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Diffusion Imaging in Python (Dipy) is a free and open source software project for the
analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI
is an application of MRI that can be used to measure structural features of brain white
matter. Many methods have been developed to use dMRI data to model the local
configuration of white matter nerve fiber bundles and infer the trajectory of bundles
connecting different parts of the brain. Dipy gathers implementations of many different
methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion
distributions in individual voxels; fiber tractography and fiber track post-processing,
analysis and visualization. Dipy aims to provide transparent implementations for all
the different steps of dMRI analysis with a uniform programming interface. We have
implemented classical signal reconstruction techniques, such as the diffusion tensor
model and deterministic fiber tractography. In addition, cutting edge novel reconstruction
techniques are implemented, such as constrained spherical deconvolution and diffusion
spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking
and original methods for tractography clustering. Many additional utility functions are
provided to calculate various statistics, informative visualizations, as well as file-handling
routines to assist in the development and use of novel techniques. In contrast to many
other scientific software projects, Dipy is not being developed by a single research group.
Rather, it is an open project that encourages contributions from any scientist/developer
through GitHub and open discussions on the project mailing list. Consequently, Dipy today
has an international team of contributors, spanning seven different academic institutions
in five countries and three continents, which is still growing.

Keywords: diffusion MRI, DTI, DSI, HARDI, dMRI, Python, free open source software, tractography

1. INTRODUCTION
Diffusion MRI (dMRI) (LeBihan and Breton, 1985; Merboldt
et al., 1985; Taylor and Bushell, 1985) is an MRI technique
(Callaghan, 1991) that provides information about the struc-
ture of neuronal pathways found in the white matter and other
body tissue with fiber-like structure (see Figure 1). dMRI acquires
one or more T2 reference images, and a collection of diffusion-
weighted images, in which T2 signal is attenuated according to the
diffusivity of water along prescribed gradient directions (Behrens
and Johansen-Berg, 2009; Jones, 2010). Because diffusion is hin-
dered across nerve fiber membranes and less hindered along the
length of nerve fibers, the signal is relatively more attenuated
when diffusion-weighting is applied along the length of the fiber.
Hence, the local structure of the neural tissue can be inferred
from the measurements. This has led to many applications of
the method, including diagnostic tools to assess the disruption of
the microstructure and methods of tractography, which estimate

the trajectories of nerve fibers that communicate information
between different parts of the brain.

Because of its unique capability to characterize the microstruc-
ture of neural tissue, and the inferences that can be made using
this information about structural connectivity, dMRI has had
increasing popularity, with more than 5000 papers published
in 2012 (according to PubMed). This popularity is also evident
from the large number of software tools available for the analy-
sis of diffusion-weighted images. Many of these tools are written
in C/C++: 3D Slicer (Pieper et al., 2006), AFNI (Cox, 2012),
MITK (Fritzsche et al., 2012), BrainVoyager QX (Goebel, 2012),
DTI-Query/Quench (Sherbondy et al., 2005), FreeSurfer (Fischl,
2012), FSL-FDT (Smith et al., 2004), MedInria (Toussaint et al.,
2007), MRtrix (Tournier et al., 2012), Diffusion Toolkit/Trackvis
(Wang et al., 2007), FiberNavigator (Vaillancourt et al., 2011;
Chamberland and Descoteaux, 2013). A few are written in other
languages, such as R: TractoR (Clayden et al., 2011), Java: Camino
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FIGURE 1 | The fornix is a C-shaped bundle connecting the

hippocampus with the hypothalamus. The body of the fornix divides into
two legs knows as the crus of the fornix. We can see here a detailed
recreation of the fornix using dMRI data processed with Dipy.

(Cook et al., 2006) and Matlab: ExploreDTI (Leemans et al.,
2009), AFQ (Yeatman et al., 2012) and others.

Dipy (Diffusion Imaging in Python) (Garyfallidis et al., 2011)
is the first collective effort to create an open-source diffusion
MRI analysis library using the Python language. Python is a gen-
eral purpose, object-oriented programming language which was
designed with an emphasis on code readability. This emphasis
allows scientists who are not trained as software engineers to
understand the computational steps taken during the analysis
and to extend the software easily. Being an interpreted language,
Python does not require additional compilation and linking, so
scripts and libraries written only in Python are relatively easy
to install and share. Python can be used interactively making it
a good match for exploratory data analysis and methods devel-
opment. Taken together, these properties of the language are
powerful assets for the design of the next generation of medical
imaging analysis tools.

In the past, we have found that many researchers used the
available tools without necessarily understanding the underlying
details, often because these were hidden from the users. Dipy tack-
les this problem in part by being free, open source (BSD license),
simple and well documented. The environment for Python pack-
ages in imaging is healthy. There has been large growth in the
number of Python users, there are many Python tools for sci-
entific computing (Pérez and Granger, 2007; Pérez et al., 2011;
McKinney, 2012), and there are complementary neuroimaging
packages in Python1.

Dipy takes full advantage of the growing ecosystem of tools
written for scientific computing in Python, and is built on top of
production-ready, high-performance Python libraries. Primarily,
Dipy depends on Numpy2. The core structure of this library is an
implementation of an N-dimensional array class (van der Walt
et al., 2011). Numpy arrays are used for representing numeri-
cal data in Python and enable efficient numerical computations

1http://nipy.org
2http://numpy.org

through the use of vectorized operations, by avoiding data copy-
ing, and by minimizing the number of operations performed.
Numpy is also used for matrix, tensor and linear algebra oper-
ations. Dipy further depends on Scipy 3 for non-linear opti-
mization and other volumetric operations. We use Cython 4 in
rare cases when both standard Python and Numpy/Scipy are
not fast enough for the task at hand. Cython converts Python
code into Python C extensions by interpreting static type dec-
larations. The last required dependency for Dipy is Nibabel 5.
Nibabel is a package for loading and saving medical imaging file
formats.

Dipy uses other optional libraries for visualization, testing
and documentation. We use Matplotlib6 for 2D and 3D plotting
and Python-VTK 7 for more advanced 3D interactive visualiza-
tion. Dipy uses nose8 for unit testing and Sphinx9 for automated
documentation. Finally, we recommend using IPython 10 as an
interactive Python shell for calling and debugging scripts.

In the following sections, we explain the philosophy and main
design concepts behind Dipy. We also give examples which cover
different parts of the diffusion MR analysis pipeline from the
analysis of diffusion signal in individual voxels to streamline gen-
eration by tractography algorithms and visualization of these
streamlines.

2. PHILOSOPHY AND MISSION
The purpose of Dipy is to make it easier to do better diffusion MR
imaging research. We aim to build software that is clearly written,
well explained and thoroughly tested, while being a good fit for
the underlying ideas and providing a natural meeting point for
collaboration.

We designed Dipy to be an international project that welcomes
contributions from anywhere in the world. As for many other
projects, we suffer from the tension between our desire to encour-
age new code and our need to keep Dipy well tested and well
maintained, so that we and others can continue to use it and use
it to build new things. To keep code quality high and help each
other understand the new code, we use public code review. Each
contribution, from any author, first gets proposed on the public
website11. The code can be merged after everyone has had a chance
to comment and ask questions. The same system allows the code
to be tested automatically for test errors.

We believe that this discipline makes the project more attrac-
tive for new developers, because it is clear how decisions are made,
and that each developer can and must interact as a peer with his
or her colleagues on the project.

We are glad to see that Dipy has attracted an international
and multi-departmental team of contributors from different lev-
els of education (Master students, PhD students, Post-Docs, and

3http://scipy.org
4http://cython.org
5http://nipy.org/nibabel
6http://matplotlib.org
7http://vtk.org
8http://nose.readthedocs.org/
9http://sphinx-doc.org/
10http://ipython.org
11http://github.com/nipy/dipy

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 8 | 2

http://nipy.org
http://numpy.org
http://scipy.org
http://cython.org
http://nipy.org/nibabel
http://matplotlib.org
http://vtk.org
http://nose.readthedocs.org/
http://sphinx-doc.org/
http://ipython.org
http://github.com/nipy/dipy
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Garyfallidis et al. Dipy

Professors) spanning the fields of Computer Science, Medicine,
Applied Mathematics, Biomedical Engineering and Psychology.

3. TERMINOLOGY
As in most scientific fields, dMRI uses domain-specific terminol-
ogy to describe the constructs of the measurement, as well as to
present the interpretation of the results of the analysis. We rely
on a recent paper (Côté et al., 2013), that proposes specific ter-
minology for describing different constructs of the dMRI field. In
this section we describe terms for concepts in the measurement
and the results of the analysis. In subsequent sections, we use
this terminology to explain the analysis code and interpretation
of data.

The measurement in dMRI relies on the application of a
pulsed magnetic gradient to make the measurement sensitive
to diffusion. The degree of sensitization depends on a number
of parameters, including the duration of the gradient, the time
that elapses between pulses of the gradient, and the gradient
amplitude. These parameters are together summarized in what
is referred to as the b-value. As described above, the measurement
is conducted with the magnetic field gradient applied in several
different directions, and these are encoded in so-called b-vectors.
These are unit vectors that describe the direction of the gradient
relative to the scanner coordinate frame in which the gradients are
applied. Different algorithms are used to determine the placement
of these b-vectors (e.g., Jones et al., 1999; Caruyer et al., 2013).

While we are ultimately interested in the identification of the
trajectories of bundles of axons, which are the long fiber-like part
of a nerve cell along which electrical impulses are conducted from
cell to cell (and whose size is on the μm scale), the measurement
is conducted on a much larger scale. Typically, the measurement
is conducted on a grid of voxels of approximately 2 × 2 × 2 mm.
The scale of measurement limits us to describing the trajectories
of fascicles of nerves, which are relatively large (mm–cm scale)
bundles of axons traveling through the white matter together. One
of the major achievements of this field is that it is now possible
to reliably and accurately identify major fascicles in individual
experimental participants or patients (Mori et al., 2005). These
major fascicles are also known as tracts. This is a term taken from
neuroanatomy and describes a group of neuronal axons within
the central nervous system (mm scale).

For the purpose of interpretation of these data, a fiber can be
any long and thin structure. Hence, fiber tracking is a general
term that can be used in any field that reconstructs fibrous struc-
tures, such as white matter axon fibers, muscle fibers, prostate
fibers and even celery fibers (Numano et al., 2006). Fiber bundles
denote groups of fibers usually with an anatomical or functional
meaning. These can be major tracts in the brain. Examples of
major tracts are the arcuate fasciculus, which connects parts of
the posterior temporal lobe with the frontal lobe; and the fornix
(see Figure 1), which connects the medial temporal lobe with
sub-cortical structures, such as the hypothalamus and amygdala.
A fiber bundle in brain anatomy is synonymous to a tract, also
often called fiber tract. The term tract can be misleading when
talking for example about the corticospinal tract, because the cor-
ticospinal tract is in fact not a single tract but a group of tracts
(including corticobulbar projections, the pyramidal tract, etc.).

Tractography is the computational process through which the
fibers are detected and delineated. Tractography relies on the
assumption that diffusion of water, as reflected in the dMRI mea-
surement, occurs more freely along the axis of an axon, than
across the membranes of the axon. Tractography is therefore usu-
ally done by finding the directions of diffusion in each voxel (see
section 6) and stepping through the brain volume along the most
likely directions of diffusion estimated in each location. This pro-
cess generates so-called streamlines, which are imaginary lines that
approximate the underlying fibers. Streamlines are also some-
times referred to as tracks. These are not to be confused with
tracts: while a tract is a physical object, a track is a computa-
tional construct that only approximates the underlying fascicle or
bundle of fibers. Confusingly enough streamline bundles, or sim-
ply bundles are often used to refer to a group of streamlines with
similar shape and spatial characteristics (see section 8.1). These
do not necessarily correspond to individual physical fiber bun-
dles but are instead computational constructs that approximate
the underlying anatomy.

4. GENERAL DESIGN ASPECTS
Dipy is built on the Scipy tool stack, which includes packages
such as Numpy (numerical arrays and array computation), Scipy
(scientific libraries, e.g., optimization, triangulation, special func-
tions, and more), and Cython (an optimized Python to C com-
piler, used to achieve C-level code performance). Furthermore,
Dipy is one of the major components of the Nipy (Neuroimaging
in Python) ecosystem of medical imaging software (see Figure 2).
Dipy also interacts effortlessly with other Nipy projects. For
example, Nipype (Gorgolewski et al., 2011) has Dipy interfaces
which allow building scalable dMRI workflows.

Dipy’s API is designed to be intuitive, simple to use, and
well documented. This allows researchers to build fairly simple
Python analysis scripts that can build complex computational
experiments while still being easy to read. In addition, since the

FIGURE 2 | Dipy is one of the main projects of the Nipy community

and depends strongly on Numpy, Scipy, and Cython. This diagram
further shows the major Dipy sub-modules.
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code is entirely free and open, Dipy is ideally suited to facilitate
reproducible research (Donoho, 2010).

Like many modern open source projects, Dipy is hosted on
GitHub—an online repository that hosts open-source software,
using the Git source-code management system to perform revi-
sion control. Any contributor with a (free) GitHub account can
propose changes via a Pull Request (PR). These PRs have an inter-
face that allows all interested coders to discuss the code and iterate
on it before being we make the final decision to include the code
in dipy. The discussions also allow for line-by-line comments;
these can be useful for sharing improvements in the code or doc-
umentation, and learning new techniques from more experienced
developers.

To assist developers, Dipy uses the Travis continuous integra-
tion system. Any time a new PR is proposed, Travis receives an
automated signal to commission a new virtual machine to run
the tests. A file in the Dipy repository tells Travis how to install
the necessary dependencies, build a clean copy of Dipy, and run
Dipy’s test suite against the new changes. Travis integrates with
GitHub to post the results back to the PR interface. This means
that we can check any new code for errors, and make sure that
code included into Dipy passes all the tests. After the code reaches
the main development branch of Dipy, we run more comprehen-
sive tests on all our supported platforms using a buildbot 12

system hosted at nipy.bic.berkeley.edu. This gives us early warn-
ing of any problems on platforms such as Windows or OSX. Dipy
also follows a test-driven development philosophy, whereby all
code should be accompanied by a suite of tests to exercise all
corner cases (Maximilien and Williams, 2013).

Dipy uses Sphinx to build the project documentation. Sphinx
is the documentation system used by the main Python language
project and many other Python projects, including all the neu-
roimaging projects. It takes plain-text ReStructuredText as input
and converts it to either HTML, LaTeX or PDF formats. Sphinx
takes API documentation directly from the docstrings in the
source code, so that the API documentation does not get out of
date with the code.

Dipy’s main sub-modules (see Figure 2) are core, reconst, track-
ing, viz, io, align, data, sims and segment. Core contains general
functions that can be used in any other sub-module. Reconst con-
tains classes for estimating diffusion metrics in individual voxels.
Tracking holds classes for fiber tracking and streamline process-
ing. Viz is used for 3D visualization and interaction. Io offers
input/output utilities when they are not available in Nibabel.
Align provides tools for alignment and reslicing of volumes or
streamlines. Sims is focused on creating synthetic simulations.
Data is used for downloading public datasets. Segment concen-
trates on segmentation of images and clustering of streamlines.

In this paper we use code listings to illustrate the use of Dipy.
For example, the following code snippet shows how to find your
current version of Dipy.

import dipy
dipy.__version__
’0.7.0’

12http://buildbot.net

5. PRE-PROCESSING
5.1. LOAD/SAVE DATA
The most basic operation that we perform in neuroimaging
is to load files containing data that have been generated from
an MRI scanner. Surprisingly this is often a difficult task as
different scanners and software read/write the data in differ-
ent ways. Fortunately Nibabel, a library for reading medi-
cal imaging formats, provides support for ANALYZE (plain,
SPM99, SPM2), GIFTI, NIfTI1, MINC, MGH, ECAT, PAR/REC,
Freesurfer (geometry, morphometry files), and with a growing
support for DICOM.

The most common file format used in dMRI is the NIfTI1 for-
mat. Assuming that we have a file with our 4D raw diffusion data
we can load it in the following way:

fimg = "raw.nii.gz"
import nibabel as nib
img = nib.load(fimg)

Where fimg holds the filename for the 4D NIfTI1 file, nib is a
shortcut for the Nibabel module, img is an object that Nibabel
creates which contains all the information from the file e.g., the
header, the data and the affine. We can obtain all these using
getter methods:

data = img.get_data()
affine = img.get_affine()
header = img.get_header()
voxel_size = header.get_zooms()[:3]

Here data is a Numpy array which contains the actual 4D image
(a collection of 3D volumes). Using data.shape we can obtain
the dimensions of the image. In this example, the dimensions are
(81, 106, 76, 160). We can think of this 4D image as a sequence of
160 sequential 3D volumes, each containing (81, 106, 76) voxels.
The variable affine provides a 4 × 4 matrix which contains the
transformation matrix which maps 3D voxel image coordinates
to world mm coordinates. This matrix can be useful when regis-
tering, saving or visualizing images. The voxel_size is a tuple
with three values. In this example the voxel_size is (2, 2, 2),
corresponding to a volume of 8 mm3.

Supposing that we want to extract and save from the 4D data
only the first volume (usually this is the volume containing the
non-diffusion-weighted data, also denoted as S0). We can do that
very easily using the following code.

S0 = data[:, :, :, 0]
img2 = nib.Nifti1Image(S0, affine)
nib.save(img2, "S0.nii.gz")

As we said previously data is a Numpy array. Numpy
arrays provide simple ways to extract information from N-
dimensional datasets, an operation known as slicing. For exam-
ple, data[10:20, 15:25, 20:30, 30:50] returns a
new sub-array with shape (10, 10, 10, 20) starting at (10, 15,
20). When a colon on its own (:) is used that means that all points
in this dimension are used. The only delicate point here is that in
order to save this new array we will need to update the affine by

Frontiers in Neuroinformatics www.frontiersin.org February 2014 | Volume 8 | Article 8 | 4

nipy.bic.berkeley.edu
http://buildbot.net
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Garyfallidis et al. Dipy

adding the sub-array’s starting vector to the original offset vector.
This is possible in the following way:

import numpy as np
sub_data = data[10:20, 15:25, 20:30, 30:50]
sub_affine = affine.copy()
sub_affine[:3, 3] += np.array([10, 15, 20])
sub_img = nib.Nifti1Image(sub_data, sub_affine)
nib.save(sub_img, "sub_data.nii.gz")

5.2. BACKGROUND REMOVAL
In order to remove the background and keep only the parts that
are in the brain we can use a function called median_otsu (see
Figure 3).

from dipy.segment.mask import median_otsu
mask, S0_mask = median_otsu(data [:, :, :, 0])

median_otsu uses first a median filter to smooth the S0 and
then Otsu’s method, an automated histogram method (Otsu,
1979) to separate the brain (foreground) from its background.
It returns two arrays, the mask, a 3D array with 1s for the fore-
ground and 0s for the background and the masked S0, S0_mask
a 3D array with the actual S0 values in the foreground and 0s in
the background.

5.3. GRADIENT TABLE
The b-value b or diffusion weighting is a function of the amplitude,
duration, temporal spacing and timing parameters of the specific
paradigm. In the case of the classical Stejskal-Tanner pulsed gradi-
ent spin-echo (PGSE) sequence, the signal at the time of readout
is given by:

b = γ2G2δ2 (� − δ/3) (1)

γ is the gyromagnetic ratio, δ denotes the pulse width, G is the
gradient amplitude and � is the center to center spacing. γ is
a constant which depends on the type of nucleus and on the
strength of the static magnetic field of the MRI machine, but we
can control the b-value by changing the other three parameters.
By changing the b-value along different gradient directions MR
researchers can alter the quality and duration of the dMRI exper-
iment. The gradient unit directions are often referred as b-vectors.
We need to know the b-values and b-vectors for each 3D volume

FIGURE 3 | Showing an axial slice in the center of S0 before (left) and

after brain extraction (right) using median_otsu.

in order to analyze the diffusion data. These can usually be read
from one or two different files. Here is an example:

fbval = "raw.bval"
fbvec = "raw.bvec"
from dipy.io import read_bvals_bvecs
bvals, bvecs = read_bvals_bvecs(fbval, fbvec)

The b-value and b-vector parameters are stored in a utility class,
created by the gradient_table function:

from dipy.core.gradients import gradient_table
gtab = gradient_table(bvals, bvecs)

Here, gtab is an instance of a GradientTable object. This
object checks the input values and provides the b-values and b-
vectors in a form that Dipy knows how to use. For example,
the shape of gtab.bvals and gtab.bvecs should always
return N and N × 3, respectively, where N is equal to the size of
the last dimension of data. Often, it is useful to know the num-
ber and position of b-values with value 0 (the b0 volumes); there
is an utility method for this purpose—gtab.b0s_mask.

The GradientTable object can also store other acquisition
parameters like time between volumes (Time-to-repeat, TR) and
echo time (TE). These are � and δ, respectively in Equation (1).
The GradientTable is therefore an abstract representation of
the acquisition parameters.

6. RECONSTRUCTION
In diffusion MRI, the motion of water molecules is probed in a
spatial- and direction-specific manner. That is, in every spatial
location in the brain (typically sampled in voxels each covering a
volume of approximately 2 × 2 × 2 mm3), the diffusion in several
different directions is probed through the application of direc-
tional magnetic gradients. This motion due to diffusion takes
place at a microscopic level, therefore, if we want to describe how
the molecules diffuse we have to study this phenomenon from
a statistical point of view. When a molecule is at position x0, we
cannot read exactly where it will be after time t, we can only model
a distribution of possible locations i.e., a probability displace-
ment distribution. This is also known as the diffusion propagator
P. This motion is described by the propagator P(x; x0, t) which
defines the probability of being in x after a time t, starting at x0.
Callaghan (1991) showed that the spin echo magnitude S(q, t)
from a pulsed gradient spin echo (PGSE) experiment is directly
related to the diffusion propagator by the following (inverse)
Fourier relation

S(q, t) = S0

∫
P(r, t)ei2πq·rdr (2)

where S0 is the signal in the absence of the applied magnetic diffu-
sion gradient g, r is the relative spin displacement x − x0 at diffu-
sion time t and q is the spin displacement wave vector. q is parallel
with the applied magnetic gradient g which in turn are directly
related with the b-vectors and b-values as discussed in section 5.3.
In theory, if we apply the Fourier transform in Equation (2) we
can get back to the probability displacement distribution (PDF)
for every voxel. In practice, the first methods to calculate the PDF
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were q-space imaging (QSI) (Callaghan et al., 1988) and the most
recent diffusion spectrum imaging (DSI) (Wedeen et al., 2005)
(see section 6.2). DSI needs long acquisition time although recent
techniques based on Compressed Sensing ideas (Menzel et al.,
2011; Bilgic et al., 2012; Gramfort et al., 2013), and multi-slice
imaging (Setsompop et al., 2012) have considerably accelerated
the DSI acquisition. An alternative is to work on reconstructing
only an angular projection of the 3D PDF. This reconstruction is
often called the orientation distribution function (ODF). Another
alternative is to make assumptions about the distribution of the
PDF such as a Gaussian assumption, which leads to the popular
diffusion tensor imaging (DTI) technique (Basser et al., 1994).

6.1. DIFFUSION TENSOR IMAGING
Often people assume that DTI and dMRI are synonyms. This
is not correct. In DTI, there is a crucial assumption that the
diffusion propagator is described only by a single 3D Gaussian
distribution. From Equation (2), we can thus write

P(r, t) = 1√
4πt3 | D | exp(− rT D−1r

4t
) (3)

where D is known as the diffusion tensor. This tensor is a
3 × 3 positive definite symmetric matrix that can be completely
described by a centered ellipsoid with three principal axes and
associated eigenvalues λ1 ≥ λ2 ≥ λ3.

DTI was first proposed by Basser et al. (1994) and has since
been very influential in demonstrating the utility of dMRI in char-
acterizing properties of white matter tissue. The model relies on
the assumption that diffusion is a Gaussian process, which can be
captured by six parameters, describing the variance and covari-
ance of the Gaussian diffusion along the three primary axes. From
these parameters, several useful measures can be derived. The pri-
mary diffusion direction is the principal eigenvector of the tensor.
It has eigenvalue λ1 and is the direction in which variance in
the diffusion distribution is largest. In some places in the brain
(e.g., in the corpus callosum, the large commissural fiber bundle
connecting left and right hemispheres), this corresponds to the
direction of the white matter fibers in the voxel and can be used
for streamline tracking (Conturo et al., 1999; Mori et al., 1999;
Basser et al., 2000). Other univariate measures can be estimated
from the parameters of the tensor model to estimate the bio-
physical properties of the underlying tissue. The diffusivity along
the primary direction (referred to as axial diffusivity, or AD) and
along other directions (radial diffusivity, or RD), as well as the
mean diffusivity (MD) are thought to index proportions of extra-
cellular and intra-cellular water within the voxel. For example,
MD is commonly used in the diagnosis of acute ischemic stroke,
because these types of brain injury are characterized by cell-body
swelling. The reduction in extracellular water fraction results in
a decrease in MD in the affected regions (Maas and Mukherjee,
2005).

The fractional anisotropy (FA) is a normalized measure of the
variation in diffusivity between different directions and was orig-
inally thought to index the organization of the tissue within the
voxel (Basser and Pierpaoli, 1996). Later studies in animal mod-
els demonstrated that FA decreases when demyelination occurs

(Song et al., 2002), because of increases in radial diffusivity. These
studies showed that degree of myelination in the white matter is
an important factor in limiting diffusion of water across cellular
compartments. In addition, tissue density affects both the radial
and the axial diffusivity, and loss of nerve fiber tissue also results
in a decrease in FA (Beaulieu et al., 1996; Beaulieu, 2002). As a
consequence of these studies, researchers now routinely refer to
FA as a measure of tissue integrity. However, we strongly warn
against this usage, because it is easy to show that although the den-
sity of the tissue and the density of the myelin wrapping the axons
in the voxel may affect both MD and FA, changes in other factors,
such as the distribution of directions of crossing of fiber popula-
tions through the voxel may also affect these measures (Basser and
Pierpaoli, 1996; Jones et al., 2013; Wandell and Yeatman, 2013).
Therefore, interpretation of group differences in FA, or longitu-
dinal changes in FA over time should be carefully handled and
compared to the results from other modeling techniques, that bet-
ter account for the distribution of fiber orientations in the voxel
(see below).

That said, the use of diffusion tensor-based univariate statis-
tics is very popular among users of dMRI. Variance in a variety
of behavioral (Ben-Shachar et al., 2007) and clinical (Thomason
and Thompson, 2011) measures can be predicted based on these
statistics, suggesting that they are reporting on meaningful vari-
ability in brain structure.

It is straightforward to use Dipy to fit the tensor model and
compute univariate statistics from it. In the following example,
we show how to fit the tensor model to data and how to compute
univariate measures.

First, data, mask and gtab are created as we saw in sec-
tion 5. Next, we can import the diffusion tensor model class
and initialize a TensorModel class instance with the name
ten_model:

from dipy.reconst.dti import TensorModel
ten_model = TensorModel(gtab)

The code above sets up the analysis. Since the analysis of
every voxel in the brain will rely on similar infra-structure, the
TensorModel class instance only sets up the skeleton for the
analysis. The same skeleton will be used for every voxel in the
data here, but can also be used with new data in a similar fash-
ion. To run the analysis, we pass the data to the fit method of
the tensor_model. This returns a TensorFit class instance
which relates to the specific data and mask:

ten_fit = ten_model.fit(data, mask)

The advantage of this separation of the model and the fit is that
we can fit many different data with the same initialization param-
eters without duplicating code. Once a fit has been conducted, we
can compute a variety of derived univariate measures, such as the
fractional anisotropy (FA) (Basser and Pierpaoli, 1996):

from dipy.reconst.dti import fractional_anisotropy
fa = fractional_anisotropy(ten_fit.evals)
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It is common to represent the primary diffusion direction
using a red-green-blue (RGB) representation and create a DEC
(Directionally Encoded Color) map (Pierpaoli et al., 1996; Pajevic
and Pierpaoli, 1999) which is also known as color FA (see
Figure 4):

from dipy.reconst.dti import color_fa
cfa = color_fa(fa, ten_fit.evecs)

Finally, a couple more points about the implementation of DTI.
The first is that there is still ongoing research on fitting methods
for the tensor model (Koay et al., 2006). Several different meth-
ods have been implemented, including non-linear least-squares,
ordinary least-squares, and weighted least-squares fitting (Chung
et al., 2006) as well as Riemannian modeling-based techniques
that assure that the estimated tensor is positive definite (Arsigny
et al., 2006; Lenglet et al., 2006). In addition, there is ongoing
research on methods to robustly fit the tensor model, in the face of
noisy data (Chang et al., 2005, 2012). For this purpose, an imple-
mentation of a robust tensor fitting algorithm (RESTORE) is also
available in Dipy.

Note also that Dipy implements many more univariate mea-
sures. Not only can users compute FA, MD, DEC, but also other
statistics that have been proposed in the literature, such as the
diffusion linearity, planarity and sphericity (Westin et al., 1997),
as well as the tensor mode, tensor norm (Ennis and Kindlmann,
2006), radial and axial diffusivity. All these tensor-based met-
rics are available under the dipy.reconst.dti module. In
Figure 4 a few of the many available measures are shown.

6.2. DIFFUSION SPECTRUM IMAGING
For those who have acquired DSI data, i.e., data with mul-
tiple b-values and gradients that span a Cartesian keyhole

grid (Tuch, 2002; Wedeen et al., 2005; Garyfallidis, 2012),
Dipy currently provides three different models. The standard
DiffusionSpectrumModel can be accessed using:

from dipy.reconst.dsi import DiffusionSpectrumModel
dsi_model = DiffusionSpectrumModel(gtab)

Wedeen et al. (2005) showed that the dMRI signal is positive for
any type of spin motion without net flux (i.e., spin displacements
due to thermal molecular agitation) or other random fluxes such
as intravoxel incoherent motion. Under this assumption we can
replace the complex signal S with its modulus |S| in Equation (2)
and apply the Fourier transform:

P(r) = S−1
0

∫
|S(q)| exp(−i2πq · r)dq (4)

In DSI this 3D-integral is approximated in a discrete way and the
PDF P for every single voxel is returned as a 3D array. We can
obtain P using:

dsi_fit = dsi_model.fit(data)
dsi_pdf = dsi_fit.pdf()

However, we recommend this method only when the dimensions
of data are very small. This is because the dsi_pdf is a 6D array
with 3 dimensions for the voxel positions and 3 for the q posi-
tions. For a moderate data set of 150 × 150 × 90 where every
PDF is 35 × 35 × 35 we would need about 600 GB of RAM. As
a solution to this problem Dipy provides a method which can
facilitate traversing through each voxel and calculating each voxel
independently:

FIGURE 4 | Diffusion Tensor based scalar maps created with Dipy.
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from dipy.core.ndindex import ndindex
for index in ndindex(data.shape[:-1]):

vox_pdf = dsi_model.fit(dataslice [index]).pdf()

With this method we do not need to store all the PDFs at once. If
it is necessary to save all the PDFs then our advice is to create a
Numpy memory-map which will store the PDF for each voxel as
a binary file on disk while still appearing as an array in memory.
Memory-mapped files are used for accessing small segments of
large files on disk, without reading the entire file into memory.

Recently, an alternative method for DSI was proposed by
Canales-Rodríguez et al. (2010) using a deconvolution technique
based on a Lucy–Richardson (LR) algorithm of the 3D PDF. The
deconvolution technique accounts for the truncation of q-space
by standard DSI and can thus achieve a higher angular resolution
for resolving crossing fibers. This can be used in exactly the same
way as the standard DSI method:

from dipy.reconst.dsi import
DiffusionSpectrumDeconvModel

dsid_model = DiffusionSpectrumDeconvModel (gtab)
dsid_fit = dsid_model.fit(data)

In Figure 5 we show noiseless volumetric renderings of the PDFs
of a simulation of a 60◦ crossing with the two different meth-
ods. It is evident that the LR deconvolution reconstruction better
represents the underlying structure.

Since we are mainly interested in the angular structure of
the underlying tissue, we further simplify the data by taking the
weighted radial summation of P(r)

ψDSI(û) =
∫ ∞

0
P(rû)r2dr (5)

This defines the orientation density function (ODF) for DSI
which measures the quantity of diffusion in the direction of

FIGURE 5 | Volumetric rendering of the 3D diffusion propagator of a

60◦ crossing with standard DSI (top-left) and DSI with deconvolution

(top-right) with their corresponding ODFs (bottom).

the unit vector û where r =rû. ψDSI is a function on a sphere.
Therefore, in order to calculate it or even visualize it we will need
a set of spherical coordinates. Here is how we can obtain this ODF:

from dipy.data import get_sphere
sphere = get_sphere("symmetric724")
dsi_odf = dsi_fit.odf(sphere)

where sphere is an object holding the vertices and faces of
the sphere. Here we used a symmetric sphere with 724 vertices.
The dsi_odf is an array of the 724 ODF values corresponding
to the vertices of the sphere. Note at this point that in order to
find the ODF we have to first create the diffusion propagator
(PDF) by applying the Fourier transform on the lattice (see
Figure 5). Nonetheless, Dipy, for reasons explained before
does not store the PDFs as it computes the ODF. Yeh et al.
(2010) proposed a direct way (GQI) to calculate a slightly
different ODF using the Cosine transform. GQI is available from
dipy.reconst.gqi.GeneralizedQSamplingModel.
The advantage of GQI is that it is much faster to calculate than
DSI or DSI with deconvolution.

6.3. Q-BALL IMAGING
To reduce the acquisition requirements of DSI, several techniques
have been proposed to compute the ODF from Equation (5)
using only a single b-value dMRI acquisition, often called single-
shell high angular resolution diffusion imaging (HARDI) (Tuch
et al., 2002; Descoteaux et al., 2011). Spherical harmonics (SH)
are mathematical functions that provide a complete orthonormal
basis for functions on the sphere. In practice, these can be used
to approximate any spherical function (such as the ODF) up to a
highest frequency (SH order). Due to their practical mathemat-
ical properties, there have been several proposals using spherical
harmonics to describe the apparent diffusion coefficient (ADC)
computed from HARDI, starting from the work of Frank (2001,
2002) and Alexander et al. (2002) and Tuch et al. (2002). Then,
Tuch showed that the Funk Radon Transform (FRT), used in a
method he called q-ball imaging (QBI), reconstructs a smoothed
version the ODF directly from a single-shell dMRI acquisition.
This q-ball ODF ψQBI can be obtained analytically from a SH esti-
mation of the diffusion signal (Anderson, 2005; Hess et al., 2006;
Descoteaux et al., 2007):

ψQBI(θ,φ) =
R∑

j = 1

2π
cj

S0
Pl(j)(0)Yj(θ,φ) (6)

where Pl(j) is the Legendre polynomial of order l corresponding to
coefficient j and the coefficients have been normalized by the S0
(non-diffusion weighted) image. Hence, the q-ball ODF is a linear
transformation of the SH coefficient, cj. This technique is called
analytical QBI (aQBI), in contrast to the original QBI solution,
which performs the FRT numerically. It is important to note that
these solutions are based on Equation (5), without the r2 term. So
these ODFs are not properly normalized. Hence, Dipy also imple-
ments the Constant Solid Angle analytical solution more recently
proposed by Aganj et al. (2010) and Tristan-Vega et al. (2009).

The SH of order l and phase m, Ym
l (θ,φ), arises from the angu-

lar solution to Laplace’s equation in spherical coordinates and
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they form an orthonormal basis for complex functions defined
on the unit sphere. However, in single-shell acquisitions, S is real
and symmetric. Hence, it is common to define a real and sym-
metric modified orthonormal SH basis, Yj, using only even order
terms and real/imaginary parts of Ym

l (θ,φ). Therefore, the mea-
sured signal S is estimated with a truncated SH series of order
lmax, which has R = (lmax + 1)(lmax + 2)/2 terms. For example,
for lmax = 4, 6, 8, and 16 SH series have R = 15, 28, 45, and 153
coefficients, respectively.

In Dipy we have implemented three different Q-ball meth-
ods in the module dipy.reconst.shm: (a) Descoteaux et al.
(2007), (b) Aganj et al. (2010), and (c) Tristan-Vega et al. (2009).
For example (a) can be used in the following way:

from dipy.reconst.shm import QballModel
qb_model = QballModel(gtab, order=6, smooth=0.006)
qb_fit = qb_model.fit(data)
qb_odf = qb_fit.odf(sphere)

Important points to note are that SH order is set at 6 and the
regularization parameter at 0.006, following the optimization rec-
ommendations of Descoteaux et al. (2006). Furthermore, because
the analytical ODF method produces smoother ODFs it is useful
for visualization purposes to use min-max normalization.

from dipy.reconst.odf import minmax_normalize
qb_nodf = minmax_normalize(qb_odf)

The SH coefficients are accessible using the attribute
qb_fit.shm_coeff. Methods (b) and (c) can be used
in a very similar way. For example, for the Constant Solid Angle
(CSA) (Aganj et al., 2010) method (b) we only need to remove
the normalization function and reduce the SH order as the CSA
method becomes considerably noisier in higher orders:

from dipy.reconst.shm import CsaOdfModel
csa_model = CsaOdfModel(gtab, order=4, smooth=0.006)
csa_odf = csamodel.fit(data).odf(sphere)

As a side note: the term Constant Solid Angle derives from the
fact that this method calculates the ODF taking account of radial
distance as we see in Equation (5).

6.4. CONSTRAINED SPHERICAL DECONVOLUTION
QBI-based techniques reconstruct the diffusion ODF (dODF).
To improve the angular resolution of the reconstruction, spher-
ical deconvolution (SD) techniques have been introduced and
reconstruct what is called the fiber ODF (fODF). SD was first
introduced by Tournier et al. (2004). With this method, the signal
measured on single spherical shell acquisitions can be expressed
as the convolution over spherical coordinates of the response
function with the fODF. The response function describes the
signal intensity that would be measured as a function of orien-
tation for a single fiber aligned along the z-axis. In the spher-
ical harmonics (SH) framework, the convolution operation is
performed as follows. For each harmonic order l, the SH coef-
ficients of the signal profile S(θ,φ) and the fODF F(θ,φ) are
written as vectors sl and fl of length 2l + 1, whereas the rota-
tional harmonic coefficients of the convolution kernel R (the

response function) are written as a matrix Rl of size (2l +
1) × (2l + 1). The convolution operation then simply consists of
one matrix multiplication per harmonic order l: sl = R · fl. The
spherical deconvolution operation can be performed by simple
matrix inversion. However, the spherical deconvolution problem
is ill-posed and thus severely affected by noise (Tournier et al.,
2004).

Constrained super-resolved spherical deconvolution (CSD)
Tournier et al. (2007) gives a robust solution to this problem by
applying two major constraints on the fitting of the fODF. The
first is that it applies a non-negativity constraint: fODF values that
are smaller than 0 are non-physical and are precluded. The other
is that CSD assumes that only a few of the fODF values will be
large. Applying these two constraints allows fitting the SH basis
up to very high orders, in essence fitting more parameters than
the data allows. This super-resolved method can be accessed in
Dipy using:

from dipy.reconst.csdeconv import
ConstrainedSphericalDeconvModel as CsdModel

csd_model = CsdModel(gtab, response)

The main choice to consider is the estimation of the single fiber
response function. We assume that R is derived from a prolate
tensor, where the single-tensor model is accurate. The eigenval-
ues of this tensor are estimated from the voxels with FA > 0.7.
The input parameter response is a tuple with two parameters:
(a) the eigen-values of the tensor and (b) the estimated aver-
age S0 signal for those voxels. The response function is usually
estimated from the corpus callosum areas. For further infor-
mation on how to initialize the CSD please read our examples
at dipy.org.

Dipy also implements a second constrained spherical decon-
volution method: the Spherical Deconvolution Transform (SDT)
(Descoteaux et al., 2009), which is a sharpening operation that
can transform the smooth diffusion ODF into a sharper fiber
ODF. The method is inspired by CSD (Tournier et al., 2007) with
the main difference that the CSD is applied directly to the ini-
tial signal and the SDT directly to the ODF (Descoteaux, 2008;
Descoteaux et al., 2009).

For the derivation and explanation of the formula see
Descoteaux et al. (2009). You can use the SDT in the following
way:

from dipy.reconst.csdeconv import
ConstrainedSDTModel as SdtModel

sdt_model = SdtModel(gtab, ratio)

Here the response function is provided as a scalar parameter
ratio, which is the ratio of the smallest eigenvalue to the largest
eigenvalue. Both spherical deconvolution methods perform sim-
ilarly as shown in Descoteaux et al. (2009) and Garyfallidis et al.
(2013).

In Figure 6 the ODFs of the TensorModel, CsaOdfModel
and CsdModel of a region in the centrum semiovale show cross-
ings between the corpus callosum, corticospinal tract and the
superior longitudinal fasciculus.
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FIGURE 6 | (A) Tensor ellipsoids color-coded with a DEC map, (B) tensor ODFs, (C) constant solid angle ODFs, and (D) constrained spherical deconvolution
ODFs in a region in the centrum semiovale showing crossings between the corpus callosum, corticospinal tract and the superior longitudinal fasciculus.

6.5. PEAKS FROM MODELS
In the previous sections we showed that the reconstruction mod-
els have a uniform API and can be called in similar ways. For
example, they all have an odf() method. This design gives us
the opportunity to create utility functions where the model is
one of the parameters. peaks_from_model is a multipurpose
function which can be used to (a) find the maxima (peaks) of
the ODFs, (b) find the directions of the maxima in the ODFs
(which can be useful for tracking), (c) discretize those directions
on the unit sphere for efficiency, (d) compress the ODFs as spher-
ical harmonics to reduce memory usage, and (e) calculate many
metrics simultaneously—e.g., generalized fractional anisotropy
(GFA) (Tuch, 2004)—without the need to create all ODFs at once.
peaks_from_model can be called as:

from dipy.reconst.peaks import peaks_from_model
pmd = peaks_from_model(model=dsi_model,

data=data,
sphere=sphere,
relative_peak_threshold=.5,
min_separation_angle=25,
mask=mask,
return_odf=False,

return_sh=True)
gfa = pmd.gfa

The model parameter can be set to any of the models
discussed in the previous sections e.g., dsi_model. The
relative_peak_threshold parameter specifies that only
peaks greater than relative_peak_threshold∗m should
be returned, where m is the value of the largest peak.
min_separation_angle sets the threshold for the mini-
mum angular distance in degrees between two peaks. If the
peaks are closer than this threshold only the larger of the two is
returned. These two parameters help to get robust fiber direc-
tions when the ODFs are noisy. peaks_from_model returns a
PeaksAndMetrics object which holds all the different output
arrays, peak_values, peak_indices, gfa , qa (Yeh et al.,
2010), odf and shm_coeff.

If the parameter return_sh is set to True then the ODFs
will be represented by their SH expansion. This reduces mem-
ory usage, as the SH coefficients need much less memory than
the ODF represented on the sphere. If we want to calculate the
ODF back from the SH coefficients we can use the function
sh_to_sf:
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odf_sh = pmd.shm_coeff
from dipy.reconst.shm import sh_to_sf
odf = sh_to_sf(odf_sh, sphere, sh_order=8)

7. FIBER TRACKING
One of the tantalizing prospects of dMRI is that combining infor-
mation about local microstructure across different voxels may
provide information about large-scale organization of the brain.
In particular, researchers have been using various algorithms in
attempts to track along the presumed fiber populations to make
inferences about axonal connections between different parts of
the gray matter (see Figure 1). The connection matrix that results
from an exhaustive connectivity analysis of all parts of the cere-
bral cortex is sometimes referred to as a connectome (Sporns et al.,
2005) and understanding the structure and function of the con-
nectome is a central goal of contemporary neuroscience. This
premise has led to major investment in data-collection projects
aimed at characterizing the connectome, based on dMRI, as well
as functional MRI (fMRI) measurements (Van Essen et al., 2013).

Tracking algorithms used to infer these connections divide into
two major classes. The first class is deterministic. Deterministic
streamlines follow a predictable path through the data, by select-
ing at each point a single diffusion direction to follow. There may
be several estimated directions at each point (such as a voxel cen-
ter), but deterministic selects one of these estimated directions on
some criterion such as closeness of match to the previous direc-
tion of the streamline. Some of the early deterministic algorithms
used the primary diffusion direction of the diffusion tensor model
as an indication of the direction of the major fiber population in
every voxel and track along the streamlines that are implied by
these principal diffusion directions (Conturo et al., 1999; Mori
et al., 1999; Basser et al., 2000) . However, it is now widely rec-
ognized that in regions of crossing fibers, the primary diffusion
direction may not coincide with the direction of any of the local
fiber populations. More modern algorithms (see below) take this
into account.

The second major class of tractography algorithms is prob-
abilistic. These methods consider the local information in each
voxel to represent a distribution of possible directions in that
location. In these algorithms, a trajectory of fibers in every loca-
tion is randomly sampled from the local distribution. Any given
streamline in a probabilistic tractography is therefore one random
sample of many possible streamlines. The algorithm may there-
fore give different sets of streamlines on different realizations.

Dipy implements both deterministic and probabilistic tracking
algorithms, described in detail below.

7.1. DETERMINISTIC
Euler Delta Crossings (Garyfallidis, 2012), or EuDX for short, was
the first tracking method to be implemented in Dipy. We cre-
ated an algorithm that has many similarities with the classical
deterministic methods (Conturo et al., 1999; Mori et al., 1999;
Basser et al., 2000) and with more recent ones such as those
described in Descoteaux et al. (2009) and Yeh et al. (2010). Our
focus was on creating a simple deterministic algorithm which
can be used with very different families of reconstruction mod-
els, work well in crossing areas and be efficient so that it can be

used to quickly inspect the reconstruction results. EuDX is usu-
ally applied in native space image coordinates and it assumes
that voxels are of equal size in all three image axes (isotropic
voxel size). If the raw data does not have isotropic voxel size
then a reslicing preprocessing step is required to make the data
isotropic.

In order to create streamlines, we initially need to provide one
or more seed points s. The seed points are the points from which
the streamlines will start growing. These can be chosen randomly
or they can be specified explicitly. However, the seed points need
to be constrained by the volume’s dimensions. Every seed point
p0 becomes the starting point for the track propagation. For the
integration we solve for pt = p0 + ∫ t

0 v(p(s))ds and we perform
the integration numerically using Euler’s method

pn+1 = pn + v(pn)�s (7)

where �s is the propagation step size (which should be no greater
than the voxel size), and v is the propagation direction. EuDX
uses trilinear interpolation for the calculation of the next direc-
tion, integrating directional information from the surrounding
voxels.

The first parameter of EuDX can be an array of dimensions
X × Y × Z like FA or X × Y × Z × W like the ODF, or quan-
titative anisotropy (QA) (Yeh et al., 2010). These arrays can be
used for stopping the propagation if the value in the current voxel
is lower than a_low. For efficiency, the peak directions are dis-
cretized on a unit sphere. For this purpose, the second parameter
is another array of dimensions X × Y × Z or X × Y × Z × W
but this time these are the indices of the directions approximated
on the sphere. Here we give an example where we have used the
peak_indices from CSD using peaks_from_models and
the tensor FA for stopping criteria (with threshold 0.1):

from dipy.tracking.eudx import EuDX
eu = EuDX(a=FA, ind=peak_indices[..., 0],

seeds=10**4, sphere=sphere, a_low=0.1)
csd_streamlines = [line for line in eu]

The input parameter seeds can be given as an integer, this will
generate random seeds in the entire volume, or it can be given as
a N × 3 array of seed points. The latter explicit specification of
seed points has the advantage that it allows us to seed from spe-
cific ROIs or from the gray matter—white matter boundary which
has been shown to generate more robust tracking results (Côté
et al., 2013). The instance of EuDX returns an iterator. In every
call of the iterator a new streamline is returned. This technique
allows one to generate and save streamlines directly to disk with-
out loading all streamlines in memory. In Figure 7 a few thousand
human brain streamlines are shown, approximating the brain’s
white matter connections, generated from EuDX. In contrast, in
Figure 1 only a specific anatomical bundle is approximated rather
than the full brain.

7.2. PROBABILISTIC
Probabilistic fiber tracking describes a class of tractography algo-
rithms that estimate multiple possible pathways though each
point by taking into account the uncertainty in fiber direction
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FIGURE 7 | Left: An example of EuDX streamline tracking applied on a real human brain dataset and color-coded with a standard orientation colormap. Middle:

Showing the QuickBundles centroids with random colors. Right: Showing the clusters color-coded with their corresponding centroid color.

at those points. The uncertainty in fiber direction can be esti-
mated as an fODF, this distribution can be used along with a
Monte Carlo sampling to generate streamlines (Morris et al.,
2008). Streamlines are generated using a Markov process which
is similar to deterministic fiber tracking. Streamlines begin at a
seed point and continue along a propagation direction which is
randomly chosen from the fODF. The propagation direction is
continually adjusted by sampling from the fODF at each new loca-
tion along the path. This continues until some stopping criteria
are met. Notice that this framework is equivalent to deterministic
fiber tracking if the fODF at each point is a delta function of one
fiber direction.

Dipy has implemented two interfaces for probabilistic Markov
fiber tracking. The first method allows the user to provide the
distribution evaluated on a discrete set of possible tracking direc-
tions. For example the fiber orientation distribution function
(fODF) obtained by fitting the CSD (constrained spherical decon-
volution) model to diffusion data can be used as an estimate of the
PDF, because it represents a fiber distribution associated with the
measured diffusion signal (Jeurissen et al., 2011). The user must
also provide a set of seeds to track from, and set the stopping cri-
teria. Currently a white matter mask and maximum turning angle
are used as stopping criteria.

The second interface for probabilistic tracking is meant to
accommodate tracking methods where the fODF cannot be eas-
ily computed. It is often much easier and less computationally
expensive to sample from a PDF than it is to evaluate the
PDF. For example, residual bootstrap fiber tracking methods
fall into this category (Berman et al., 2008). In this case we
combine a sampling method with the diffusion data and a dif-
fusion Model, and pass this to the Markov tracking framework.
Streamlines can now be generated as before without explicitly
evaluating the orientation distribution at each point in the dif-
fusion data. This framework is designed to be flexible and easily
customizable so that a wide variety of tracking methods can be
expressed.

8. FIBER ANALYSIS AND POST-PROCESSING
In the following sections we describe some of the tools available
for processing streamlines after these have been created.

8.1. STREAMLINE CLUSTERING
Depending on the initial number of seeds and other tracking
parameters, fiber tracking algorithms can generate a great number

of densely packed streamlines (often more than one million)
which are difficult to interact with and interpret. As a solution to
this problem Dipy implements a recent efficient clustering algo-
rithm for streamlines called QuickBundles (QB) (Garyfallidis,
2012; Garyfallidis et al., 2012). QB can be used to simplify large
datasets in a couple of minutes. When using QB we need first
to instantiate the QuickBundles object with three parameters.
The first parameter is the initial set of streamlines to be clustered,
the second is the distance threshold that will determine the num-
ber of clusters and their sizes, and the third is the level of detail for
each streamline. For example, in the code snippet below we use
pts=18 which means that before QB starts the clustering pro-
cedure the streamlines will be downsampled so that each one has
the same number of points (here 18) and equal length segments.
This preprocessing step is a prerequisite for QB.

from dipy.segment.quickbundles import QuickBundles
qb = QuickBundles(streamlines, dist_thr=30., pts=18)

After we have created the instance of the object, attributes
like qb.centroids provide the clusters’ centroids and meth-
ods like qb.label2tracks() can return the streamlines
which belong to a specific cluster. Figure 7 shows an example of
QuickBundles applied on the human brain dataset described in
Fortin et al. (2012), using the same parameters shown in the code
listing above.

8.2. ROIs AND STREAMLINE INTERSECTIONS
It is often useful in dMRI to filter, group or count streamlines
based on their interactions with one or several ROIs (Côté et al.,
2013). There are a few functions in dipy.tracking.utils
to make these kinds of operations easier. The first of these func-
tions, density_map, counts the number of streamlines that
pass though each voxel and returns the result as an image. In all
the following examples streamlines is a sequence of stream-
lines and affine is a mapping from voxel coordinates to world
coordinates. In all cases affine can be omitted if the streamlines
are defined in voxel coordinate space.

from dipy.tracking.utils import density_map
track_density = density_map(streamlines, shape,

affine=affine)

In this example shape is the shape of the 3D image to be
returned, and track_density is a 3D volume where the
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intensity of each voxel is the number of streamlines that pass
though that voxel. Note that each streamline is counted once per
voxel even if multiple points in the streamline lie in that voxel.

Another useful function is target. This function filters a
sequence of streamlines and keeps only those that pass through
an ROI.

from dipy.tracking.utils import target
bundle = target(streamlines, roi, affine=affine)

Here roi is a binary array, and bundle is generator of stream-
lines. Only the streamlines that pass though at least one of the
voxels in roi that have value 1, will be in bundle.

streamline_mapping is a function related to target.
This function produces a mapping from voxel indices to stream-
lines, much like targeting on every individual voxel, and returns a
dictionary of those mappings.

from dipy.tracking.utils import streamline_mapping
mapping = streamline_mapping(streamlines,

affine=affine)

Here mapping is a dictionary where the keys are voxel indices
and the value associated with each key is a list of all the streamlines
that pass though that voxel. For example to get all the stream-
lines that pass though voxel (i, j, k), we would look up
mapping[i, j, k].

The last function we want to mention in this section is
connectivity_matrix. This function groups and counts
streamlines based on their endpoints and a label volume which
we call labels. This label volume should be an image where
the intensities of the image map to anatomical structures. For
example:

from dipy.tracking.utils import
connectivity_matrix

M, M_sl = connectivity_matrix(streamlines, labels,
affine=affine,
symmetric=True,
return_mapping=True)

Here because we have made the matrix symmetric, M[i,
j] = M[j, i] is the number of streamlines that connect
region i to j or j to i. Similarly because we have set

return_mapping=True, we can get a list of all those stream-
lines by looking up M_sl[i, j].

While it is common to apply these kinds of operations in
native voxel space of the diffusion MRI images used to create
the streamlines, this is not required. It is often useful to interact
with streamlines in the voxel space of a high resolution structural
image of the same patient. This is possible as long as one can
compute a linear transformation (affine) between the voxel
coordinates and the streamline point coordinates.

An example of using target and connectivity_
matrix is shown in Figure 8. In the left panel we can see the
streamlines found to intersect with the yellow mask in the corpus
callosum (CC) using target. Then we used these streamlines to
investigate which areas of the cortex are connected using a modi-
fied aparc+aseg.mgz label map created by FreeSurfer (Fischl,
2012) of 89 regions. For a complete example of how you can cre-
ate your own connectivity matrices we recommend reading the
online tutorial on the topic from Dipy’s website13.

8.3. STREAMLINE METRICS AND STATISTICS
In Dipy, we have implemented several metrics for streamlines.
For example, perhaps someone may want to calculate the aver-
age length and standard deviation of the streamlines generated
after the fiber tracking procedure. This can be achieved very eas-
ily using the length function which takes as input a single
streamline. We can then iterate through all the streamlines in the
following way:

import numpy as np
from dipy.tracking.metrics import length
lengths = [length(s) for s in streamlines]
lengths = np.array(lengths)
average_length = lengths.mean()
standard_deviation_lengths = lengths.std()

Many other metrics can be found in the metrics sub-module
e.g., spline for spline interpolation, centre_of_mass,
mean_curvature, mean_orientation and the frenet_
serret framework for curvature and torsion calculations along
a streamline.

13http://dipy.org/examples_index.html

FIGURE 8 | Left: Streamlines intersecting a mask in the corpus callosum (CC). Middle: Showing the streamlines with semi-transparency to make it easy to see
the mask (yellow color). Right: Connectivity matrix of the CC streamlines that connect 89 cortical regions. A detailed tutorial which explains how it is possible
to create similar connectivity matrices with your data is available at Dipy’s website.
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8.4. VISUALIZATION
Figures 1, 4–7, are generated by our own visualization tools which
can be used for most parts of the diffusion analysis pipeline. We
have developed a minimal and lightweight module called fvtk
which is based on the Visualization Toolkit (VTK) (Schroeder
et al., 2001). The main idea is that a window can have one or
more renderers. A renderer can have none, one or more actors.
Examples of actors are a sphere, line, point or a complete set of
streamlines. You can add actors in a renderer and in that way you
can visualize the aforementioned objects e.g., sphere, line etc. The
windows can be created by either the show function which cre-
ates a visible window or the record function which creates a
temporary window only for the purpose of using it to render the
objects and save the frames on disk. The renderer holds all the
actors i.e., the visible objects. Here is a simple example where we
visualize some streamlines with different colors:

from dipy.viz import fvtk
renderer = fvtk.ren()
line_actor = fvtk.streamtube(streamlines,

streamline_colors)
fvtk.add(renderer, line_actor)
fvtk.show(renderer)

The function streamtube was also the one we used to create
Figures 1, 7. The most commonly used visualization functions are
given in Table 1.

9. DISCUSSION AND CONCLUSION
We have outlined the structure and functionality of the Dipy
library. Dipy provides a number of simple-to-use methods for
the analysis of diffusion MRI data using the Python language. We
demonstrated examples of pre-processing, reconstruction, track-
ing and post-processing, showing that Dipy, although a relatively
new project, can fill many of the steps needed to do a complete
dMRI analysis. We have illustrated the scope of the methods that
have been implemented to date, and have demonstrated these
capabilities of Dipy with sample scripts and visualizations.

In the future, we are hoping to introduce new methods which
are not currently implemented. Here are some hints about the

Table 1 | List of visualization functions.

Name Usage

ren Create renderer

add Add actor to renderer

rm Remove actor from renderer

rm_all Remove all actors from renderer

show Create window and show renderer

record Save frame or frames

line Creates an actor of one or more streamlines

streamtube Same as line but with streamtubes

point Creates actor of points as small spheres

tensor Actor for tensor ellipsoids visualization

sphere_funcs Actor for ODF visualization

volume 3D volume rendering with raycasting

slicer Actor for showing volumetric slices

areas that we are currently working on. For the pre-processing
steps, we are currently implementing denoising and eddy-current
correction of the raw dMRI data. For group analysis, we are cre-
ating novel warping algorithms. We have also started looking into
tissue characterization in microstructure (Assaf et al., 2008). For
the reconstruction, we have already a first implementation of
SHORE (Özarslan et al., 2013) which we are currently enhanc-
ing with more features. For tracking, we are looking into building
a more general and adaptive interface. For connectivity analysis,
we are working with the Connectome Mapper (CM) (Daducci
et al., 2012) developers to further integrate Dipy into the CM
pipeline.

As the size of the datasets in laboratories and hospitals around
the world keeps increasing it is very important to use parallel
processing to reduce the duration of analysis. For this pur-
pose we have already implemented a parallel execution for the
reconstruction step which is usually a bottleneck of the overall
dMRI analysis. This is enabled through peaks_from_model
by setting the parameter parallel=True. Nonetheless, we
are working on parallelizing other bottlenecks of the pipeline
either by using multi-processing or OpenMP through Cython.
Of course, for those who are interested in computing every
subject in parallel e.g., in a cluster or in a multi-core com-
puter this is very easy to do with Python and Dipy and there
are many tools which can facilitate this e.g., IPython, Nipype,
and others.

Dipy is free and open source software and it is part of a larger
community found at nipy.org. This is a growing team of scientists
and developers focusing on sharing code for different modali-
ties of brain imaging. In common with the other Nipy projects,
Dipy is being developed under the umbrella of a single GitHub
organization 14 and the central Dipy GitHub repository is man-
aged under this organization15. The community provides support
for the use and development of these software tools through the
project’s mailing list16.

Github is widely recognized as a factor in lowering the bar-
riers on participation in open-source software development. In
combination with the principles of the Nipy community, this has
led to a vibrant and diverse developer community. In contrast
to many other software projects in neuroimaging, Dipy is not
based on the work of one lab, or one institution. Though many
of the contributions are made by a few core contributors, there
are many contributors to the code-base and the number of con-
tributors has been growing dramatically after the release of Dipy
0.6 which took place on April 2013 (see Figure 9). Dipy contrib-
utors come from at least seven different academic institutions in
five countries (Canada, UK, USA, Italy, and South Africa).

In conclusion, we hope this paper inspires you to share our
excitement in developing Dipy and encourages you to participate
in the project. We strongly hope that more scientists will join Dipy
by using the software and giving us feedback so that we can make
it better. Stronger still is our hope that many will chose to share
their code implementing new methods, and join the developer

14http://github.com/nipy
15http://github.com/nipy/dipy
16http://dipy.org/subscribe.html
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FIGURE 9 | Participation in the Dipy GitHub repository. The cumulative
number of unique contributors has been extracted using the git log
command and tallied. Many new contributors have joined the project after
the 0.6 release.

team. We are sure that a wide and open participation is abso-
lutely necessary in order to solve the hard problems of brain
mapping.
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