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Abstract

Third-generation cephalosporins are a class of b-lactam antibiotics that are often used for the treatment of human infections
caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-
generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains,
and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However,
these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the
relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-
resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-
associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid
typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS
analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs
of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast,
epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid
reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of
the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually
identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read
sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence
for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based
on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly
disseminated in animals and humans via distinct plasmids.
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Introduction

Antibiotic resistance among opportunistic pathogens is

rapidly rising globally, hampering treatment of infections and

increasing morbidity, mortality and health care costs [1,2]. Of

particular concern is the increased incidence of infections

caused by Escherichia coli isolates producing extended-spectrum

b-lactamases (ESBLs), which has rendered the use of third

generation cephalosporins increasingly ineffective against this

pathogen [3].

During the 1990s, the most commonly encountered ESBL genes

were blaTEM and blaSHV, and their spread occurred mainly

through cross-transmission in hospitals. However, the epidemiol-

ogy of ESBL-producing E. coli has changed. Nowadays, the most

prevalent ESBL gene type is blaCTX-M [4] and infections with

ESBL-producing E. coli also occur in the community [5,6]. The
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intestinal tracts of mammals and birds are important reservoirs for

ESBL-producing E. coli [7], but it is unclear to what extent these

bacteria can spread to humans. Food may be an important source,

since ESBL genes have been detected in food-producing animals,

especially poultry [8,9], and on retail meat [10]. The presence of

ESBL-producing bacteria in food has been attributed to

widespread use of antimicrobials, including third generation

cephalosporins, in industrial farming practices [11].

In The Netherlands, antibiotic use and prevalence of antibiotic

resistance in humans are among the lowest in Europe [12],

whereas antibiotic use in food-producing animals ranks among the

highest in Europe [13]. These circumstances render The Nether-

lands particularly suitable to study the transfer of third-generation

cephalosporin-resistant bacteria through the food-chain. Recent

studies performed in The Netherlands suggested clonal transfer of

ESBL-producing E. coli from poultry to humans [14–16].

However, these interpretations were based on typing methods

that target a limited number of genes, and which may not have

provided sufficient resolution to accurately monitor the epidemi-

ology of pathogens [17]. In this study, we have therefore

sequenced 28 ESBL-producing and four ESBL-negative E. coli
strains that had previously been collected from humans, poultry,

retail chicken meat and pigs and tested whether previous claims on

the relationship between strains from different reservoirs could be

confirmed at the whole-genome sequence level. Furthermore, we

investigated the relatedness of cephalosporin resistance gene-

carrying plasmids, which were derived from different backgrounds

and reservoirs, at the genomic level.

Results

Sequencing of ESBL-producing E. coli
We assessed the relatedness of ESBL-producing E. coli from

humans, animals and food by using Whole-Genome Sequencing

(WGS). The genomes of 32, mostly ESBL-producing, E. coli
strains isolated in The Netherlands in the period 2006–2011 were

sequenced (Table 1). One set of isolates (n = 24) included five pairs

of human and poultry-associated strains that had previously been

found indistinguishable based on Multi Locus Sequence Typing

(MLST), plasmid typing (pMLST) and ESBL gene sequencing

[15,18]. This set also included 11 human and poultry-associated

isolates that carried an AmpC-type b-lactamase gene on an IncK

plasmid [18]. The second set of isolates contained eight ESBL-

producing strains that were isolated from pigs (n = 4) and their

farmers (n = 4) (Table 1).

Illumina sequencing yielded draft genomes with an average

assembly size of 5.2 Mbp (60.17 Mbp), consisting of an average

number of 133 scaffolds (641) of size $500 bp and a mean N50 of

153 kbp (647.9 kbp) (S1 Table). WGS-based MLST and ESBL

gene analysis provided good agreement with previous typing data.

Previously obtained MLST profiles and WGS-based MLST

profiles were in complete agreement with each other. Although

ESBL genes had previously been detected by both microarray-

based methods and Sanger sequencing [15], the previously typed

ESBL genes of four (out of 28) strains were absent from their

assembled genomes. In three of these cases (strains 681, 320 and

38.34), we detected a blaTEM-1 or blaTEM-20 gene in the assembled

genome, whereas a blaTEM-52 gene should have been found

according to the typing data. Mapping the Illumina reads of these

strains against their own assemblies showed that the assembled

blaTEM genes contained several ambiguous positions pointing to

the presence of more than one type of blaTEM gene (most likely a

combination of blaTEM-1 and blaTEM-52) in these strains (S2 Table).

In comparison, no ambiguous positions were found in the

assembled blaTEM genes of other strains using the same mapping

approach. In addition, the relative coverage of the assembled

blaTEM genes of strains 681, 320 and 38.34 was higher than that of

the assembled blaTEM genes of other strains (S2 Table). These

findings suggested that strains 681, 320 and 38.34 contain multiple

nearly identical blaTEM genes (i.e. blaTEM-1 and blaTEM-52) that

hampered the correct assembly of these genes. The fourth

inconsistency between WGS and typing data was the absence of

blaCTX-M-1 from the assembly of strain 435. Mapping the reads of

strain 435 against the blaCTX-M-1 gene sequence did suggest the

presence of this gene in the WGS data, but with a depth of around

1/10th the average genomic sequencing depth. Possible explana-

tions include a relatively poor isolation efficiency of the blaCTX-M-

1-carrying plasmid and/or the loss of this plasmid from the

bacterial cells during culturing in the absence of antibiotics. The

previous AmpC typing data [18] and our WGS data were in

complete agreement.

Phylogeny and epidemiology of ESBL-producing E. coli
To assess the phylogenetic context of the sequenced strains

within the genus Escherichia and Shigella, we used publicly

available genome sequences of Escherichia (n = 126) and Shigella
(n = 12) strains. Based on COG assignments, we identified 215

core proteins in the 170 analysed genomes, from which a

concatenated core genome alignment of 170461 bp was built. A

phylogenetic tree based on the 18169 variable positions in this

alignment confirmed previous clustering based around phy-

logroups A, B1, B2, D, E and F (Fig. 1) [19]. The sequenced

strains clustered together in accordance with their ST. Strains did

not cluster based on isolation source, year, plasmid or ESBL gene.

The ESBL-producing strains were spread throughout the tree,

indicating that acquisition of ESBLs arises in different E. coli
genetic backgrounds and has occurred multiple times during

evolution (Fig. 1).

There were four clusters of ESBL-producing strains isolated

from humans and animals/meat (clusters I–IV, Fig. 1). Cluster I

Author Summary

The rapid global rise of infections caused by Escherichia
coli that are resistant to clinically relevant antimicrobials,
including third-generation cephalosporins, is cause for
concern. The intestinal tract of livestock, in particular
poultry, is an important reservoir for drug resistant E. coli,
but it is unknown to what extent these bacteria can spread
to humans. Food is thought to be an important source
because drug-resistant E. coli have been detected in
animals raised for meat consumption and in meat
products. Previous studies that used traditional, low-
resolution, genetic typing methods found that drug
resistant E. coli present in humans and poultry were
indistinguishable from each other, suggesting dissemina-
tion of these bacteria through the food-chain to humans.
However, by applying high-resolution, whole-genome
sequencing methods, we did not find evidence for such
transmission of bacteria through the food-chain. Instead,
by employing a novel approach for the reconstruction of
mobile genetic elements from whole-genome sequence
data, we discovered that genetically unrelated E. coli
isolates from both humans and animal sources carried
nearly identical plasmids that encode third-generation
cephalosporin resistance determinants. Our data suggest
that cephalosporin resistance is mainly disseminated via
the transfer of mobile genetic elements between animals
and humans.

Dissemination of Cephalosporin Resistance Genes by Specific Plasmids

PLOS Genetics | www.plosgenetics.org 2 December 2014 | Volume 10 | Issue 12 | e1004776



T
a

b
le

1
.

E.
co

li
st

ra
in

s
se

q
u

e
n

ce
d

in
th

is
st

u
d

y.

S
tr

a
in

S
o

u
rc

e
P

la
ce

o
f

is
o

la
ti

o
n

D
a

te
o

f
is

o
la

ti
o

n
M

L
S

T
E

S
B

L
In

c-
ty

p
e

o
f

E
S

B
L

-
ca

rr
y

in
g

p
la

sm
id

A
m

p
C

In
c-

ty
p

e
o

f
A

m
p

C
-c

a
rr

y
in

g
p

la
sm

id
G

e
n

B
a

n
k

B
io

P
ro

je
ct

1
4

8
H

u
m

an
(b

lo
o

d
)

U
tr

e
ch

t
1

4
/0

2
/2

0
0

9
1

0
C

T
X

-M
-1

I1
(C

C
7

,
ST

7
)

n
.d

.
n

.d
.

P
R

JN
A

2
2

4
1

9
0

3
2

0
H

u
m

an
(u

ri
n

e
)

U
tr

e
ch

t
0

3
/0

3
/2

0
0

9
1

0
T

EM
-5

2
*

I1
(C

C
5

,
ST

3
6

)
n

.d
.

n
.d

.
P

R
JN

A
2

2
4

1
9

5

6
8

1
H

u
m

an
(u

ri
n

e
)

D
e

lf
t

1
7

/0
2

/2
0

0
9

1
0

T
EM

-5
2

*
I1

(C
C

5
,

ST
3

6
)

n
.d

.
n

.d
.

P
R

JN
A

2
2

4
1

9
6

3
8

.2
7

C
h

ic
ke

n
(c

ae
cu

m
)

P
u

tt
e

n
1

4
/0

6
/2

0
0

6
1

0
C

T
X

-M
-1

I1
(C

C
7

,
ST

7
)

n
.d

.
n

.d
.

P
R

JN
A

2
2

4
1

9
9

3
8

.3
4

C
h

ic
ke

n
(c

ae
cu

m
)

N
u

n
sp

e
e

t1
2

0
/0

6
/2

0
0

6
1

0
T

EM
-5

2
*

I1
(C

C
5

,
ST

1
0

)
n

.d
.

n
.d

.
P

R
JN

A
2

2
4

2
0

0

5
3

A
C

h
ic

ke
n

m
e

at
U

tr
e

ch
t2

1
0

/0
5

/2
0

1
0

1
0

C
T

X
-M

-1
n

.d
.

n
.d

.
n

.d
.

P
R

JN
A

2
2

4
2

0
1

8
5

B
C

h
ic

ke
n

m
e

at
U

tr
e

ch
t3

0
7

/0
6

/2
0

1
0

1
0

T
EM

-5
2

n
.d

.
n

.d
.

n
.d

.
P

R
JN

A
2

2
4

2
0

2

1
2

4
0

H
u

m
an

(u
ri

n
e

)
Sc

h
ie

d
am

1
6

/0
3

/2
0

0
9

5
8

C
T

X
-M

-1
n

.d
.

n
.d

.
n

.d
.

P
R

JN
A

2
2

4
1

5
1

1
3

5
0

H
u

m
an

(u
ri

n
e

)
Le

e
u

w
ar

d
e

n
1

3
/0

2
/2

0
0

9
5

8
C

T
X

-M
-1

I1
(C

C
7

,
ST

7
)

n
.d

.
n

.d
.

P
R

JN
A

2
2

4
1

5
2

1
3

6
5

H
u

m
an

(u
ri

n
e

)
Le

e
u

w
ar

d
e

n
0

3
/0

2
/2

0
0

9
5

8
C

T
X

-M
-1

I1
(C

C
7

,
ST

7
)

n
.d

.
n

.d
.

P
R

JN
A

2
2

4
1

5
4

3
8

.1
6

C
h

ic
ke

n
(c

ae
cu

m
)

N
u

n
sp

e
e

t1
3

1
/0

5
/2

0
0

6
5

8
C

T
X

-M
-1

I1
(C

C
7

,
ST

7
)

n
.d

.
n

.d
.

P
R

JN
A

2
2

4
1

8
8

8
9

7
H

u
m

an
(p

u
lm

o
n

ar
y)

T
e

rn
e

u
ze

n
2

2
/0

2
/2

0
0

9
1

1
7

C
T

X
-M

-1
I1

(C
C

7
,

ST
7

)
n

.d
.

n
.d

.
P

R
JN

A
2

2
4

1
3

9

1
0

4
7

H
u

m
an

(f
ae

ce
s)

V
e

lp
0

2
/0

2
/2

0
0

9
1

1
7

C
T

X
-M

-1
I1

(C
C

7
,

ST
7

)
C

M
Y

-2
K

P
R

JN
A

2
2

4
1

4
6

3
8

.5
2

C
h

ic
ke

n
(c

ae
cu

m
)

N
u

n
sp

e
e

t1
1

3
/0

7
/2

0
0

6
1

1
7

C
T

X
-M

-1
I1

(C
C

7
,

ST
7

)
n

.d
.

n
.d

.
P

R
JN

A
2

2
4

1
4

7

5
3

C
C

h
ic

ke
n

m
e

at
U

tr
e

ch
t2

1
0

/0
5

/2
0

1
0

1
1

7
C

T
X

-M
-1

n
.d

.
C

M
Y

-2
K

P
R

JN
A

2
2

4
2

3
4

4
3

5
H

u
m

an
(f

ae
ce

s)
D

e
ve

n
te

r
1

9
/0

3
/2

0
0

9
6

8
C

T
X

-M
-1

*{
n

.d
.

C
M

Y
-2

`
K

P
R

JN
A

2
2

4
2

0
5

3
2

8
H

u
m

an
(u

ri
n

e
)

U
tr

e
ch

t
0

4
/0

3
/2

0
0

9
6

9
n

eg
a

ti
ve

n
.d

.
C

M
Y

-2
`

K
P

R
JN

A
2

2
4

2
0

4

5
9

7
H

u
m

an
(u

ri
n

e
)

G
ro

n
in

g
e

n
1

3
/0

3
/2

0
0

9
9

5
n

eg
a

ti
ve

n
.d

.
C

M
Y

-2
K

P
R

JN
A

2
2

4
2

2
8

6
6

8
H

u
m

an
(u

ri
n

e
)

D
e

lf
t

0
6

/0
2

/2
0

0
9

6
4

8
C

T
X

-M
-1

5
n

.d
.

C
M

Y
-2

`
K

P
R

JN
A

2
2

4
2

3
0

6
0

6
H

u
m

an
(p

u
lm

o
n

ar
y)

G
ro

n
in

g
e

n
1

8
/0

2
/2

0
0

9
u

n
kn

o
w

n
n

eg
a

ti
ve

n
.d

.
C

M
Y

-2
`

K
P

R
JN

A
2

2
4

2
2

9

1
A

C
h

ic
ke

n
m

e
at

U
tr

e
ch

t4
2

0
1

0
2

3
SH

V
-1

2
n

.d
.

C
M

Y
-2

K
P

R
JN

A
2

2
4

2
3

1

2
7

A
C

h
ic

ke
n

m
e

at
U

tr
e

ch
t

2
6

/0
4

/2
0

1
0

2
3

T
EM

-5
2

n
.d

.
C

M
Y

-2
K

P
R

JN
A

2
2

4
2

3
3

9
B

C
h

ic
ke

n
m

e
at

U
tr

e
ch

t4
1

2
/0

4
/2

0
1

0
9

3
SH

V
-1

2
n

.d
.

C
M

Y
-2

K
P

R
JN

A
2

2
4

2
3

2

8
7

A
C

h
ic

ke
n

m
e

at
U

tr
e

ch
t3

0
7

/0
6

/2
0

1
0

1
1

5
n

eg
a

ti
ve

n
.d

.
C

M
Y

-2
K

P
R

JN
A

2
2

4
2

3
5

FA
H

1
H

u
m

an
(f

ae
ce

s)
fa

rm
A

1
8

/0
4

/2
0

1
1

n
.d

.
C

T
X

-M
-1

n
.d

.
n

.d
.

n
.d

.
P

R
JN

A
2

2
4

2
4

0

FA
H

2
H

u
m

an
(f

ae
ce

s)
fa

rm
A

1
9

/0
4

/2
0

1
1

n
.d

.
C

T
X

-M
-1

n
.d

.
n

.d
.

n
.d

.
P

R
JN

A
2

2
4

2
3

8

FA
P

1
P

ig
(f

ae
ce

s)
fa

rm
A

0
4

/0
4

/2
0

1
1

n
.d

.
C

T
X

-M
-1

n
.d

.
n

.d
.

n
.d

.
P

R
JN

A
2

2
4

2
4

1

FA
P

2
P

ig
(f

ae
ce

s)
fa

rm
A

0
4

/0
4

/2
0

1
1

n
.d

.
C

T
X

-M
-1

n
.d

.
n

.d
.

n
.d

.
P

R
JN

A
2

2
4

2
4

2

FB
H

1
H

u
m

an
(f

ae
ce

s)
fa

rm
B

2
4

/0
5

/2
0

1
1

n
.d

.
C

T
X

-M
-1

n
.d

.
n

.d
.

n
.d

.
P

R
JN

A
2

2
4

2
4

3

FB
P

1
P

ig
(f

ae
ce

s)
fa

rm
B

2
0

1
1

n
.d

.
C

T
X

-M
-1

n
.d

.
n

.d
.

n
.d

.
P

R
JN

A
2

2
4

2
4

4

Dissemination of Cephalosporin Resistance Genes by Specific Plasmids

PLOS Genetics | www.plosgenetics.org 3 December 2014 | Volume 10 | Issue 12 | e1004776



contained human and pig isolates from two pig farms, with strains

from farm A being particularly closely related. The other three

clusters contained the five pairs of human and chicken isolates that

had previously been considered indistinguishable based on

traditional typing methods [15].

Among the five pairs of human and chicken isolates, the most

closely related pairs were in cluster IV. The COG-based core

genome alignment showed 171 SNPs between these strains,

corresponding to 1003 SNPs/Mbp. To better elucidate the

minimum number of SNPs between human and chicken isolates,

we performed a core genome analysis using OrthoMCL [20] on

the strains in cluster IV. For comparison, ten clonal O104:H4

strains from the 2011 German EHEC outbreak [21] and the four

strains from pig farm A (cluster I) were included in this analysis

(Fig. 1). We identified 3574 core proteins in this dataset translating

to a concatenated nucleotide alignment of 3.34 Mbp. Within

cluster IV there were 4216 SNPs between the most closely related

isolates, corresponding to 1263 SNPs/Mbp. In contrast, only 0–6

SNPs (0–1.8 SNPs/Mbp) were found between any two strains in

the German EHEC outbreak and only 6 SNPs were found

between farmer isolate FAH2 and any of its two related pig

isolates, suggesting recent clonal transmission of E. coli between

pig and human in farm A (Fig. 2).

Given an estimated E. coli mutation rate of 2.361027 to

3.061026 substitutions per site per year [21,22] and an average E.
coli genome size of 5.2 Mbp, the number of SNPs (1263/Mbp)

between the two most closely related human and chicken isolates

largely exceeded the number of 3–41 SNPs that is expected to

arise in 2.6 years (the difference in isolation dates between both

strains, Table 1). Even if 10% of the detected SNPs were due to

recombination, which is considerably more than the reported

upper limit for recombinant DNA (,3.5%) in E. coli [19], the

number of SNPs due to mutation would exceed the expected

maximum number of SNPs in case of recent clonal transmission.

As the genetic distance between all other pairs of human and

poultry isolates was even larger, our findings do not support a

scenario of recent clonal transmission of ESBL-producing E. coli
strains between humans and poultry.

Reconstruction of plasmids from WGS data
To investigate the possibility of horizontal spread of ESBLs via

plasmids, we employed a Plasmid Constellation Networks

(PLACNET) approach to reconstruct plasmids from WGS data

[23]. Application of this approach resulted in the reconstruction of

147 plasmids (average of 4.662.1 plasmids per strain), with

plasmid sizes ranging from 1.1 kbp to 290.4 kbp (Table 2). The

plasmid sizes showed a trimodal distribution (Fig. 3) that was

similar to the distribution previously reported for plasmids from a

wide range of bacterial taxa [24]. The median size of large

(conjugative) plasmids was 93.6 kbp (n = 91). Small plasmids could

be further subdivided into two groups: one with a median size of

5.9 kbp (n = 41), predominated by mobilizable plasmids (i.e.

containing MOB genes) and one with a median size of 1.7 kbp

(n = 15), predominated by non-mobilizable plasmids. Based on the

classification of their MOB genes [25] and using a hierarchical

clustering analysis of gene content (Fig. 4), reconstructed plasmids

belonged to a limited number of plasmid families, of which the

most abundant ones were IncF-MOBF12 (n = 38; average size of

107.4657.7 kbp) and IncI1-MOBP12 (n = 26; average size of

95.7620.0 kbp). Other abundant families included MOBP5

(n = 25), IncK (n = 12) and MOBQ (n = 11). Finally, there were

18, mostly small-sized, plasmids (median size of 1.6 kbp; range of

1.1–106.3 kbp) that were scattered throughout the dendrogram

and could not be clearly subdivided into any family. A comparison
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between previous typing data and the PLACNET reconstructions

showed that both data types were in excellent agreement with each

other. First of all, the 11 strains that were previously found to

contain an IncI1 plasmid were also found to contain such a

plasmid using PLACNET. The sizes of these 11 reconstructed

plasmids (average size of 92.7 kbp65.7 kbp) were also in

agreement with their previously estimated sizes on the basis of

gel electrophoresis (average size of 97.7 kbp63.8 kbp) [15].

Furthermore, the reconstructed plasmids for ten of these 11

strains had exactly the same ST as was previously found using

pMLST. The only inconsistency was found for strain 38.34, which

should contain an IncI1/ST10 plasmid according to pMLST,

whereas we reconstructed an IncI1/ST36 plasmid. However,

IncI1/ST10 and IncI1/ST36 are single locus variants that differ

by only one SNP (http://pubmlst.org/plasmid/), indicating that

this inconsistency was not a result of PLACNET, but was likely

due to typing errors. Of the 11 strains that had previously been

found to contain an IncK plasmid, ten were also found to contain

such a plasmid using PLACNET, the only exception being strain

1047.

We also examined to what extent we were able to correctly

connect ESBL and AmpC genes to reconstructed plasmids. Of the

28 previously typed ESBL genes, 24 were correctly identified in

their genomes (Table 1) and among these, 15 were connected to a

reconstructed plasmid. Four of the remaining nine unconnected

ESBL genes (blaCTX-M-1 in strains 1350, 1365, 1047 and 38.52)

should have been connected to an IncI1 plasmid according to

previous typing data (Tables 1–2). The reason that these ESBL

genes remained unassigned was because they were located on

relatively small scaffolds (average size of 6.6 kbp) that did not

contain enough genetic information to unequivocally match them

to a single plasmid using our reference database. For the 15 cases

where we were able to connect an ESBL gene to a reconstructed

plasmid, typing data indicating where the ESBL gene should be

located was available for four cases (strains 148, 897, 38.16 and

38.27) and for all these cases we had connected the ESBL gene

(blaCTX-M-1) to the correct plasmid (IncI1/ST7) (Tables 1–2). Of

the 11 AmpC (blaCMY-2) genes, ten were connected to their correct

plasmid (IncK). The only exception was found again for strain

1047 for which we could not reconstruct an IncK plasmid

(Table 2). The above findings show that PLACNET worked

efficiently to assemble plasmids from WGS data, although the

assignment of small scaffolds to plasmids can be problematic, as is

illustrated above by the ESBL genes that were not linked to a

specific reconstructed plasmid (see also discussion below and in

[23]).

Identification of distinct ESBL-associated plasmid
lineages

Fifteen ESBL genes were connected to a reconstructed plasmid,

of which 13 were connected to an IncI1 plasmid. Frequently (eight

out of 13), these IncI1 plasmids were also unequivocally linked to

other antibiotic resistance genes, such as sul, dfrA, aadA or tet. We

also found IncK plasmids that were commonly (ten out of 12

plasmids) associated with the AmpC b-lactamase-encoding gene

blaCMY-2 (Fig. 4).

As IncI1 and IncK were the only plasmid families that included

reconstructed ESBL-/AmpC-containing plasmids in strains from

both humans and animals/meat, we further investigated their

potential role in the transfer of resistance genes through the food-

chain. To this aim we built a gene content-based dendrogram that

also included closely related and publicly available plasmid

sequences. In the resulting dendrogram, all reconstructed ESBL-

containing IncI1 plasmids, except the blaSHV-12-carrying plasmids

p1A_2 and p9B_1, clustered into one specific branch that did not

contain any other previously sequenced plasmid (Fig. 5). This

branch also contained 12 of the 13 reconstructed IncI1 plasmids

that did not include an ESBL gene. Similarly, all of the

reconstructed IncK plasmids, except p87A_5, clustered into one

specific branch that did not include any previously sequenced

plasmid. These findings suggest the existence of IncI1 and IncK

plasmids with a genetic profile distinct from previously charac-

terised plasmids. We did not find any single gene that unequiv-

ocally explained the formation of the IncK branch, pointing to a

Fig. 1. Phylogeny of Escherichia and Shigella species, including ESBL- and AmpC-positive strains sequenced for the purpose of this
study. The tree was built using 18169 variable positions present in 215 core genes. The strains sequenced in this study are indicated in coloured
bullets according to isolation source. Typing characteristics (Table 1) are given behind strain names. In case the MLST had not been determined
before, it was determined using MLST v1.6 [55]. Clusters I–IV (see main text) are indicated behind the tree. Phylogroups are also indicated behind the
tree (white text on black bars). The O104:H4 and O157:H7 branches are collapsed and represent 11 and 20 strains, respectively. Bootstrap support was
implemented by running 100 bootstrap replicates. Values ,75% are not displayed. SLV indicates Single Locus Variants of corresponding MLSTs.
doi:10.1371/journal.pgen.1004776.g001

Fig. 2. Phylogeny and SNP analysis of closely related ESBL-
producing E. coli strains from human and poultry. A high
resolution core genome analysis was performed for a subset of strains
which, based on an initial phylogenetic analysis (Cluster IV, Fig. 1),
included the most closely related pairs of human and poultry-
associated ESBL-producing strains within our dataset. Strains within
Cluster IV had previously been found to be identical with respect to
MLST, ESBL gene and ESBL-carrying plasmid (Table 1). For comparative
purposes, clonally related E. coli strains from the 2011 German EHEC
outbreak [21] and four potentially clonally related strains isolated from a
single pig farm (Farm A) were included in this analysis. A phylogenetic
tree, built from the 107919 variable positions present in the resulting
3.34 Mbp core genome alignment is shown to the left. Bootstrap
support was implemented by running 1000 bootstrap replicates.
Coloured bullets refer to the isolation source. The number of SNPs
found in each of the three clusters (Cluster IV, EHEC outbreak, Farm A) is
shown to the right.
doi:10.1371/journal.pgen.1004776.g002
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delicate configuration of genes that gives these plasmids their

unique genetic profile. However, for the IncI1 branch, we found a

characteristic shufflon-related gene (UniProt P10487) that was

present in all 26 reconstructed IncI1 plasmids, but which was

absent from related IncI1 plasmids (Fig. 5).

To further characterise the IncI1 and IncK resistance plasmids,

phylogenetic trees were built from the sequences of the recon-

structed plasmids and their closest plasmid relatives. For the IncI1

phylogenetic reconstruction, the 23 plasmids belonging to the

specific IncI1 branch as well as 27 related plasmids were included.

An OrthoMCL analysis of these plasmids resulted in 8 core

proteins (S3 Table), corresponding to a concatenated nucleotide

alignment of 8.6 kbp, including 763 variable positions. In the

phylogenetic tree built from these variable positions the recon-

structed IncI1 plasmids were assigned to four distinct branches

(Fig. 6A), each of which also contained previously characterised

plasmids. However, the reconstructed plasmids within each

branch were always more similar to each other than to any of

these previously characterised plasmids. Two of the four branches,

corresponding to IncI1/ST3 and IncI1/ST7, contained recon-

structed ESBL-harbouring plasmids from both humans and

animals or meat. Further rounds of OrthoMCL analyses showed

that the reconstructed plasmids within each of these two sets were

highly similar to each other: a maximum of only four SNPs (all

attributable to p53C_2) was found in the 40 kbp plasmid core of

the IncI1/ST3 subset, whereas no SNPs were found in the almost

50 kbp plasmid core of the IncI1/ST7 subset (Fig. 6A). Similarly,

a subset of the blaCMY-2-carrying IncK plasmids contained a

plasmid core of almost 37 kbp with a maximum of 27 SNPs

(Fig. 6B), which were mostly attributable to p435_1. Leaving out

p435_1 from the comparisons revealed a maximum of only seven

SNPs. These data strongly support the existence of ESBL-

associated IncI1 and AmpC-associated IncK plasmids that have

spread through phylogenetically distinct E. coli populations,

possibly contributing to the dissemination of ESBLs and AmpC-

type b-lactamases through the food-chain.

Validation of plasmid reconstructions by PacBio
sequencing of strains 53C and FAP1

To validate the conclusions drawn from the PLACNET

reconstructions, we sequenced two strains (53C and FAP1) using

long-read DNA sequencing technology (Pacific Biosciences). Strain

53C was selected because it has both an IncI1 and an IncK

plasmid, carrying blaCTX-M-1 and blaCMY-2, respectively. Strain

FAP1 was selected because it contained an IncI1 plasmid of the

same lineage as the one in strain 53C (Fig. 6A). The total amount

of reconstructed plasmid sequence for strains 53C and FAP1 was

338 kbp and 319 kbp, respectively (Table 2). Genomes were

assembled to an average depth of 66.7- and 77.0-fold, respectively,

resulting in 11 contigs for strain 53C and five contigs for strain

FAP1 (S4 Table). Inspection of the contig sequences showed the

presence of four large plasmids in both strains. These were

assigned to Inc groups F, I1 (carrying blaCTX-M-1), I2, and K

(carrying blaCMY-2) in strain 53C and F, I1 (carrying blaCTX-M-1),

and I2, in strain FAP1. A single plasmid in strain FAP1 could not

be assigned to an Inc group. Except for the IncI1 plasmid of FAP1,

all plasmid contigs could be circularized (S4 Table). The plasmid

content was in agreement with our reconstructions, except for two

inconsistencies in strain FAP1: (i) PLACNET did not assign a

blaCTX-M-1 gene to its IncI1 plasmid, and (ii) PLACNET

reconstructed two IncF plasmids. Blast analysis of both recon-

structed IncF plasmids against the FAP1 long-read assembly

suggested that they should indeed have been merged into one

single plasmid. The reason for this incorrect prediction by
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PLACNET is unclear, but in the constellation network the two

plasmids were relatively far away from each other, suggesting that

the IncF plasmid in FAP1 is a fusion between previously observed

IncF plasmids present in the reference database. These data show

that caution must be taken in case PLACNET predicts multiple

plasmids of the same Inc group in one strain. For the remaining

plasmids, blast analysis showed that the precision rate of

PLACNET was high, ranging from 97–100% (Table 3). Also in

terms of sensitivity, PLACNET performed well being able to

recover 72.1–99.7% of the plasmids (Table 3). The plasmid

regions that were not reconstructed by PLACNET mostly aligned

with small scaffolds (average size of 2.061.9 kbp, n = 33) in the

assemblies built from Illumina short-read data, which indicates

that these regions are difficult to assemble. Notably, these small

scaffolds encoded many mobile element-, phage-, transposon- and

integrase-associated proteins (29.7% of all predicted proteins in

these scaffolds) as compared to the correctly assigned scaffolds,

where only 6.7% of the proteins had these predicted roles. These

observations are in line with results obtained from the PLACNET

validation analyses described in [23] and show that PLACNET

efficiently reconstructs plasmids from WGS data. Finally, the

PLACNET-based prediction that both IncI1 plasmids from strains

53C and FAP1 are highly similar (Fig. 6A) was confirmed by

aligning the two complete IncI1 plasmid sequences assembled

from the long-read sequencing data. Filtering out repetitively

aligning regions resulted in a pairwise alignment of 94.8 kbp

containing only 4 SNPs. These data further substantiate our

conclusions regarding highly successful plasmid lineages dissem-

inating cephalosporin resistance.

Discussion

We assessed the epidemiology of ESBL-producing E. coli from

humans, animals and food using WGS. Our findings strongly

suggest the existence of highly successful ESBL-carrying plasmids

facilitating transmission of ESBL genes between different reser-

voirs. This has important implications for our understanding of the

dynamics of the spread of ESBL genes and for evaluating control

measures.

Several strains that were sequenced in this study and which

originated from humans and poultry had previously been

considered indistinguishable based on MLST, plasmid and ESBL

gene typing, suggesting clonal transfer of these strains through the

food-chain, to humans [15]. The claim that ESBL-producing E.
coli strains from humans and poultry are frequently identical was

also made in other studies that made use of traditional sequence-

based typing methods [14,16]. However, as has been demonstrat-

ed for different bacterial pathogens and in varied contexts,

especially bacterial outbreak investigations, WGS provides supe-

rior resolution over traditional typing methods in terms of ruling in

and out epidemiological connections between strains [26–28].

Similarly, we demonstrate that conclusions on the clonal spread of

ESBL-producing E. coli through the food-chain cannot realisti-

cally be drawn on the basis of traditional sequence-based typing

methods, due to their insufficient discriminative power. More

specifically, we found that none of the five pairs of human and

poultry-associated isolates, previously typed as indistinguishable,

were particularly closely related. The most similar pair of isolates

differed by 1263 SNPs/Mbp compared to a difference of 1.8

SNPs/Mbp for known/expected clonally related isolates. Hence,

inferences from classical typing-based studies regarding the extent

of transfer of ESBL-producing E. coli strains from animals via food

to humans and the burden of disease and mortality due to the use

of third-generation cephalosporins in food production must be

considered as highly speculative [11].

In fact, our findings strongly suggest that distinct plasmids

disproportionately contribute to the spread of antibiotic resistance

between different reservoirs. We have demonstrated the existence

of highly similar cephalosporin resistance-encoding IncI1/ST3

(40.0 kbp core, 0–4 SNPs), IncI1/ST7 (49.7 kbp core, 0 SNPs),

and IncK (36.9 kbp core, 0–27 SNPs) plasmids in different

reservoirs. Reconstructed blaCTX-M-1-carrying IncI1/ST3 plas-

mids were found in one human and two poultry isolates, blaCTX-M-

1-carrying IncI1/ST7 plasmids were found in three human, two

poultry, and one pig isolate; and blaCMY-2-carrying IncK plasmids

were found in five human and four poultry isolates. The isolates

carrying these plasmids belonged to evolutionarily distinct

backgrounds (IncI1 in phylogroups A, B1 and B2; IncK in

phylogroups A, B1, B2, D and F), suggesting that these plasmids

efficiently spread through E. coli populations and play an

important role in the dissemination of ESBL and AmpC-type b-

lactamases between different reservoirs.

Fig. 3. Distribution of plasmid sizes in the collection of 32 sequenced E. coli strains. The histogram shows the total number of
reconstructed plasmids corresponding to each size class (in a logarithmic scale). The plasmid size distribution shows a trimodal abundance curve.
Numbers above the three peaks refer to the median size for each class. Plasmids in which a relaxase gene was detected are shown in green and those
in which it was not detected are shown in grey.
doi:10.1371/journal.pgen.1004776.g003
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Based on their genetic content, the IncI1 and IncK plasmids in

our dataset clustered into specific sub-branches that did not

contain any previously characterised plasmid. However, phyloge-

netic analyses revealed that these sub-branches could be split into

evolutionarily distinct plasmids, some of them being distantly

related to previously sequenced plasmids. These findings suggest

that evolutionarily distinct plasmids have been accumulating genes

from the same genetic reservoir, resulting in plasmids with a

similar genetic inventory. The reconstructed IncI1 plasmids all

harboured a characteristic shufflon-related gene that was absent

from previously characterised IncI1 plasmids. Shufflons are site-

specific recombination systems that produce variable C-terminal

extensions of the PilV adhesin, resulting in variations of recipient

ability in IncI1 plasmid mating [29]. Whether this shufflon

explains the promiscuous nature of ESBL-carrying IncI1 plasmids

remains to be determined.

One important question is to what extent the IncI1 and IncK

resistance plasmids found in this study have spread beyond The

Netherlands. Given the trees in Fig. 6, it is clear that currently

available plasmid sequences in public databases do not contain

any plasmids that are particularly closely related to our

reconstructed IncI1 and IncK plasmids. The pMLST repository

(http://pubmlst.org/plasmid/) shows that blaCTX-M-1-carrying

IncI1/ST3 plasmids have been isolated from six different

European countries, whereas blaCTX-M-1-carrying IncI1/ST7

plasmids have until now been isolated only from The Netherlands

and Germany. The location of blaCMY-2 on an IncK plasmid, as

found here, has only been occasionally reported before, in The

Netherlands [30,31], but also in Sweden [32] and Canada [33].

Future sequencing projects are needed to determine whether the

previously identified plasmids isolated outside The Netherlands

are closely related to those described here.

Fig. 4. Hierarchical clustering dendrogram of reconstructed plasmids contained in the collection of 32 sequenced E. coli strains. The
dendrogram was constructed as explained in Methods. Reconstructed plasmids are indicated with colored bullets according to isolation source. The
dendrogram construction automatically grouped plasmids into Inc families, which are shown by background colours. Mob types are also indicated.
Additional columns show plasmid sizes, resistance genes and MOB subfamilies.
doi:10.1371/journal.pgen.1004776.g004

Fig. 5. Hierarchical clustering dendrogram of reconstructed IncI1 and IncK plasmids contained in the collection of 32 sequenced E.
coli strains together with relevant and similar reference plasmids. The dendrogram was constructed as explained in Methods. Reconstructed
plasmids are indicated with colored bullets according to isolation source. All other (reference) plasmids were taken from public sequence repositories.
doi:10.1371/journal.pgen.1004776.g005

Dissemination of Cephalosporin Resistance Genes by Specific Plasmids

PLOS Genetics | www.plosgenetics.org 12 December 2014 | Volume 10 | Issue 12 | e1004776

http://pubmlst.org/plasmid/


We found that none of the human E. coli strains in our dataset

were closely related to strains from poultry. In contrast, nine out of

17 human isolates (53%) contained a blaCTX-M-1 or a blaCMY-2

gene located on plasmids that were highly similar to those found in

poultry. These data cannot be interpreted to mean that clonal

transfer of antibiotic resistant E. coli strains between poultry and

humans does not occur, but rather that such transfer occurs less

frequently than the transfer of resistance plasmids between both

reservoirs. One drawback of our study is that we have used a

relatively small sample size (32 strains). Future studies, using larger

sample sizes, are needed in order to make more accurate estimates

of the relative (and absolute) contributions of clonal versus plasmid

transfer towards the spread of antibiotic resistance and the

associated health-care burden. In addition, our study focuses on

IncI1 and IncK plasmids. Future studies are needed that also focus

on other plasmid families, such as IncF plasmids, which are

commonly detected in E. coli from human infections and are

associated with the dissemination of many virulence and antibiotic

resistance determinants [34,35].

Conjugal transfer of plasmids carrying antibiotic resistance

genes has been shown to frequently occur among Enterobacteri-

aceae in different environments, including milk, meat, and feces,

even in the absence of antibiotic pressure [36,37]. Moreover, it has

been shown that bla-carrying plasmids are readily transferred from

invading Enterobacteriaceae to Enterobacteriaceae that are indig-

enous to the animal and human intestine and that the invading

clone itself generally does not persist in the intestine [38,39].

Nonetheless, it is difficult to infer to what extent the reservoir of

bla-type resistance genes in poultry contributes to the carriage of

such genes by human E. coli strains. If successful plasmids are

largely responsible for the rising prevalence of ESBL- and AmpC-

producing E. coli in healthy humans, their emergence in poultry

and humans may simply be a reflection of selection of strains

carrying these plasmids due to antibiotic usage in human and

veterinary medicine.

A better understanding of the dynamics of ESBLs and other

resistance genes in different hosts is needed to design effective

control measures, both in the community and within health care

settings. Our findings strongly suggest the occurrence of clonal

transfer of ESBL-producing E. coli between pigs and pig farmers,

which may well occur through direct contact or through aerosols.

Whether such events represent a public health threat remains to be

Fig. 6. Phylogeny of reconstructed IncI1 and IncK plasmids and their closest relatives. Phylogenetic tree of IncI1 plasmids built from 763
variable positions present in an 8.6 kbp alignment, representing 8 core proteins (S3 Table) (A). Phylogenetic tree of IncK plasmids built from 2724
variable positions present in a 19.9 kbp alignment, representing 27 core proteins (S3 Table) (B). Bootstrap support was implemented by running 1000
bootstrap replicates. Reconstructed plasmids are indicated with coloured bullets according to isolation source (plasmid names include associated
strain names, followed by a unique plasmid identifier). All other plasmids were taken from public sequence repositories. Plasmid STs (for IncI1 only)
and encoded b-lactamases (with the exception of TEM-1, which does not provide resistance to third generation cephalosporins) are indicated to the
right of the trees. 11SLV indicates a single locus variant of ST11. pMLST negative means that the reconstructed plasmid lacks one or more pMLST loci.
Bla genes in light grey were not connected to the reconstructed plasmid, but should be located on this plasmid according to typing data. Light grey
panels indicate potential epidemic blaCTX-M-1- and blaCMY-2-carrying plasmids. Core genome analysis of these plasmid subsets revealed virtually
identical backbones of up to 50 kbp.
doi:10.1371/journal.pgen.1004776.g006
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determined. The occurrence of transmission of ESBL-producing

E. coli from poultry through the food-chain is less evident. The

occurrence of highly-related plasmids that carry ESBL- and

AmpC-type resistance genes among genotypically distinct E. coli
strains from different sources is cause for concern because this

suggests that plasmids can spread with relative ease between the

different reservoirs and the spread of these plasmids may be

exceedingly difficult to control. Clearly, there still remains an

urgent need to minimize the use of third-generation cephalospo-

rins in animal husbandry as this is an important selective pressure

for the occurrence of ESBL- and AmpC-producing E. coli in

animals raised for food production.

Materials and Methods

Isolates and molecular analyses
The genomes of 32, mostly ESBL-producing, E. coli strains

isolated from different reservoirs in The Netherlands in the

period 2006–2011, were sequenced. One set of isolates (n = 24)

has been studied previously using classical typing methods

[15,18]. This set contained strains from human clinical infections

(n = 13) which had been obtained from geographically dispersed

laboratories in The Netherlands, servicing secondary and tertiary

care hospitals, general practitioners and long-term care facilities.

Additional isolates were from chickens raised on production

farms (n = 4) and chicken retail meat (n = 7) (Table 1). All 24

isolates were previously genotyped by MLST [40] (http://mlst.

warwick.ac.uk/mlst/dbs/Ecoli) and plasmid characterization was

previously performed using PCR-based replicon typing [31,41]

and additional pMLST for IncI1 plasmids [42,43] (http://

pubmlst.org/plasmid/). Detection of ESBL genes had been

performed for all 24 strains using microarray analysis and gene

sequencing [44]. In addition, detection of AmpC-type b-

lactamase-encoding genes had been performed for 11 strains,

using gene sequencing [18]. The association between ESBL/

AmpC genes and plasmids was previously determined by both

Southern blot hybridization and transformation [31]. Four non-

ESBL-producing isolates were included as controls and were

analysed for the carriage of plasmids that can incorporate ESBL

genes via horizontal gene transfer. The second set of isolates

contained eight ESBL-producing strains that had been isolated

from three different pig farms in The Netherlands in 2011

(Table 1). These farm strains were part of a larger cohort that will

be described in detail elsewhere (Dohmen et al., unpublished

data). For one farm (farm A), four strains were collected, two

from different fecal pools of six unique pigs and two from the

feces of different farmers. For each of the other two farms (farms

B and C), one strain was collected from a fecal pool of six pigs

and one from the feces of a farmer. Detection of the ESBL

(blaCTX-M-1) gene was performed using a CTX-M-1 group-

specific PCR and additional gene sequencing (Dohmen et al.,
unpublished data).

Genome sequencing and assembly
Genomic DNA was isolated from cell pellets using the

Ultraclean Microbial DNA isolation kit (Mo Bio Laboratories,

Inc., Carlsbad, CA, USA) according to the manufacturer’s

instructions. Strains were sequenced using Illumina HiSeq 2000

sequencing technology (Illumina, Inc., San Diego, CA, USA)

generating 90 bp paired-end reads from a library with an average

insert size of 500 bp and a total amount of quality-filtered raw

sequence of over 600 Mbp per strain. Quality filtering included

the removal of duplicate reads and reads that contained $15 bp

overlap with the adapter sequences. The corresponding paired-

end reads were also removed in these cases. Reads were assembled

de novo using SOAPdenovo v1.05 [45]. For each Illumina dataset,

a range of different k-mer lengths (21–63 bp) was empirically

tested to obtain the assembly with the lowest number of scaffolds of

size $500 bp. In cases where more than one assembly contained

the lowest number of scaffolds, the parameters of choice to pick the

best assembly were: the lowest number of contigs of size $200 bp,

the highest N50 for the scaffolds, and the highest N50 for the

contigs, in order of priority. Assembly statistics are reported in S1

Table. Two strains (53C and FAP1, Table 1) were also sequenced

on a Pacific Biosciences RS II instrument (Pacific Biosciences, Inc.,

Menlo Park, CA, USA). Libraries were prepared using the PacBio

20 kbp library preparation protocol. Size selection (5 kbp cut-off)

of the final libraries was performed using a BluePippin instrument

(Sage Science, Inc., Beverly, MA, USA). Sequencing was

performed using P4-C2 chemistry. Three and five SMRT cells

were used for sequencing strains FAP1 and 53C, respectively,

generating 159191 and 95263 reads and a total of 997.1 and

471.5 Mbp, respectively. Reads were assembled using HGAP v3

(Pacific Biosciences, SMRT Analysis Software v2.2.0). Minimus2,

part of the AMOS package [46], was used to circularize contigs.

The SMRT Analysis Software was used to map reads back to the

Table 3. PLACNET precision and sensitivity rates for seven reconstructed plasmids.

PLACNET plasmid (kbp) Corresponding PacBio plasmid (kbp) PLACNET precision (%) PLACNET sensitivity (%)*

p53C_1 (57.3) IncI2(56.9) 97.0 96.4

p53C_2 (83.2) IncI1 (109.7) 99.1 72.1

p53C_3 (69.7) IncK (86.0) 100 76.7

p53C_4 (128.2) IncF (134.8) 97.6 90.6

pFAP1_2 (89.7) IncI1 (129.4) 100 82.1

pFAP1_3 (58.4) IncI2 (62.4) 100 95.7

pFAP1_5 (46.1) unclassified plasmid (46.2) 100 99.7

* Note that the region of the PacBio plasmid that was recovered can exceed the reconstructed plasmid size because of repetitive elements, which are collapsed in
Illumina assemblies, but are uncollapsed in PacBio assemblies. For each reconstructed plasmid the PLACNET precision rate was calculated by the formula [(assembly size
of all correctly assigned scaffolds/assembly size of all correctly+incorrectly assigned scaffolds)6100%]. Sensitivity reflects the percentage of each plasmid sequence
(assembled using PacBio data) that was correctly reconstructed in the PLACNET analysis. The sensitivity rate was calculated by the formula [(total nr. of non-overlapping
aligning residues/size of the plasmid that was assembled using PacBio data)6100%].
doi:10.1371/journal.pgen.1004776.t003
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contigs and correct sequences after circularization. Assembly

statistics are reported in S4 Table.

Sequence data analysis
Publicly available sequence data were retrieved from GenBank

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria and ftp://ftp.ncbi.nih.

gov/genomes/Bacteria_DRAFT). Whole genome sequence data

for 126 Escherichia and 12 Shigella species were downloaded in

June 2012, whereas sequence data for 4188 completely sequenced

plasmids, 797 of them from Enterobacteriaceae, were downloaded

in June 2013. The strains that were sequenced in this study were

annotated with RAST v4.0 [47] using default settings. Predicted

proteins were assigned to Clusters of Orthologous Groups (COG)

[48] as described previously [49]. On the basis of COG

assignments, a core proteome was defined by (i) extracting, per

analysed genome, all proteins with one or more COGs assign-

ments and which represented the only protein in that given COG

or combination of COGs and by (ii) selecting from those proteins

the ones that occurred in all genomes analysed. Alternatively, in

the cases where smaller genomic datasets were analysed (see

Results), core proteomes were determined by first subjecting all

associated protein sequences to an all-vs-all blastp similarity search

(defaults settings, except for: -F ‘m S’; -e 161025; -z [the total

number of proteins used in the analysis]). Groups of orthologous

proteins were determined from the blastp output using

OrthoMCL v2.0.2 [20]. Orthologous groups with exactly one

representative protein from each input genome were considered to

be part of the core proteome. Core genome alignments were built

as follows: for each group of orthologous proteins, the corre-

sponding nucleotide sequences were extracted and aligned using

Muscle v3.7 [50], after which gaps were stripped from each

alignment using trimAl v1.2 [51]. The resulting alignments were

concatenated to yield a core genome alignment. Phylogenies were

reconstructed by building maximum likelihood phylogenetic trees

from the variable positions in core genome alignments using

RAxML v7.2.8 [52] under the GTRCAT model. Confidence was

inferred by running 100 or 1000 bootstrap replicates under the

same model. Trees were mid-point rooted and visualised in

MEGA v5.05 [53]. Bowtie2 [54] was used for mapping Illumina

reads against scaffolded assemblies and gene sequences. MLST

profiling of sequenced bacteria was performed using MLST v1.6

[55]. Pairwise large-scale nucleotide alignments were built using

NUCmer v3.23 (with –mum option), which is part of the

MUMmer package [56].

Plasmid reconstructions from WGS data
Plasmid reconstructions were based on the Plasmid Constella-

tion Networks (PLACNET) method of genome representation

[23]. In short, for all genomes, a PLACNET representation that

clusters all plasmid-associated contigs was built using (i) contig

similarities with reference genomes, (ii) all possible contig linkages,

and (iii) plasmid-specific relaxase and replication initiator genes.

This information was implemented in a network, where genomic

contigs, together with reference plasmid and genome sequences

are shown as nodes. The nodes are linked by edges of homology

and scaffolding information. As a result, contigs fall into clusters,

the largest one being the chromosome and additional ones being

plasmids. Manual curation of the resulting networks helped solving

most of the remaining ambiguities. Reference data from GenBank

contained 4188 plasmids and 2728 chromosomes. Contig similar-

ity analysis was performed using megablast against these reference

data. Contig homology edges were defined by the five best blast

hits (e-value ,1610220). Scaffolds were determined by mapping

all reads against contigs using Bowtie2 [54], and allocating as

scaffold links all discordant paired-end reads that matched two

different contigs. To provide additional evidence for the plasmid

origin of a cluster, a blastp search against in-house databases

containing plasmid-specific relaxases and replication initiator

proteins was performed. Contigs encoding these proteins were

tagged in the PLACNET. Plasmid Neighbour-Joining dendro-

grams were built based on previously described methodologies

[57] using CD-HIT [58] to construct protein profiles and the

Jaccard formula to calculate distance metrics between profiles.

PLACNET results were validated as follows: for the two strains

53C and FAP1, the scaffolds assigned to the reconstructed

plasmids were queried using megablast against the assemblies

resulting from Pacific Biosciences (PacBio) sequencing. The best

blast hit (e-value #1610210) was inspected to assess whether the

scaffolds had been assigned to the correct plasmid. For each

reconstructed plasmid the PLACNET precision rate was calculat-

ed by the formula [(assembly size of all correctly assigned

scaffolds/assembly size of all correctly+incorrectly assigned

scaffolds)6100%]. To assess PLACNET sensitivity (the percentage

of each plasmid sequence size that was recovered) blast hits against

the corresponding PacBio plasmids were collected (e-value #

1610210, minimum of 250 identical residues). The sensitivity rate

was calculated by the formula [(total nr. of non-overlapping

aligning residues found by blast/size of the PacBio plas-

mid)6100%].

Accession numbers
All sequence data have been deposited at DDBJ/EMBL/

GenBank. Accession numbers for the Illumina sequence data are

listed in Table 1. Pacific Biosciences sequence data have been

deposited with accession numbers PRJNA260957 for strain 53C

and PRJNA260958 for strain FAP1.
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