey’s test (p < 0.01). g Fold reduction in the activities of PCO1-5 when incubated with VRN22–15 and ERFVII2–15 N-terminal peptides at 5 °C
relative to 21 °C (see also Supplementary Figure 4b–d). h NO levels (measured as DAF-FM fluorescence) in non-vernalized (0v) or 2-week-vernalized (2v)
Col-0 roots. Scale bar 50 μm. Each bar shows the mean of 4 biological reps (dots). Error bars are SEM, *p < 0.05 (t–test). Source data are provided as
a Source Data file
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Methods
Plant growth and materials. A. thaliana (Arabidopsis) seedlings were obtained
from the Arabidopsis Stock Centre (NASC), except for: VRN2-FLAG15 (from Dr.
Chris Helliwell, CSIRO, Australia), and pFLC::FLC-GUS (C24 ecotype, containing
6 kb FLC-GUS construct31, from Dr. Candice Sheldon, CSIRO, Australia). The
35S::HRE2-HA and 35S::RAP2.3-HA transgenic lines, as well as prt6-1, ate1-2 ate2-
1 and prt6-1 erfVII sextuple mutants were described previously19,21,27,28. Molecular
characterisation of vrn2-5 (SALK_201153) is described in Supplementary Figure 5.
Mutant combinations were generated by crossing, and confirmed by PCR geno-
typing and RT-PCR (primers in Supplementary Table 1). Seeds were surfaced
sterilized in 20% Parazone, plated on half-strength Murashige and Skoog (MS)
medium (1% agar, pH 5.7, grown vertically), and stratified at 4 °C for a minimum
of 2 days, before being transferred to long day (LD; 16 h L:8 h D) condition under
white fluorescent light (90–100 μmol m−2 s−1) at 22 °C, and transferred to soil after
2 weeks if necessary.

Plant phenotypic analyses. For the waterlogging assays, 12days old seedlings were
transferred to soil and grown under neutral days (ND; 12 h L:12 h D). Two replica
trays were set up with genotypes distributed quasi-randomly. After 12 further days
of growth in soil, one tray was subjected to waterlogging for 21 days (water level
maintained at the soil surface), whilst the other (control) was watered as normal

with good drainage. The fresh weight of each rosette was then measured. To
measure root hypoxia survival, seedlings were grown under SD conditions at 20 °C
on vertical 1/2 MS plates. After 4 days of growth, seedlings were placed into sealed
desiccators. 100% N2 was flushed through the desiccators at a flow rate of 4 L/min,
until oxygen levels fell to below 0.1%. After hypoxia treatment, seedlings were
returned to SD conditions for 3 further days. Roots were scored as dead if there was
no growth following hypoxia treatment.

Construction of transgenic plants. To generate C-terminally GUS-tagged VRN2
driven by its native promoter, the full genomic DNA sequence (from approx. 2 kb
upstream of the ATG and ending at the STOP codon) was amplified from seedling
genomic DNA extracts using attB-flanked primers, and recombined into pDO-
NOR201 using gateway BP clonase (Invitrogen; 11789020). The C2A mutation was
incorporated using dpnI-mediated site-directed mutagenesis, prior to mobilisation
into the destination binary vector pGWB533 using LR clonase (Invitrogen;
11791100). To create 35S::tEMF2-HA (truncated EMF2) lines, tEMF2 was ampli-
fied from seedling cDNA, directionally cloned into pE2c and mobilised into
pB2GW7. For all cloning primers see Table S1. Transformation into Agrobacterium
tumefaciens (strain GV3101 pMP90) and Arabidopsis was performed according to
established protocols. At least 8 independent transgenic plants were selected for
each construct; data from 2–3 independent T3 homozygous lines are shown.
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In vivo protein stability analyses. Total protein was extracted from un-treated or
treated 7-day-old (or appropriately vernalized) seedlings by grinding up frozen
samples directly into SDS protein extraction buffer (125 mM Tris–HCl pH 8.8, 1%
(w/v) SDS, 10% (v/v) glycerol, 50 mM Na2S2O5) using a micropestle, before cen-
trifugating and determining protein concentration in the supernatant using the
BioRad DC Protein Assay (Bio‐Rad)19. To assess the effects of submergence-
induced hypoxia on in vivo protein stability, seedlings were immersed in 2 ml
Eppendorf tubes filled with degassed water, sealed with parafilm, and incubated in
the dark at room temperature for the times indicated. To test the effects of nitric
oxide scavenging, seedlings were incubated in liquid 1/2 MS with 200 μM cPTIO
for 6 h (Enzo life science; ALX-430-001)19,21. For cycloheximide-chase assays,
seedlings were transferred to liquid 1/2 MS in 6-well microtiter plates supple-
mented with 100 mM cycloheximide (Sigma-Aldrich; C4859), 100 mM bortezomib
(ApexBio technology; A2614), both, or appropriate solvent controls. Seedlings were
then incubated at 22 °C in the light with gentle shaking, and harvested at stated
time points for protein/RNA extraction (in liquid nitrogen) or GUS histochemical
staining.

Histochemical staining. For histochemical analysis of β-Glucuronidase (GUS)
enzyme activity, transgenic Arabidopsis tissues were incubated in a buffer containing:
phosphate buffer (100mM) pH 7.0, potassium ferricyanide (2mM), potassium fer-
rocyanide (2 mM), Triton X-100 (0.1% v/v) and X-Gluc solution (5-bromo-4-chloro-
3-indolyl-beta-D-glucuronic acid, cyclohexylammonium salt, X-GLUC Direct)
(1 mM). Samples were then incubated at 37 °C in the buffer for 4–8 h. Seedlings
were cleared and fixed in 3:1 ethanol:acetic acid before mounting in Hoyer's solution
(30 g gum Arabic, 200 g chloral hydrate, 20 g glycerol, 50 ml water) before imaging on
a light microscope.

In vitro stability assays. To generate protein–HA fusions driven by the T7
promoter, cDNAs were PCR amplified from Arabidopsis or barley total cDNA and
directionally cloned into a modified version of the pTNT (Invitrogen) expression
vector (pTNT3xHA19). N-terminal variations were incorporated by changing the
forward primer (primers in Supplementary Table 1). Cycloheximide-chase assays
were then performed using the TNT T7 Coupled Reticulocyte Lysate system
(Promega; L4610)19,44, using 50 μM bortezomib in place of MG132. For Fig. 5e,
50 μM bortezomib was added at the beginning of the reaction and no cycloheximide
was used. All assays were performed at least three times.

Immunoblotting and relative quantification. Equal total protein amounts were
resolved by SDS-PAGE, and were transferred to PVDF using a MiniTrans-Blot
electrophoretic transfer cell (Bio-Rad). Membranes were probed with primary
antibodies at the following dilutions: anti-HA (Sigma-Aldrich; H3663), 1:2000;
anti-GUS (Sigma-Aldrich; G5420), 1:1000; anti-FLAG (Sigma-Aldrich; F1804),
1:1000. HRP-conjugated anti-mouse or rabbit secondary antibodies (Santa Cruz;
sc-358914 and sc-2004) were used at a titre of 1:10,000. Immunoblots were
developed to film using ECL western blotting substrate (Pierce). For quantification
of steady state levels in different mutant backgrounds, relative pixel density of
protein bands from three independent lines for each transgene was assessed using
imageJ. All blots were performed at least three times.

Analysing the activities of AtPCO1-5 in vitro. A. thaliana PCOs 1 to 5 were
expressed and purified by sequential steps of immobilized nickel affinity and size
exclusion chromatography as previously described45. The activities of each AtPCO
were examined by incubating 200 µM of peptide corresponding to the first 14
amino acids of the methionine excised N-terminus of VRN2 (VRN22–15) or
RAP2.2/2.12 (RAP22–15) with and without 0.1–0.8 µM enzyme in a bench top
thermocycler (Eppendorf) at 5 or 22 °C under aerobic conditions. Time points were
taken at regular intervals by quenching the reaction 1 in 10 with 1% formic acid,
allowing oxidation to be monitored by ultra-high performance chromatography
(UPLC)-mass spectrometry (MS). Turnover was quantified by comparing the areas
underneath the product and substrate ions extracted from the total ion current
chromatogram. UPLC-MS measurements were obtained using an Acquity UPLC
system coupled to a Xevo G2-S Q-ToF mass spectrometer (Waters) operated in
positive electrospray mode. Instrument parameters, data acquisition and data
processing were controlled by Masslynx 4.1 with source conditions adjusted to
maximise sensitivity and minimise fragmentation. Samples were injected on to a
Chromolith Performance RP-18e 100-2 mm column (Merck) heated to 40 °C and
eluted at 0.3 ml/min using a gradient of 95% deionized water supplement with 0.1%
(v/v) formic acid to 95% acetonitrile.

NO detection by fluorescence microscopy. Intracellular NO levels were visua-
lized using DAF-FM diacetate (7′-difluorofluorescein diacetate, Bio-Connect).
Seedlings were incubated in the dark for 15 min in 10 mM Tris–HCl buffer (pH
7.4) containing 50 μM DAF-FM DA and subsequently washed twice for 5 min 10
mM Tris–HCl buffer (pH 7.4). Several roots of all treatments were mounted on the
same slide to allow direct comparison. Fluorescence was visualized using a Zeiss
Observer Z1 LSM7 confocal microscope with excitation at 488 nm and emission
520 nm. Roots (0v) incubated and mounted in 10 mM Tris–HCl buffer (pH 7.4)
without DAF-FM DA were used as a negative control to set background values.

Within experiments, pinhole, gain, laser power and detector offset were identical
for all slides. Mean DAF-FM DA fluorescence pixel intensity within the root was
determined using ICY software (http://icy.bioimageanalysis.org/).

Phylogenetic analyses. EMF2 and VRN2-like sequences from flowering plants
(NCBI organism ID: angiosperms [taxid:3398]) were obtained using the Arabi-
dopsis EMF2 or VRN2 protein sequence, and sequence similarity assessed using
the NCBI (https://blast.ncbi.nlm.nih.gov) Protein Basic Local Alignment Search
Tool (BLASTP). Protein sequences representing diverse angiosperm clades (Sup-
plementary Data 2 and Supplementary Data 3) were aligned using MUltiple
Sequence Comparison by Log-Expectation (MUSCLE)46 in the programme Mac-
Vector Inc. (NC, USA). Weblogo 3.0 was used to obtain a graphical representation
of amino acid proportions at the amino-terminus of VRN247. EMF2-like sequences
from non-angiosperm plants were obtained either from genome sequences or from
sequenced transcriptomes of other species via the 1kp project48–58 (Supplementary
Data 4). Multiple sequence alignments were carried out as described above.

Reverse transcriptase PCR and qPCR. For semi-quantitative RT–PCR, RNA was
extracted from seedlings using an RNEasy plant mini kit (Qiagen; 74904) and
converted to cDNA with Superscript II Reverse transcriptase (Invitrogen; 18064-
014) using OligodT primers. PCRs were then performed with gene-specific or
transgene-specific (i.e. gene-specific forward, tag-specific reverse) primers, and
ACTIN-2 was amplified for use as a loading control. For quantitative assessment of
FLC expression, RNA was extracted from 11-day-old seedlings grown at 22 °C and
converted to cDNA as described above. Real-time quantitative RT-PCR was per-
formed in triplicate using Brilliant III UF MM SYBR QPCR Low ROX master mix
(Agilent; 600892) on an AriaMx Real-Time PCR system (Agilent) according to
manufacturer’s instructions. Relative transcript levels for ADH1 or HB1 were
determined by normalization to ACTIN. The control value was converted to 1 and
relative fold change for other lines and treatments calculated. Data shown are mean
of three biological repeats. Error bars indicate standard deviation. For primer
sequences see Supplementary Table 1.

RNA sequencing. RNA was extracted from non-vernalized (0v) or 4 weeks ver-
nalized (4v) seedlings grown on vertical 1/2 MS plates as described above. Three
biological replicates for each treatment were used for subsequent RNA sequencing,
which was carried out at Glasgow Polyomics (www.polyomics.gla.ac.uk). An Initial
QC was carried out using a nanodrop (to measure concentration) and the quality
was tested on the Agilent Bioanalyser on a RNA Nano chip to ensure RIN values
were above 8. The library was then prepared using the Illumina TruSeq mRNA kit
(polyA selection), before being analysed using the Qubit and the bioanalyser HS
DNA chip. Samples were pooled and sequenced on the HiSeq 4000. 150 bp reads
(75 × 2 per fragment) were generated in fastq format, and aligned to the Arabi-
dopsis genome (TAIR10), and then analysed using Kallisto59 (https://pachterlab.
github.io/kallisto/about) before being processed using the R package, DESeq260

(https://bioconductor.org/packages/release/bioc/html/DESeq2.html). DESeq2 was
used to compare pairs of samples and generate the final set of excel spreadsheets
showing fold change differences. For subsequent analyses the gene list was filtered
for genes upregulated in 4v by at least 1.5 fold, with a p value < 0.05. Venn dia-
grams of overlapping gene sets were generated using Venny 2.1, and expression
heatmaps created using the BAR HeatMapper tool (https://bar.utoronto.ca/ntools/
cgi-bin/ntools_heatmapper.cgi). The hypergeometric test used to determine the
significance of overlap measures the probability of observing a 65 or more gene
overlap between two lists of length 2101 and 342 chosen at random out of 15,898
genes. 2101 is the number of cold upregulated genes that are also on the ATH1
microarray used in Gibbs et al.19, and 15,898 is the genes that were induced by
hypoxia in Gibbs et al.19.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq data is available at NCBI GEO database with accession code GSE123459.
The source data underlying all figures can be found in the Source Data file.
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