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Abstract
The regeneration of peripheral nerves comprises complicated steps involving a
set of cellular and molecular events in distal nerve stumps with axonal sprouting
and remyelination. Stem cell isolation and expansion for peripheral nerve repair
(PNR) can be achieved using a wide diversity of prenatal and adult tissues, such
as bone marrow or brain tissues. The ability to obtain stem cells for cell-based
therapy (CBT) is limited due to donor site morbidity and the invasive nature of
the harvesting process. Dental pulp stem cells (DPSCs) can be relatively and
simply isolated from the dental pulps of permanent teeth, extracted for surgical
or orthodontic reasons. DPSCs are of neural crest origin with an outstanding
ability to differentiate into multiple cell lineages. They have better potential to
differentiate into neural and glial cells than other stem cell sources through the
expression and secretion of certain markers and a range of neurotropic factors;
thus, they should be considered a good choice for PNR using CBT. In addition,
these cells have paracrine effects through the secretion of neurotrophic growth
factors and extracellular vesicles, which can enhance axonal growth and
remyelination by decreasing the number of dying cells and activating local
inhabitant stem cell populations, thereby revitalizing dormant or blocked cells,
modulating the immune system and regulating inflammatory responses. The use
of DPSC-derived secretomes holds great promise for controllable and
manageable therapy for peripheral nerve injury. In this review, up-to-date
information about the neurotrophic and neurogenic properties of DPSCs and
their secretomes is provided.

Key words: Dental pulp stem cells; Secretomes; Cell-based therapy; Cell-free therapy;
Peripheral nerve injury
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Core tip: The distinct developmental pathway of dental pulp stem cells (DPSCs) from
neural crest cells results in a cell type that can be participate in neural tissue
regeneration. The efficacy of using DPSCs for peripheral nerve repair (PNR) is strongly
influenced by boosting trophic factors that promote axonal growth and regeneration and
provide direct and indirect protection against cell death. Recently, encouraging results
from different studies indicate that DPSC secretomes have reparative and protective
properties comparable with their cellular counterparts in PNR. The use of DPSC
secretomes as a safe and possibly more valuable substitute for cell-based therapy
approaches is a novel therapeutic perspective.

Citation: Sultan N, Amin LE, Zaher AR, Scheven BA, Grawish ME. Dental pulp stem
cells: Novel cell-based and cell-free therapy for peripheral nerve repair. World J
Stomatol 2019; 7(1): 1-19
URL: https://www.wjgnet.com/2218-6263/full/v7/i1/1.htm
DOI: https://dx.doi.org/10.5321/wjs.v7.i1.1

INTRODUCTION
Structurally, the nervous system comprises two main components, the peripheral
nervous system (PNS) and the central nervous system (CNS). The CNS involves the
spinal  cord  and  brain  and  acts  as  the  motor  output  and  center  for  all  sensory
perception. The low regenerative capacity of the CNS makes injury to these regions
permanent because the damaged neurons undergo degenerative cell death and are
not substituted[1]. The PNS includes the sensory nerves, motor nerves and ganglia
outside the spinal cord and brain. The peripheral nerves transfer signals throughout
the body and the spinal cord. These signals are sent to the brain and provide sensory
information  when  a  reflex  response  is  provided[2].  The  proper  function  and
maintenance of peripheral nerves are primarily controlled by cells other than neurons,
specifically,  Schwann cells (SCs) that surround the nerves and release important
trophic factors, such as nerve growth factor (NGF) which is important during the
process of nerve repair and is responsible for proliferation, growth regulation and
survival of target neurons[3].

Peripheral nerve injury (PNI) may result in the loss of motor function, sensory
function, or both. Such injury leads to neurapraxia, axonotmesis or neurotmesis and
may occur as a result  of  acute compression, trauma, iatrogenic induction during
surgical  procedures,  diabetes  or  other  health  conditions  such  as  Guillain-Barre
syndrome.  Patients  with  PNI  encounter  several  challenges,  ranging  from  mild
discomfort  to  long-term  functional  defect.  During  end-organ  denervation,
reinnervation can occur in two ways: through collateral branching of unbroken axons
or through regeneration of the damaged axon[4]. Collateral branching occurs in cases
where 20%-30% of the axon' cells within a nerve are damaged and is considered the
main recovery mechanism. In injuries disturbing more than 90% of the axon' cells
within  a  nerve,  axonal  regeneration  is  the  primary  method  of  recovery[5].  To
accomplish full recovery, the axon undertakes three main processes: clearing of the
distal  stump  or  Wallerian  degeneration,  axonal  regeneration,  and  end-organ
reinnervation. Poor functional consequences usually experienced by patients with
PNI result from the failure of any of these processes[6].

SCs play fundamental roles in the maintenance and survival of healthy axons and
in axonal regeneration, and they transfer essential molecules across the axons. They
produce a variety of neurotrophic factors that interact with tyrosine kinases and other
receptors and modify the neuron gene expression profile to enhance regeneration[7].
Within healthy nerves, NGF has a low expression level, but it is upregulated in SCs
during  injury.  This  factor  promotes  proliferation  and  growth  of  certain  target
neurons[6]. Many neurotrophic factors have been discovered in neurons and in SCs,
and they function to improve cell survival through apoptosis prevention mechanisms
and enhancing regeneration processes[8]. Furthermore, studies have evaluated SCs for
engraftment  and  myelination  of  injured  nerves  in  animal  models,  providing  a
foundation  for  axonal  regeneration  and  functional  recovery[9].  However,  SC
harvesting is limited for multiple reasons; among them the need to sacrifice one or
more functional nerves for SC isolation with subsequent neuroma formation, donor
site  morbidity  and loss  of  sensation,  thereby leading to  a  demand for  other  cell
sources[10].
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Adult stem cells are considered multipotent undifferentiated cells that have the
ability to self-renew and differentiate into several cell lineages. These adult cells have
been successfully isolated from different tissues, such as neural, bone, retina, skin and
dental tissue. Adult mesenchymal stem cells (MSCs) can be isolated from a wide
range of tissues, such as bone marrow (BMSCs), adipose tissue (AMSCs) and dental
tissues. Postnatally, dental stem cells can be isolated from different dental tissues for
example from dental pulp tissue (DPSCs), human exfoliated primary teeth (SHED)[11],
the tissue of the apical papilla (SCAP)[12] and periodontal ligament surrounding the
roots of teeth (PDLSC)[13]. The ability of MSCs to restore injured tissue is generally
related to their chemokine surface receptors which enable them to migrate toward
injured tissue under the influence of growth factors or chemokines secreted by the
damaged target  organ.  MSCs have immune-modulatory,  anti-inflammatory and
multilineage differentiation potential [14,15].

MSCs and their  secretomes,  which include paracrine  factors  secreted into  the
extracellular matrix, have been extensively studied for their potential to promote
nerve regeneration.  In  2013,  Teixeira  et  al[16],  suggested that  MSCs isolated from
Wharton jelly of the umbilical cord, bone marrow or adipose tissue are capable of
nerve repair due to their differentiation ability and multipotency. In addition to their
differentiation potential, MSCs are capable of secreting neuroregulatory factors that
promote  neurogenesis  and  survival  of  glial  cells  and  neurons.  However,  the
transplanted cells  cannot survive long;  therefore,  most  of  the attention has been
focused on the bioactive molecules secreted by MSCs, including growth factors and
cytokines. These factors are secreted into the extracellular matrix which is actively
involved in the guidance, regulation and control of tissue homeostasis, development
and regeneration[17].

DPSCs are a neural crest derived cells that possess MSC properties[18]. DPSCs are
easily harvested and isolated from extracted teeth. Storage and cryopreservation of
DPSCs are essential steps for banking of these cells for future application and use[19,20].
DPSCs have the ability to differentiate into multiple cell lineages with the potential to
differentiate into neural cells. Surprisingly, DPSCs in an undifferentiated state can
express  neural  markers,  such  as  S100,  β-III-tubulin  and  NGFR  p75[21].  Under
appropriate conditions, DPSCs have been successfully differentiated into SCs and
acquire both neuronal morphology and function. It was found that DPSCs express
characteristic SC markers, such as laminin and CD104[22]. Moreover, they promote
neurite outgrowth of trigeminal neurons and rescue motor neurons in spinal cord
injury models  and exhibit  typical  SC interactions with neurons,  such as  neuritis
myelination. Furthermore, they are able to secrete a range of neurotrophic factors
including vascular endothelial growth factor (VEGF), brain-derived neurotrophic
factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic
factor  (GDNF) and NGF.  These  properties  together  with their  availability  make
DPSCs an auspicious tool for cell-based therapy (CBT) for PNI[23].

DPSC-conditioned medium (CM), i.e., the cell culture supernatant (Figure 1), was
previously regarded as waste that contains cell debris, but now, it recognized that CM
contains the regenerative ambience of secretomes. Immune-regulation, anti-fibrotic,
and anti-apoptotic properties; the ability to stimulate angiogenesis and neurogenesis;
and a variety of biological activities have been attributed to secretomes[24-28]. In this
review, we will discuss therapeutic application of DPSCs and their secretomes for
peripheral  nerve repair  (PNR).  Where  relevant,  comparisons between CBT with
DPSCs and cell-free therapy (CFT) using secretomes will be noted. We will briefly
summarize  the  neurogenic  and  neurotrophic  properties  of  DPSCs  and  their
secretomes and then summarize the main differences between CBT and CFT.

MECHANISMS OF PHYSIOLOGIC PNR AND TREATMENT
METHODS
The PNS has an intrinsic repair and regeneration capability; however, this ability is
restricted and depends on many factors, such as the mechanism of injury, age of the
patient  and especially  the  proximity  of  the  injury to  the  nerve cell  body[29].  PNI
accompanied by sensory disturbance or pain in the orofacial region is considered a
major clinical challenge and may lead to permanent disability[30]. Distal nerve stump
denervation for prolonged periods, especially in large gaps, is often accompanied by a
decrease in the number of SCs; therefore, the outcomes following PNI remain poor.
The cell bodies of axons after nerve transection start to swell in an attempt to address
the increased metabolic demand necessary for regeneration and some nerve cells will
shift to neuronal cell apoptosis. Then, SCs, which are considered the principal glial
cells of the PNS, start to proliferate, convert to a phagocytic phenotype and begin to
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Figure 1

Figure 1  Schematic diagram representing the steps of obtaining cell-free conditioned medium from dental
pulp stem cells. The dental pulp stem cells (DPSCs) were plated onto culture vessels and grown in culture medium
containing 10% fetal bovine serum. When adherent cells reach 80%-90% confluence, the medium was discarded and
the cells washed with phosphate-buffered saline. Then, the DPSCs were incubated in α MEM serum-free medium
and incubated for 72 h. The supernatant representing the conditioned medium was collected and centrifuged, filtered
and concentrated.

attract circulating macrophages to the site of damage. These important steps serve to
remove axonal and myelin debris from the distal stump in an attempt to prepare the
injury site for the regenerating axon. At the same time, SCs start to secrete growth
factors, which create favorable environmental conditions for nerve regrowth toward
the  target  tissue[31,32].  Thus,  nerve  regeneration  is  a  complicated  process  that  is
regulated through the interplay of complex cell signaling processes. These signaling
processes direct SC migration and axonal outgrowth to bridge the nerve gap between
two ends of transected peripheral nerve stumps.

Any interruption during this process might lead to down regulation of the growth
factors and loss of axonal regeneration[33,34]. On the other side, the denervated target
organ will undergo a fatigue of trophic factors, atrophy of muscle fibers and apoptosis
of  satellite  cells[35].  Treatment  modalities  such  as  braces  or  splints,  electrical
stimulators,  physical  and  occupational  therapy  and  exercise  are  insufficient[36].
Surgical  treatments  of  PNI  with  autologous  nerve  grafts  is  considered the  gold
standard; however, this treatment has the disadvantage of donor site morbidity, and
available  grafts  may  be  limited  in  length  and  there  is  a  potential  for  neuroma
formation.  Today,  complete  recovery  is  rare  despite  all  the  types  of  available
treatment  modalities,  and these  limitations  increase  the  demand for  alternative
modalities  (Figure  2)  for  nerve  reconstruction [37 -40].  Currently,  meticulous
microsurgical repair is the best choice, especially with the use of tensionless epineural
sutures.  Nevertheless,  in  the  presence of  a  wide nerve gap at  which end-to-end
suturing is impossible, autologous nerve grafting should be considered the optimal
solution[41]. Nerve injuries should be repaired as quickly as possible because any delay
in the repair process may have a significant detrimental effect on sensory and motor
recovery[42].

SOURCES OF STEM CELLS FOR PNR
Stem cells, undifferentiated cells that are capable of differentiating into specific and
specialized cell types, can be allocated into several categories: (1) Embryonic stem
cells (ESCs) obtained from the embryoblast of a blastocyst; (2) induced pluripotent
stem  cells  (iPSCs)  created  directly  from  adult  cells  reprogrammed  to  become
embryonic-like pluripotent cells; and (3) adult stem cells, including hematopoietic
stem cells and MSCs. ESCs, iPSCs, MSCs and neural stem cells (NSCs) have been
studied in vitro and in vivo for their ability to aid in nerve repair. ESCs promoted the
repair of a 10-mm gap in rat sciatic nerve in a histological, electrophysiological and
molecular study[43]. SCs-like precursors were generated from ESCs in models of PNR
in vitro,  and these cells  expressed myelin protein[44].  When NSCs were seeded in
chitosan, they give results comparable with autografts in repairing a 10-mm nerve
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Figure 2

Figure 2  Schematic diagram showing a strategy to promote regeneration of bisection peripheral nerve injury
using guided nerve conduit with incorporation of dental pulp stem cells and neurotrophic factors. The
proximal and distal nerve stumps (light green color) are sutured into the two ends of artificial nerve conduit (peach
color). The conduit mimics the structures and components of autologous nerves and bridging the nerve gap to
support the growth and regeneration of neural cells. The microenvironment of the conduit should contain nutrients,
cytokines and growth factors (extracellular matrix, hydrogel and neurotrophic factors) as well as cellular elements
(dental pulp stem cells).

gap[45]. Additionally, iPSCs can be used to efficiently repair a 10-mm nerve gap and
produce functional neural crest cells[46].

Despite  the  fact  that  ESCs  have  unique  characteristics,  such  as  an  unlimited
quantity and pluripotency, the clinical application of these cells has been restricted by
safety problems, such as immunogenic reactions, ethical concerns, low efficiency,
tumorigenicity and inadequate availability[47]. Compared with ESCs, the use of MSCs
in regenerative medicine is accompanied by fewer ethical issues, considering the risk
of teratoma formation, the sourcing of the cells and undesired cell differentiation. The
ability  of  MSCs  to  differentiate  into  different  cell  lineages  with  specific  and
predetermined  environmental  conditions  and  to  exhibit  immunosuppressive
properties has enabled their fruitful transplantation into a well-matched donor[14,15].
Allogeneic MSCs are comparable to autologous MSCs from nonhuman primates and
were not rejected[48].

Recently,  in  CBT  for  PNI,  emphasis  has  been  given  to  creating  satisfactory
environmental conditions for axon regeneration. The goal is to increase SCs number
and  activity  because  they  are  the  orchestrators  of  PNR  and  to  prevent  their
senescence[34]. Achieving sufficient numbers of autologous SCs for culture requires
healthy nerve scarification and extended periods of expansion and purification that
subsequently delay the repair process. Prolonged denervation leads to loss of SC-
mediated axonal  support  and apoptosis  of  the cell  body in the peripheral  nerve.
Therefore, autologous transplantation of SCs is considered impossible[49,50]. Optimal
stem cell  criteria  for  PNR should include that  cells  are easily accessible,  rapidly
expanded in vitro,  easily integrate into host tissue and are capable of survival in
vivo[51].

The potential  of MSCs to regenerate injured tissue is basically related to three
mechanisms: “homing”, which refers to the ability of stem cells to migrate to the
target organ due to chemical gradients[52]; their ability to self-renew and the potential
for multilineage differentiation; and a paracrine mechanism via secretion of a broad
array of bioactive factors[53,54].  In tissue engineering and/or regenerative medicine
applications, engrafted stem cells are susceptible to ischemic attack, and this may lead
to limited paracrine secretion and function and poor survival of grafted cells[55]. Recent
research has shown that the paracrine effects of MSC secretomes are an important
factor  in  CBT  and  may  have  a  direct  or  indirect  influence  on  the  surrounding
microenvironments[56-58].

DENTAL PULP STEM CELLS FOR PNR AND
REGENERATION
Alge et al[59], compared DPSCs and BMSCs and reported that DPSCs were superior in
all examined properties, including proliferation, differentiation and mineralization
potential. Additionally, Mead et al[60], confirmed that DPSCs exhibit significantly more
neuroprotective and neuritogenic effects on retinal ganglion cells than BMSCs or

WJS https://www.wjgnet.com January 15, 2019 Volume 7 Issue 1

Sultan N et al. Dental pulp stem cells for peripheral nerve repair

5



AMSCs;  they  also  concluded that  DPSCs secreted higher  amounts  of  numerous
growth factors, such as containing BDNF, NGF, VEGF and GDNF, which play pivotal
roles  in  neuroprotection  and  neuritogenesis.  They  concluded  that  MSCs  have
distinctive neurotrophic gene expression profiles, but specifically, DPSCs expressed
prostaglandin E2 receptor (EP2) at higher levels than both BMSCs and AMSCs. EPs
have a role in the release and synthesis of neurotrophins from different cell types.

DPSCs share a common origin with peripheral nerve glial progenitor cells[61]. This
feature makes these cells a very interesting choice for PNR. Nestin expression in
DPSCs is well documented and suggests the ability of these cells to differentiate into
neuronal  lineages because they originate  from neural  crest  cells.  DPSCs express
neuronal markers, such as neurofilament (NF), ΒIII-tubulin and glial fibrillary acidic
protein (GFAP). This indicates that there is a great similarity in membrane properties
between DPSCs and neuronal cells[62,63]. Moreover, when DPSCs were grown on non-
adherent  culture  plastic,  they  reorganized  from  a  uniform  cell  monolayer  and
switched  to  a  more  quiescent  state  distinguished  by  the  presence  of  spheroid
structures similar to neurospheres, which stained positive for nestin[64-67]. Therefore,
DPSCs are a heterogeneous population ranging from neuroblast-like to fibroblast-like
cells[68,69]. The high expression of neurotransmitter receptors and neural markers by
DPSCs suggest that these cells vigorously respond to neural environmental signals,
promoting re-establishment of functional nerve conductivity[70-72].

Martens et al[23], confirmed the potential of DPSCs to differentiate into SCs in vitro
that efficiently myelinated dorsal root ganglion neurons, a result confirmed by an
ultrastructural TEM analysis. Regarding the significant role that SCs play in axonal
peripheral nerve regeneration and protection and the obstacles in their maintenance
and harvesting,  the  use  of  DPSC-derived autologous SCs may be considered an
important  step  in  designing  new treatments  for  PNI.  One  of  the  DPSC-derived
neurotrophic  factors  is  GDNF  which  reverses  the  symptoms  associated  with
neuropathic pain and exerts a powerful analgesic effect[73]. Small fiber neuropathy was
treated using a small molecule modulator of ligand-induced GFRα/RET receptor
signaling through a topical application[74].

A literature search was performed in September 2018 in the PubMed database. The
following keywords were used: dental pulp stem cells[Title/Abstract] AND nerve
repair[Title/Abstract], and the search retrieved 6 results and searching with keywords
dental  pulp  stem cells[Title/Abstract]  AND nerve  regeneration[Title/Abstract]
retrieved  12  results.  Exclusion  of  duplicate  and  review  articles  yielded  15
results[14,23,60,75-86]. Overall, 8 studies[14,75-81] were found that tested in-vivo and in-vitro
application of DPSCs (Table 1), 2 studies[82,83]  were conducted in-vivo  with animal
models (Table 2) and 5 studies[23,60,84-86] only performed cell culture tests (Table 3). The
source of stem cells, target tissue, study model, and objective and outcomes of the
retrieved studies were included and are described in the abovementioned tables.

PARACRINE EFFECT OF MESENCHYMAL STEM CELLS
The paracrine effect of MSCs is mediated through their secretomes to promote the
repair processes[87,88]. Secretomes contain a broad range of bioactive soluble factors
with  anti-apoptotic ,  anti-f ibrotic ,  angiogenetic ,  chemo-attractive  and
immunomodulation properties,  and these components include free nucleic acids,
soluble  proteins,  extracellular  vesicles  and  lipids.  Extracellular  vesicles  can  be
subdivided into microvesicles (MVs) and exosomes (Figure 3)[89].

Exosomes, MVs and apoptotic bodies are secreted vesicles that can be distinguished
from each other  by  morphology and size.  Exosome sizes  range  from 40-100  nm
whereas MV sizes range from 100-1000 nm and apoptotic bodies are more than 1000
nm in size[90]. Exosomes are usually derived from multivesicular bodies, while MVs
are formed by plasma membrane budding and anti-apoptotic bodies via blebbing of
the plasma membrane of dying cells[91]. Exosomes and MVs usually contain proteins,
lipids,  mRNAs and microRNAs which are important  in cell-cell  communication,
Exosomes exert their action by delivering their contents directly into cells without the
need for  specific  receptor expression.  Bilayer membrane encapsulation provides
protected environmental conditions that allow them to travel within the body without
degradation[92].  Mead et al[93],  highlighted more than 40 surplus miRNAs in MSCs
compared with fibroblast exosomes, suggesting that the combination of miRNAs may
responsible for exosome mediated neuroprotection[94].

Nakano et al[95] designed genetically engineered MSC secretomes and reported that
these cells were able to secrete hepatocyte growth factor (HGF), insulin-like growth
factor-1 (IGF-1), transforming growth factor-β (TGF-β), and VEGF, which are closely
related  to  neurite  outgrowth  and  neuronal  survival  in  vitro.  After  MSCs
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Table 1  Studies retrieved from PubMed database evaluating the effect of DPSCs on peripheral nerve repair or regeneration both in-vivo
and in-vitro

Author
(publication year)

Source of stem
cells Target tissue Study model Objective Outcome

Carnevale et al[14],
2018

In-vivo Human STRO-1+ /c-
Kit+ /CD34+DPSCs
expressing P75NTR,
nestin and SOX-10

Sciatic nerve defect Animal rat model To demonstrate the
ability of human
STRO-1+ /c-Kit+

/CD34+ DPSCs
expressing P75NTR,

nestin and SOX-10 to
promote axonal

regeneration.

The cells promoted
regeneration and

functional recovery
of sciatic nerve

defects after injury.

In-vitro Human STRO-1+ /c-
Kit+ /CD34+DPSCs
expressing P75NTR,
nestin and SOX-10

To differentiate into
SC-like cells

In-vitro culturing of
DPSCs and their
differentiation to

SCs

To demonstrate the
ability of Human
STRO-1+ /c-Kit+

/CD34+ DPSCs
expressing P75NTR,

nestin and SOX-10 to
differentiate into SC-

like cells.

Under appropriate
conditions, the cells
differentiated into

SC-like cells

Kolar et al[75], 2017 In-vivo Adult rat SCs;
Human SCAP,

DPSCs and PDLSC

10 mm nerve gap
defect in a rat sciatic

nerve

Sciatic nerve injury
model

To demonstrate the
ability of human

SCAP, DPSCs and
PDLSC to promote
axonal regeneration

using nerve
guidance conduit of

14 mm length.

All the stem cell
types significantly

enhanced axon
regeneration after
two weeks. SCAP

are the optimal
dental stem cell type
for peripheral nerve

repair.

In-vitro CM from
unstimulated or

stimulated human
SCAP, DPSCs and

PDLSC

Differentiated
human

neuroblastoma SH-
SY5Y cell line

In-vitro neurite
outgrowth assay

To examine the
biological activity of

the conditioned
medium for

unstimulated and
stimulated human
SCAP, DPSC and

PDLSC.

Quantification of the
neurite outgrowth

showed that
unstimulated and
stimulated human
SCAP, DPSCs and
PDLSC increased

both the percentage
of cells producing
neurites and the

total neurite
outgrowth length.

Omi et al[76], 2017 In-vivo DPSCs isolated from
the incisor teeth of 6-

wk-old male rats

Sciatic nerve;
Sensory nerve fibers;

Sural nerves

Streptozotocin-
induced diabetic

rats.

Investigated
whether the

transplantation of
DPSCs ameliorated
long-term diabetic
polyneuropathy in

streptozotocin-
induced diabetic

rats.

Significant
reductions in the

sciatic
motor/sensory

nerve conduction
velocity, increases in

the current
perception

threshold, and
decreases in

capillary density in
skeletal muscles and

intra-epidermal
nerve fiber density.

Sural nerve
morphometrical
analysis revealed

that the
transplantation of

DPSCs significantly
increased the myelin

thickness.

In-vitro DPSCs isolated from
the incisor teeth of 6-

wk-old male rats

Dorsal root ganglion
neuron were

cultured for use in
neurite outgrowth
with DPSC-CM;

Immortalized adult
Fischer rat SCs were
cultured with DPSC-

CM

In-vitro neurite
outgrowth assay;

Cell viability assay

Evaluation of
neurite outgrowth.
Analysis of myelin-

related protein
formation in

immortalized adult
Fischer rat SCs.

DPSCs-CM
promoted the

neurite outgrowth of
dorsal root ganglion
neurons. Increased

the viability and
myelin-related

protein expression
of SCs.
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Sanen et al[77], 2017 In-vivo SCs derived from
differentiated
human DPSCs

15-mm rat sciatic
nerve defects

Sciatic nerve injury
model

Evaluated the
performance of SCs

derived from
differentiated

human DPSCs in a
rat model of PNI.

Immunohistochemis
try and

ultrastructural
analysis revealed in-

growing neurites,
myelinated nerve
fibres and blood
vessels along the

construct.

In-vitro SCs derived from
differentiated
human DPSCs

Human
microvascular

endothelial cell line
(HMEC-1)

Alamar Blue cell
proliferation assay;

Transwell migration
assay; Tube

formation assay

Investigated the
neuroregenerative

and the
proangiogenic

capacities of SCs
derived from
differentiated

human DPSCs.

The endothelial cell
line HMEC-1 had

proliferated
significantly more in

the presence of
conditioned medium
from human DPSCs
and differentiated

human DPSCs
compared with
those in control

medium.

Hei et al[78], 2016 In-vivo Schwann-like cells
were derived from

human DPSCs;
Human DPSCs

3 mm - wide crush
injury was inflicted

at a distance of
approximately 10

mm from the mental
foramen

Male Sprague-
Dawley rats crush-

injury site

To investigate the
effect of Schwann-
like cells combined

with pulsed
electromagnetic field
on peripheral nerve

regeneration.

Schwann-like cells,
human DPSCs with
or without pulsed
electromagnetic
field, and pulsed

electromagnetic field
only improved

peripheral nerve
regeneration.

In-vitro Schwann-like cells
were derived from

human DPSCs;
Human DPSCs

Schwann Cells Cell culture dishes To demonstrate the
ability of hDPSCs to

differentiate into
Schwann - like cells

and demonstrate
glial character with

expression of
CD104, S100, GFAP,
laminin and p75NTR.

Successful
morphological

differentiation of
hDPSCs toward

Schwann - like cells.

Yamamoto et al[79],
2016

In-vivo Human mobilized
DPSCs

5-mm gap of the left
sciatic nerve

Rat sciatic nerve
defect model

To investigate the
effects of human
mobilized DPSC

transplantation on
peripheral nerve

regeneration using
9-mm collagen

conduit.

Human mobilized
DPSCs promote

axon regeneration
through trophic

functions, acting on
SCs and promote

angiogenesis.

In-vitro CM of human
mobilized DPSCs

Rat SCs (RT4-
D6P2T)

Migration,
proliferation, and

anti-apoptotic assays

To investigate the
trophic effects of
mobilized human

DPSCs on
proliferation,

migration and anti-
apoptosis in SCs

The human
mobilized DPSCs-
CM significantly

enhanced
proliferation and
migratory activity

and decreased
apoptosis of RT4-

D6P2T cells.

Askari et al[80], 2014 In-vivo Human DPSCs
transfected with a

tetracycline-
inducible system

expressing
oligodendrocyte

lineage transcription
factor 2 gene

Sciatic nerve
demyelination

experiment

Mouse model of
local sciatic

demyelination
damage by
lysolecithin

To investigate if the
tetracycline-

regulated expression
of oligodendrocyte

lineage transcription
factor 2 gene
transfected in

human DPSCs can
lead to mouse sciatic
nerve regeneration

upon
transplantation.

Human DPSCs-
derived

oligodendrocyte
progenitor cells have
relevant therapeutic

potential in the
animal model of

sciatic nerve injury.
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In-vitro Human DPSCs Oligodendrocyte In-vitro plasmid
construct and
transfection

DPSCs were
transfected with
oligodendrocyte

transcription factor 2
which play

important role in
differentiation of

DPSCs to
oligodendrocyte
progenitor cells.

Exogenous
expression of the
oligodendrocyte

lineage transcription
factor 2 gene by a

tetracycline-
regulated system

could be used as an
efficient way to

induce the
differentiation of

DPSCs into
functional

oligodendrocytes.

Dai et al[81], 2013 In-vivo SCs, AMSCs, DPSCs,
and the combination
of SCs with AMSCs

or DPSCs

15-mm-long critical
gap defect of rat

sciatic nerve

Sciatic nerve injury
model

To test their efficacy
in repairing PNI 17-
mm nerve conduit.

Co-culture of SCs
with AMSCs or

DPSCs in a conduit
promoted peripheral
nerve regeneration
over a critical gap

defect.

In-vitro SCs, AMSCs, DPSCs,
and the combination
of SCs with AMSCs

or DPSCs

Neuronal cells RT-PCR analysis of
the coculture in-vitro

To verify if the
combination of cells

led to synergistic
neurotrophic effects

NGF, BDNF, and
GDNF.

Results confirmed
the synergistic NGF
production from the

co-culture of SCs
and ASCs.

SCAP: Stem cells of apical papillae; DPSC: Dental pulp stem cells; PDLSC: Periodontal ligament stem cells; CM: Conditioned medium; AMSCs: Adipose
mesenchymal stem cells; SCs: Stem cells; NGF: Nerve growth factor; BDNF: Brain derived neurotrophic factor; GDNF: Glial derived neurotrophic factor.

transplantation,  they were able to secrete NGF, NT-3,  GDNF and a high level  of
BDNF, leading to in vivo axonal growth. Comparable results were also reported by
Neuhuber et al[96], who found that MSC secretomes could promote axonal growth and
recovery of neuron function owing to the presence of neurotrophic factors[97,98].

DENTAL PULP STEM CELLS AND THEIR SECRETOMES
DPSC secretomes include immunomodulatory, anti-inflammatory, anti-apoptotic and
angiogenic regulatory and neurotrophic factors (Figure 4).

Immunomodulatory and anti-inflammatory effects
The  immunomodulatory  function  of  DPSCs  is  mediated  through  T-lymphocyte
function  inhibition  and  this  occurs  through  the  action  of  prostaglandin  E2,
interleukin-6 (IL-6), TGF-β and HGF secreted from DPSCs[99,100]. Other studies have
implicated HGF and TGF-β as DPSCs mediators due to their anti-proliferative effect
on T cells. These results were further supported by as study showing upregulation of
TGF-β and HGF transcripts during MSCs/T cell cocultures[101].

Anti-apoptotic effects
Neuronal apoptosis or programmed cell death is an important process after nerve
injury. Basically, there are two apoptosis pathways, the extrinsic or death receptor
pathway, which is activated by tumor necrosis factor-α (TNF-α) overexpression; and
the intrinsic  pathway,  which occurs  through mitochondrial  damage.  DPSCs can
prevent TNF-α overexpression and maintain the level of Bcl-xl, thus blocking the
extrinsic  and  intrinsic  mechanisms  and  subsequently  decreasing  neuronal
apoptosis[102].

Angiogenic regulation
Angiogenesis is regulated by both inhibitory and stimulatory molecules[103]. Several
studies have shown that MSC/DPSCs are able to express angiogenic factors, such as
FGF-2,  VEGF,  IGF-1,  PDGF and TGF-β.  Additionally,  numerous anti-angiogenic
factors  have  been  detected  in  cultures  of  DPSCs  such  as  plasminogen  activator
inhibitor-1, chemotactic protein-1 and endostatin[104-106]. Moreover, DPSCs are capable
of inducing in vitro  migration of endothelial  cells  and in vivo  formation of blood
vessels  and  exhibit  a  higher  angiogenic  capability  than  BMSCs/AMSCs [99].
Application of DPSC secretomes to endothelial cells enhanced tubulogenesis and cell
migration,  demonstrating  the  paracrine  and  pro-angiogenic  effect  of  the  cell
secretomes[107].  Angiogenesis  appears  to  be  of  prime importance  in  nerve  repair
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Table 2  Studies retrieved from PubMed database evaluating the effect of DPSCs on nerve repair or regeneration in-vivo

Author Publication year Source of stem
cells Target nerves Study model Objective Outcome

Ullah et al[82], 2017 2017 Human DPSCs;
Differentiated

neuronal cells from
DPSCs

5-mm gap sciatic
nerve transection

Animal rat model To evaluate the in-
vivo peripheral

nerve regeneration
potential of human

DPSCs and
differentiated

neuronal cells from
DPSCs.

In-vivo
transplantation of

the undifferentiated
hDPSCs could

exhibit sufficient
and excellent

peripheral nerve
regeneration

potential.

Spyridopoulos et
al[83], 2015

2015 DPSCs isolated from
second lateral

incisor pigs

Transected fifth and
sixth intercostal

nerves

Animal pig model Examined the
potential of DPSCs

for peripheral nerve
regeneration, using

biodegradable
collagen conduits.

The nerves where
DPSCs were injected

exhibited
morphological and
functional recovery.

DPSCs: Dental pulp stem cells; hDPSCs: Human dental pulp stem cells.

because newly formed blood vessels act as tracks/guiding paths for SCs to cross the
bridge gap taking regrowing axons with them[108].

Neurotrophins and their receptors
Neurotrophins are a group of proteinaceous substances that induce the development,
function and survival of neurons. Neurotrophins activate and bind to a family of
receptor tyrosine kinases (TRKs). NT-3 binds to TrkC, BDNF to TrkB and NGF to
TrkA. Binding of these receptors to their factors presents a survival signal to neurons.
Another  receptor,  named  p75NTR,  also  binds  to  neurotrophins  but  with  lower
affinity[109]. P75NTR is an indispensable receptor that works in coordination with the
TRK family, transducing the signals from NGF, BDNF and NT-3 to regulate a broad
array  of  processes  essential  to  maintenance  and  development  of  the  nervous
system[110].

DPSCs from both rats and humans release neurotrophins, including NGF, GDNF,
BDNF and CNTF.  Neurotrophins  enhance neurite  guidance,  promote growth of
neurons both in vivo and in vitro, stimulate rescue survival of neurons and induce
neurogenesis at the site of injury. They recruit endogenous cells to differentiate into
specific cell types necessary for nerve regeneration at the site of damage and stimulate
the endogenous cells to secrete neurotrophic factors, promoting tissue regeneration. In
animal models and in spinal cord injury, the production of neurotrophins by DPSCs
has been shown to rescue motor neurons and mediate the survival of sensory and
dopaminergic  neurons  in  addition  to  the  survival  of  trigeminal  ganglia  and
sympathetic neurons[22].

NGF involved in differentiation and survival of sympathetic and sensory neurons.
Its role in neural development has been comprehensively studied. Zhang et al[111]

found that low NGF concentrations are effective in promoting stem cell proliferation.
NGF was also shown to guide the migration of SCs in the PNS, and this is mediated
through p75NTR[112,113]. BDNF is also one of the neurotrophins that is intensely involved
in numerous developmental events in the nervous system, including proliferation,
differentiation, migration, apoptosis and survival[114]. This factor helps in neuronal
survival  and  encourages  growth  and  differentiation  of  new  neurons[115].  In  the
developing  visual  cortex,  exogenous  use  of  BDNF  promotes  the  complexity  of
pyramidal neurons, with an increase in dendritic length in a layer-specific manner,
suggesting that BDNF modulates a specific form in dendritic growth in addition to
enhancing neuronal growth[116,117].

In experimental animal models, NT-3 has been verified to promote regeneration of
injured  axons,  enhance  neurite  outgrowth  and  improve  axon  function.  Cells
overexpressing NT-3 migrated more and displayed longer neurites in vitro and in vivo
than other cells[118,119].  CNTF has powerful therapeutic effects on nerve apoptosis,
neuro-inflammation and neuronal proliferation[120,121]. Additionally, GDNF potently
promotes the survival of  many types of neurons.  The most prominent feature of
GDNF is its ability to support the survival of motor and dopaminergic neurons[22].
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Table 3  Studies retrieved from PubMed database evaluating the effect of DPSCs on nerve repair or regeneration in-vitro

Author Publication year Source of stem cells Target tissues Objective Outcome

Geng et al[84], 2017 2017 Human DPSCs Differentiation of
hDPSCs.

To demonstrate the
differentiating ability of
resveratrol on DPSCs.

Resveratrol induced
DPSCs differentiation
into neuroprogenitor

cells. DPSCs might be an
important cell
population for

neurological disease
treatment.

Hafner et al[85], 2017 2017 Human DPSCs Spider dragline silk
fibers

To evaluating adhesion
and alignment of dental

pulp stem cells to a
spider silk substrate for

tissue engineering
applications.

Natural drawn spider
silk acted as an effective

substrate for cellular
adhesion and alignment
of DPSCs and could be

used in neural
differentiation
applications.

Chang et al[86], 2014 2014 Human DPSCs Medium preparation for
the induction of spinal

motor neuronal
differentiation; Medium

preparation for the
induction of

dopaminergic neuronal
differentiation

To evaluate the efficacy
of dopaminergic and

motor neuronal
inductive media on

transdifferentiation of
human DPSCs (hDPSCs)

into neuron-like cells.

Human DPSCs-derived
dopaminergic and

spinal motor neuron
cells after induction
expressed a higher

density of neuron cell
markers than those
before induction.

Mead et al[60], 2014 2014 Human DPSC, human
BMSCs human AMSCs

Axotomised adult rat
retinal ganglion cells

To evaluate the
therapeutic potential for

neurodegenerative
conditions of retinal

ganglion cells.

Human DPSCs
promoted significant

multi-factorial
paracrine-mediated
retinal ganglion cell
survival and neurite
outgrowth compared

with Human
BMSCs/Human

AMSCs.

Martens et al[23], 2014 2014 Human DPSCs Dorsal root ganglia Evaluated the
differentiation potential

of human DPSCs
toward SCs, together
with their functional

capacity with regard to
myelination and

support of neurite
outgrowth.

Human DPSCs are able
to undergo SCs

differentiation and
support neural

outgrowth.

DPSCs: Dental pulp stem cells; BMSCs: Bone marrow stem cells; AMSCs: Adipose mesenchymal stem cells.

CELL-FREE THERAPY
As discussed  above,  neurotrophic  factors  released  by  DPSCs/MSCs  may act  as
modulators of neural differentiation and survival[122-124]. Individual use of these trophic
factors or even combinations of them appears to be unsuccessful and less efficient at
enhancing regeneration than the full secretomes[95,125].  The possibility of repairing
injured tissue with secretomes rather than cell  therapy introduces a  new era for
therapeutic  application of  secretomes  in  regenerative  medicine[126].  Mead et  al[60]

confirmed the role of neurotrophins in neuroprotection and neuritogenesis using the
fusion  protein  Fc-NTFR  to  block  neurotrophin  receptor  sites  and  examine  the
mechanism of DPSCs/BMSCs/AMSCs-mediated neuroprotection and neuritogenesis
when cocultured with retinal ganglion cells. The DPSCs neuroprotective effect was
considerably  decreased after  addition of  Fc-NTFR,  confirming the  major  role  of
neurotrophins (GDNF, BDNF, NGF, VEGF, NT-3 and PDGF) in neuroprotection and
neuritogenesis.

CBT VS CELL-FREE THERAPY
The main challenge with CBT is how to maintain cell viability and function after in
vivo implantation because in vivo conditions are very different from well-controlled in
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Figure 3

Figure 3  Organization chart representing the different components of secretomes from the mesenchymal
stem cells. Exosomes, micro-vesicles and apoptotic bodies were classified according to the size and morphology.
Exosomes (40-100 nm) usually derived from multi-vesicular bodies, microvesicles (100-1000 nm) by plasma
membrane budding and anti-apoptotic bodies (more than 1000 nm) via blebbing of plasma membrane of dying cells.

vitro cultivation conditions. Factors such as tissue collagen density, blood supply and
scar formation potential greatly affects the fate of transplanted cells[127]. For instance,
the spreading of fibroblasts initially increases with the increase in collagen density,
but beyond a specific limit, the relationship is reversed. At a high collagen density, the
attempt of a cell  to spread maximally is  restricted by the availability of collagen
binding sites and consequently, cells exert a maximal force to tightly bind with the
few  available  sites[128].  Moreover,  the  molecular  environment  in  injured  tissue
enhances apoptotic  cell  death;  therefore,  massive death of  the transplanted cells
ocurres. This is due to the elevated level of oxidative stress, mediated by reactive
oxygen species, in the injured tissue, which triggers cell apoptosis[129].

Bork et al[130] reported that DNA methylation and epigenetic changes occurred in
replicative senescence upon long term cultivation. Lack of differentiation potential,
cell  enlargement  and eventual  growth arrest  occurs  in  replicative senescence.  A
similar methylation pattern was observed in MSCs from older donors. These findings
support  evidence  showing  that  aging  and  replicative  senescence  represent  a
developmental program and are not only caused by accumulation of cellular and
molecular  defects,  and thus,  long-term culture and aging might be regulated by
similar mechanisms. At the same time, the long-term cultivation process leads to
stress-induced senescence changes due to high oxygen content and the artificial in
vitro environment. This brings about a decrease in the self-renewal potential of cells,
and  when  such  cells  are  implanted  in  the  host,  poor  growth,  cell  survival  and
paracrine effect outcomes result. Therefore, there are still many hurdles before stem
CBT can be adopted for  PNI and it  becomes decisive  to  determine a  strategy to
overcome difficulties and the problems related to cell transplantation[131].

In the field of regenerative medicine, the use of CFT has been widely studied. The
use  of  the  secretomes  overcomes  a  number  of  safety  concerns  that  include
tumorigenicity,  emboli  formation and immune compatibility.  Secretomes can be
stored for a long period without application of a potentially toxic cryopreservative
and without loss of product potency[132,133]. An important feature of exosomes, which
are part of the secretome, is that they are encapsulated, providing protection to their
contents against in vivo degradation, thus possibly avoiding obstacles associated with
soluble small molecules, such as transcription factors, cytokines, growth factors and
RNAs, that are quickly degraded[134]. Moreover, exosomes can act as liposomes and
can  pass  through  the  blood-brain  barrier,  making  them potentially  suitable  for
treatment of neurological disorders[135].

To sum up, secretomes contain soluble growth factors and cytokines related to
protection,  repair,  regeneration,  immunomodulation,  cell  proliferation,  cell
communication and other important functions[136]. Use of DPSCs/MSCs secretomes
has several advantages, and we can avoid concerns relating to cell transplantation.
Recently, a comparative study demonstrated that treatment with secretomes induced
a long-lasting effect with a disease-modifying profile similar to that shown by stem
cells. Wakayama et al[137] illustrated the effect of DPSCs and their secretomes on acute
lung injury; they examined the persistence and localization of DPSCs transplanted to
an injured lung. It was found that the survival of DPSCs was less than 1% one week
after transplantation and the therapeutic benefit of DPSCs and DPSCs secretomes was
similar two weeks after transplantation. Therefore, the researchers concluded that the
therapeutic effect of DPSCs was likely mediated via paracrine signaling that remains
for an extended period of time even after cell disappearance. This study opens new
possibilities for treatment using a cell-free approach that is able to retain the benefits
of cell therapy without the inherent difficulties of CBT[138].
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Figure 4

Figure 4  Horizontal bullet list for the dental pulp stem cells’ secretome, their mechanism of action and the involved factors in the immunomodulatory, anti-
inflammatory, anti-apoptotic angiogenic regulatory and neurotrophic function.

CELL-FREE THERAPY CHALLENGES
It is essential to consider the possible adverse effects of the therapeutic potential of
exosomes against their future application. It has been stated that miRNAs that are
carried  by  exosomes  might  induce  cancer  or  tumor  formation[139].  In  addition,
exosomes may be associated with a number of neurologic diseases related to old age,
such as Parkinson’s and Alzheimer’s diseases[140]. Moreover, the ideal timeframe for
injection/addition  of  exosomes  to  exploit  their  benefits  and  whether  a  single
application dose is sufficient or if daily, weekly or monthly doses are necessary are
still  unknown.  Additionally,  different  epitopes  are  expressed  on  the  surface  of
exosomes released from the same cells, indicating the presence of exosome subtypes,
which merits further research[141]. Further in-depth research is guaranteed to lead to an
improved understanding of exosomes and their interference with unknown secreted
factors.

CONCLUSION
DPSCs secretomes are a promising strategy for CBT and CFT. They can be easily
isolated,  purified  and  stored,  thus  avoiding  complications  associated  with  cell
therapy, such as unwanted proliferation/differentiation and development of ectopic
tissue. To appraise the role of the surrounding microenvironment in the biological
response of DPSCs, preconditioning may be helpful to obtain tailor-made secretomes.
Preconditioning achieved by subjecting cells to hypoxia, drug treatment, and specific
growth factor/cytokines may help in obtaining an optimal secretome profile. The
ideal timeframe for injection/addition of the secretomes to exploit their benefits is still
unknown, as well as whether a single application dose is sufficient or if daily, weekly
or monthly doses are necessary. Additionally, different surface epitopes are expressed
on exosomes from the same cells, indicating the presence of exosome subtypes, which
merits further research.
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