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ABSTRACT 

1) Aquifers are recharged by surface water percolating through soil and rock and by 

connections with surface streams and rivers. Extreme rainfall can cause extensive flooding of 

surface waters and, eventually, of groundwaters. However, how the resultant changes in 

nutrients impact groundwater organisms and the structure of groundwater food webs is 

largely unknown.  

2) We monitored abiotic (nutrients, temperature and more) and biotic (all organismal groups 

except viruses) conditions in eight groundwater boreholes in two locations in a chalk aquifer 

over the course of 25 weeks (ten sampling occasions), following an extreme rainfall- and 

groundwater-flooding event in the UK.  

3) We show that groundwater flooding can cause substantial nutrient fertilisation of aquifers 

– nutrient concentrations (especially dissolved organic carbon) in the groundwater were 

highest when we started the sampling campaign, directly following the flood event, and then 

decreased over time while groundwater levels also declined back to their baseline.  

4) Bacteria in the open water (i.e. bacteria not associated with sediment) became more 

abundant as the water table and DOC concentrations decreased. Importantly their functional 

richness tracked the DOC patterns, illustrating that bacteria were responsible for respiring 

DOC. Microbial metabolic activity and bacterial respiration, measured using smart tracers, 

supported this finding; DOC and microbial respiration showed a positive correlation.  

5) The other biota (protists, micro- and macro-metazoans) showed different abundance 

patterns over time, but importantly, the entire sediment community, ranging from bacteria to 

macrofaunal species, showed a strong community size structure (mean size spectra 

slope: -1.12). Size spectra changed gradually through time towards steeper slopes, except in 

the very deep aquifer. 
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6) Our approach allowed us to demonstrate that groundwater communities track extreme 

changes in their usually stable environment, highlighting that they potentially buffer 

environmental change, although we still do not know what the limits of this ‘service’ might 

be. 

 

 

Keywords: DOC, protozoan, bacteria, recharge, stygobite, metabolism   
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1. Introduction 

 

Aquifers hold more than 97% of our world's unfrozen fresh water and more than two 

billion people world-wide rely on groundwater for their daily supply of drinking water (see 

review on groundwater services by Griebler and Avramov, 2014). Aquifers are constantly 

recharged with water from the land’s surface, as groundwater ecosystems are tightly linked 

with surface waters via a hydrological continuum with complex recharge–discharge processes 

(Boano et al., 2014; Boulton et al., 1998; Boulton and Hancock, 2006; Brunke and Gonser, 

1997; Krause et al., 2017, 2011). However, extreme rainfall can result in the flooding of 

inland waters and these events are expected to become increasingly more frequent in the 

northern hemisphere (Taylor et al., 2012), driven by the increase of greenhouse gas 

concentrations in the atmosphere (Min et al., 2011). Apart from the devastating impact on the 

economy and human livelihoods (Munro et al., 2017), flooding has the potential to 

detrimentally impact on freshwater ecosystems, both, above- and below-ground (Taylor et al., 

2012). 

Surface water flooding can induce increases in groundwater levels with variable time 

lags. As water percolates from the surface, groundwater levels rise and fill sediment pore-

spaces and fractures (groundwater flooding). During such extreme recharge events, 

infiltrating rainfall can potentially transport pollutants and nutrients, including carbon, from 

the surface to the aquifer (Taylor et al., 2013; Van Halem et al., 2009), affecting the delicate 

groundwater ecosystem and water quality. Background groundwater quality in general 

depends on the underlying geology of the aquifer (e.g. Weitowitz et al., 2017), however, to 

truly understand groundwater quality, we must recognize that groundwater is an ecosystem: 

in addition to the chemical and physical environment, it comprises a wide range of organisms 
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which have the ability to mediate biogeochemical processes and to immobilise or transform 

pollutants and nutrients (Griebler and Lueders, 2009).  

Groundwater in Europe contains organisms that span more than 9 orders of magnitude 

in terms of size, from microbes such as bacteria, through microscopically small fauna (e.g. 

protists, rotifers and copepods) to macrofaunal crustaceans (e.g. Niphargus and Proasellus 

species) but we still know very little about groundwater biota and their interactions (e.g. 

within the food web). There is extreme endemicity in this ecosystem (Gibert et al., 2009; 

Griebler and Lueders, 2009; Marmonier et al., 1993); most groundwater organisms are 

unique to this habitat (the macroscopic species are called ‘stygobites’) and are adapted to the 

low energy levels and lack of light that prevail. In mainland Britain they include the oldest 

inhabitants by millions of years (McInerney et al., 2014), forming distinctive truncated food 

webs that cannot be found in surface waters (Gibert and Deharveng, 2002).  

Aquatic communities in surface waters, and especially invertebrate communities, are 

often described and compared to assess ecosystem health, using a range of approaches such 

as score systems with indicator species (e.g. Armitage et al., 1983), estimations of energy 

flow (e.g. Reiss and Schmid-Araya, 2010) or comparisons of community structure (e.g. 

Petchey & Belgrano 2010). For instance, stream invertebrate communities are strongly size-

structured: small organisms are very abundant while larger ones are rare (Schmid, 2000) and 

the decrease in abundance from small to large organisms reflects the energy flow within the 

community. The size-structure of natural communities can be quantified by constructing size 

spectra (White et al., 2007), the frequency distribution of individual sizes within a 

community, which is depicted by plotting the total number of individuals occurring within 

‘body size bins’ (White et al., 2007). Typically, this relationship is negative and linear on 

logarithmic axes and is quantified by the slope (Yvon-Durocher et al., 2011a). Since size 

spectra slopes provide integrated measures of trophic structure (Yvon-Durocher et al., 
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2011a), they can be used to gauge ecosystem-level responses to environmental stressors 

(Petchey and Belgrano, 2010) such as pH (Layer et al., 2011; Mulder and Elser, 2009) and 

warming in fresh waters (Dossena et al., 2012; O’Gorman et al., 2012). Whether such an 

approach can be applied to groundwater ecosystems is unknown given that, to our 

knowledge, no groundwater study has estimated the body size and abundance of all 

groundwater groups and we do not know how these communities respond to stressors such as 

flooding.  

  We monitored abiotic and biotic conditions in a chalk aquifer following an extreme 

rainfall and river flooding event in the UK, by monitoring eight groundwater boreholes in 

two locations (Berkshire and Dorset) over the course of 25 weeks. The flooding had resulted 

in the elevation of water level in all boreholes by at least 10 m, and in two boreholes water 

levels had reached the land surface (Fig. 1). This extreme event permitted a uniquely 

important case study to track a pulse of energy through groundwater.  

We characterized changes in the groundwater environment after the flooding by 

analysing its physical (groundwater levels, temperature), biogeochemical (nutrients such as 

carbon) and biotic (microbial biomass, metabolic activity, functional- and species richness) 

conditions. We then investigated the size structure of groundwaters by constructing size 

spectra (these included bacteria, protists and metazoans) and assessed temporal variability in 

the scaling of these relationships. 

Our main objective was to measure the impact of this extreme flooding across the 

groundwater assemblage, from the energy supplied by nutrients (especially dissolved organic 

carbon) to prokaryotes through to macrofauna; and to track the recovery of the system after 

this exceptional groundwater recharge period through space and time.  

We hypothesized that nutrients would have been washed into the groundwater and 

that this pulse would be tracked by the organisms in terms of abundance and (metabolic) 
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activity. We expected that the response of the community would be reflected in changes of 

the size distribution (e.g. because small organisms such as bacteria respond more rapidly to 

environmental change compared to larger ones such as macrofauna). Lastly we anticipated 

the deeper aquifer (>100 m deep) to be less affected by groundwater flooding, in terms of 

changes within the chemistry and biology, because both nutrient- and water load would have 

been attenuated within the underground layers above the deep groundwater.  
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2. Methods 

 

2.1 The sites 

We sampled the chalk aquifer in two locations (in west Berkshire and east Dorset) in 

southern England from May to October 2014 (10 sampling occasions over 25 weeks, see Fig. 

1, Appendix A, Tables A.1 and A.2) following a major storm period with subsequent 

groundwater flooding (Fig. 1). In each location, we selected 4 boreholes of similar 

topographic location (interfluves). In Berkshire we sampled: Bottom Barn (BB), Briff Lane 

(BL), Calversley Farm (CF) and Greendown Farm (GF); and in Dorset we sampled: Marley 

Bottom (MB; on 7 out of the 10 sampling occasions), Milborne (M), Newfield (NF) and 

Winterborne (WB). Boreholes enable access to the aquifer and, while faunal abundances are 

usually higher in boreholes than in fractures in the aquifers, the same species are found, and it 

is also possible to track abundance trends in the aquifer via sampling boreholes (often dubbed 

‘windows to the aquifer’; Hahn and Matzke, 2005; Sorensen et al., 2013). 

The water table in the boreholes was still unusually high when we started our 

sampling regime - from 2 to 7 meters above baseline levels, Fig. 1, Table A.1). The first 

sampling was on 06/05/14 (‘week 0’), followed by another 9 sampling occasions. Counting 

from week 0, we sampled in weeks 3, 5, 7, 10, 13, 16, 19, 22, and week 25 (see Table A.2 for 

dates). We used short sampling intervals to capture the expected rapid responses of the 

community to gradual flooding cessation. We also obtained historical data on waterlevels in 

all boreholes from the Environment Agency, which we combined with our measurements 

(Fig. 1).  

Two sub-habitats were sampled in the boreholes: the open water (for abiotic 

parameters, bacteria and metabolic activity) and the sediment (biota). Further, sterile cotton 

strips were exposed in the boreholes for two weeks at a time to estimate fungal densities (90 
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cotton strips were evaluated but we did not detect any fungal biomass, see methods in 

Appendix A). Across boreholes, the sampling resulted in 77 samples for open water and 

sediment bacteria, 69 sediment samples for sediment protists and 77 samples for meiofauna 

and macrofauna (Table A.1).  

 

2.2 Open water sampling: chemistry and bacteria 

On each sampling occasion we measured the depth of the groundwater table, 

dissolved oxygen (see Table A.3), pH and conductivity in situ with a YSI sonde. Borehole 

temperatures were monitored with automatically logging thermistors; temperature was stable 

in all boreholes and there was little inter-borehole variation (10.31 ±0.011°C over 7 months). 

On every sampling occasion, groundwater was collected with a bailer from each borehole and 

analysed for dissolved organic carbon (DOC; 77 samples, see Table A.2) and eight other 

nutrients (see Appendix A) by catalyst aided combustion on a Shimadzu TOC analyser.  

 We further took samples of bacteria in the open water column of the borehole (270 

mL of water sampled with a bailer from the top of the water column). Bacterial abundances 

were expressed as individuals per L of open water. To estimate the abundance of bacteria, we 

took a 1ml sub-sample of the borehole sample that had been brought back from the field. For 

open water bacteria, we subsampled the 270 ml open water bailer sample and for sediment 

bacteria, we sub-sampled the sediment bailer sample (sediment suspended in 270 ml filtered 

borehole water). The 1 ml sub-samples were frozen and roughly half of that sample (0.495 

ml) was subsequently analysed by flow cytometry (Gasol and Del Giorgio, 2000) using an 

Accuri C6 Flow Cytometer (BD Biosciences). A threshold of 8000 on the forward scatter 

(FSC-H), 2000 on the side scatter (SSC-H) and slow Fluidics setting was used. Each sample 

was measured for 1 minute. To stain the DNA of living cells, 200 μL of PicoGreen dye 

solution (Quant–iT™ PicoGreen™ dsDNA Assay Kit, Sigma–Aldrich) was added to 1 mL 
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filtered water and incubated at 4°C for 15 min. Sediment particles were identified through the 

FL1-H channel (with values < log 3.1). The list of individual events returned by the flow 

cytometer was extracted using the R packages flowCore and flowViz (Ellis et al., 2009; 

Sarkar et al., 2008).  

We used Biolog EcoPlates to assess the functional capacity of the open water 

microbial communities (e.g. Baho et al., 2012; Christian and Lind, 2006; Korbel et al., 2013; 

Stefanowicz, 2006), for each borehole and sampling occasion. Water samples were filtered 

through a 40 μm sterile sieve and 100 μL was pipetted into each of the 96 wells on a Biolog 

Eco-Plate: each EcoPlate contains 31 carbon substrates plus a no-substrate control in 

triplicate as well as a redox dye that turns purple if it is reduced when a given carbon source 

is metabolized (e.g. Stefanowicz, 2006). Plates were incubated at 10 °C for 7 days in the 

dark, after which time colour change was quantified by measuring optical density at 595 nm 

using a bench-top microplate photometer (Multiskan® EX, Thermo Scientic). We estimated 

the functional richness of bacteria communities as the % of substrates used (100 * number of 

positive substrates / 31). We scored a carbon source as positive when two out of three wells 

reached a predetermined optical density (after Roger et al., 2016), which we set at 0.1 after 

subtraction of the mean blank from all wells. 

 

2.3 Open Water: Microbial Metabolic Activity  

On the second sampling occasion only (28/4/14), we took samples to characterise the 

metabolic activity in the boreholes (except for MB) so that we could relate these 

measurements to DOC levels at that time. Microbial metabolic activity was measured by 

applying the “smart tracer” Resazuring/Resorufin (Raz/Rru) system (see Appendix A) that 

was first used in ecohydrological applications by Haggerty et al. (2009). 
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Samples were cooled and transferred to the laboratory without filtering to preserve the 

microbial community. The sample (250 ml) was incubated in duplicate in 1000 ml 

microcosms with a concentration of 100 µg/l Raz for 24 h. Two microcosms were prepared 

with only deionised water to act as control treatments. A detailed overview of these methods 

is available in Appendix A. 

 

2.4 Sediment: Sampling of Biota, Abundance and Community Composition 

We sampled the borehole sediment with a bailer (one 270 ml sample; to sample 

bacteria and protists in the sediment) and a net (microscopic and macroscopic metazoans; net 

diameter was 21, 11 or 4 cm depending on the borehole). The bottom bailer, used for bacteria 

and protists (Table A.2), sampled sediment with an area of 0.11 dm
2
 (bailer radius was 0.19 

dm) and the net samples emptied the entire area of the borehole bottom (this area varied 

depending on the borehole from ~0.2 dm
2
 to ~7.3 dm

2
; see Table A.1). With the net, we 

removed the sediment in the borehole (3 net hauls that were pooled in the field). All sediment 

samples were initially stored in 270 ml filtered borehole water for the transport back to the 

laboratory. This way, all subsampling in the laboratory followed the same method.  

 Abundances of all sediment biota were expressed as individuals per dm
2
. The number 

of bacteria was estimated using flow cytometry as described above. Protists were measured, 

counted and identified alive in 1 ml (subsampled from 270 ml), using a Fuchs-Rosenthal 

counting chamber under a light microscope using 100 times and 400 times magnification 

(after Reiss and Schmid-Araya, 2010). Sediment samples for hard bodied meiofauna and 

macrofauna were preserved in formaldehyde for identification, measurement of body size and 

enumeration. For meiofauna and macrofauna, we did not sub-sample but counted individuals 

in the entire sample. For protists and metazoans, we assigned individuals to a taxonomic 

group (species in most cases) and measured the size (length and width) of individuals. This 
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also gave a record of abundances in the (sub-) samples (Table 1). For all groups, we 

calculated biomass by multiplying body mass by abundance. 

 

2.5 Sediment Community Size Structure 

The measurements of individual sizes from bacteria to meiofauna and the estimates of 

abundances allowed us to construct community size spectra. Bacteria cell size was estimated 

using calibration beads to convert forward scatter to average diameter of bacterial cells (see 

Fig. A.1; after Schaum et al., 2017). Cell carbon content (C) was estimated from bacterial cell 

volume, assuming 0.10 pgC / μm
3
 (Norland et al., 1987) - this gives a very similar result to a 

different method used by Fuhrman and Azam (1980).   

Body length and width (for protist and meiofauna individuals) was converted to 

biovolume assuming a spherical shape. Individual dry mass (mg) was estimated by assuming 

a density of 1.1 to convert volume to wet weight, and the carbon content was assumed to be 

10 % of the wet weight (Reiss and Schmid-Araya, 2010, 2008). Taking all species found into 

account, the body mass range was ~ 10 orders of magnitude (see Table 1). 

We computed the community size spectrum (CSS after White et al., 2007) for each 

borehole and time point by logarithmic binning of individual body masses, M, (White et al., 

2007). The total range of log10 (M) values were divided up into eight bins of equal width and 

the total abundance, N, of all individuals within each size class were regressed against the bin 

centers (cf Reuman et al., 2008). The intercept of the relationships were fixed at the smallest 

size class (after Yvon-Durocher et al., 2011b) which reduces the correlation between the 

slope and the intercept of linear relationships and makes the intercept of the model, 

logN(Mmin),  equivalent to the abundance of the smallest size class (here bacteria) as opposed 

to an infinite small mass. Size spectra slopes and intercepts were determined from simple 

linear regression analysis. 
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2.6 Statistical analysis   

We used generalised additive mixed modelling (GAMM) via the gamm function in 

the mgcv package implemented in R (R Development Core Team, 2017) to investigate the 

general response of physical, chemical and biological variables in the open water and 

organism abundances through time. This approach allowed us to model the potential non-

linear (smoothing) relationships between response variables and time (sampling week), 

accounting for the fact that each borehole is its own individual system (with unique baseline 

levels) and temporal correlations in residuals in the time series data (Zuur et al., 2009). We 

evaluated the significance of the smooth terms of the selected model based upon the extent to 

which their 95% CI intervals contained zero. A maximum number of knots of six was chosen 

as further required choices in model implementation: changing this value had no substantive 

effects on the general results. A temporal auto-correlation term was added to the models of 

the form corAR1(form =~1|site) and the significance of the term was determined via a 

likelihood ratio tests of nested models with and without the auto-correlation term (Zuur et al., 

2009).  

For responses where relationships through time were linear, or where no significant 

smooth temporal trends were evident, we performed generalised least square (GLM) 

modelling to test our hypothesis that variation in the responses through time would be related 

to borehole depth. To do so we fitted Time (sampling week) and Borehole depth as 

continuous variables including an interaction term (Time × Borehole depth). We fitted the 

same temporal auto-correlation structure as with the GAMM modelling and assessed the 

significance of this term as described above. We plotted all responses as histograms, as well 

as the residuals of the models, to identify non-normally distributed responses. Responses that 

were not normally distributed (concentrations, abundances and biomass density) were log10-
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transformed prior to model fitting. A simple linear regression analysis was performed for the 

respiration data (nutrient levels explaining microbial activity). All statistical analysis was 

performed in R, version 3.4.1 (R Development Core Team, 2017).  
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3. Results 

 

3.1 Open water measurements: waterlevels, DOC and bacteria  

Our study captured the tail of groundwater flooding in the sampled aquifer induced by 

heavy rains in the winter of 2013 (Fig. 1). Groundwater flood response varied spatially, with 

levels reaching the surface at two locations (WB and NF in Dorset) and three locations were 

less affected by flooding (CF, GF and BL in Berkshire, which are also the deepest boreholes, 

i.e. here we sampled the deeper aquifer; Fig. 1; Table A.1). The water table in all boreholes 

was unusually high at the start of the sampling regime because the groundwater was still 

closer to the surface compared to its normal levels (at least 2 meters closer to the surface in 

all boreholes; Fig. 1; Table A.1).  

Waterlevel, DOC, bacteria biomass and bacterial functional richness all changed over 

time (Fig. 2 shows the GAMM models that describe the patterns over time best, but see Fig. 

B.1 for raw data). The model inference procedure clearly selected the most complex GAMM 

models unambiguously rejecting both the null model (Table 2) and models without a 

temporal auto-correlation term (Appendix B, Table B.1) for all four responses. Examination 

of the P-values of the individual smooth terms (Table 2) and their confidence intervals (Fig. 

2) provided further support for nonlinear temporal trends through time.  

Over the 25 weeks study period, waterlevel decreased in an almost linear fashion (Fig. 

2a), back to baseline levels (Fig. 1). DOC concentrations were highest at the beginning of the 

sampling regime and decreased until week 10 before gently rising towards week 16 and then 

dropping again (Fig. 2b); i.e. we observed the highest DOC values when waterlevel was high 

and the lowest DOC values when water level was low, but whilst waterlevel and DOC appear 

related, the pattern is not a simple, linear one (Fig. 2). Bacterial biomass in the open water 

increased over the sampling period, as waterlevel and nutrients were declining (Fig. 2c, Table 
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B.1), but peaked around week 16 before declining. Thus, DOC pulses (Fig. 2b) were not 

immediately tracked by the open water bacteria (Fig. 2c). Bacterial functional richness was 

generally high with 45 to 100% of carbon substrates utilised. Functional richness was initially 

high at the beginning of the sampling regime and decreased until week 5 before rising 

towards week 10 and dropping after week 20 (Fig. 2d).  

Groundwater samples from May 2014 showed microbial metabolic activity above 

control conditions, indicating recharge driven nutrient fertilisation of groundwater microbial 

communities. The analysis of Raz/Rru conversion rates as indicators of microbial metabolic 

activity revealed that increased DOC levels correlated with high microbial metabolic activity 

and respiration (R
2
 = 0.66, Fig. B.2).  

  

3.2 Sediment biota: community composition and size structure  

In the sediment, we identified 67 different protist taxa, 7 microscopic metazoan taxa 

and 9 macrofaunal taxa (Table B.2). Very small ciliates and flagellates were the most 

abundant component of the protists (Table B.2), while copepods dominated the meiofauna in 

all boreholes (Table B.2), and Niphargus kochianus was the most frequently found and 

abundant stygobite within the macrofauna (in Calversley Farm the total counted exceeded 

1000 individuals over the 25 weeks).  

There was no general relationship between abundance and time for the four organism 

groups. This was the case irrespective of whether GLS or GAMM models were used (Tables 

B.3 and B.4), indicating that the responses of organism abundance through time were 

borehole specific and could not be captured using either non-linear or linear models or by the 

addition of borehole depth as an explanatory variable. Although bacteria and protists 

increased in abundance over time in most boreholes (Fig. B.3), there was considerable 

difference between boreholes regarding abundance peaks and (as a consequence) the 
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abundance patterns were unrelated to borehole depth (Table B.3) or any other variables we 

investigated. Bacterial counts exceeded 10
9
 ind. dm

-2 
and protists showed an average 

abundance of ~70,000 ind. dm
-2

. While bacteria and protists were present in all boreholes and 

on all sampling occasions, meiofauna and macrofauna were sometimes absent on particular 

sampling occasions (Fig. B.3). 

 Meiofauna were always present in BB, BL, CF and MB and macrofauna were always 

present in BB, CF and MB. In two of the boreholes, Bottom Barn and Calversley Farm, 

macrofaunal abundance increased steadily from under 10 to over 40 individuals per dm
2
 

(mainly N. kochianus and P. cavaticus) over the 25 weeks (Fig. B.3). Mean abundance of 

meiofauna and macrofauna in the boreholes was ~ 5 ind. dm
-2

 and ~ 7 ind. dm
-2 

respectively. 

We used mass-abundance spectra to estimate the response of the entire community. 

As expected, over 10 orders of magnitude in body mass from bacteria to macrofauna (Figs. 3 

and B.4), abundance declined linearly. The average slope of the size spectrum, across sites 

and sampling occasions was -1.12 (95% CI: -1.16 to -1.07, Fig. 3). Size spectra slopes did not 

vary systematically through time or with borehole depth (Table 3). However, a significant 

time × depth interaction was evident (Table 3) with slopes becoming steeper (more negative) 

through time for ‘shallower’ boreholes (Fig. 3). This pattern can be explained by the fact that, 

whilst not individually significant, bacteria and protozoan abundances tended to increase 

through time in the ‘shallower’ boreholes, whilst meiofauna and macrofauna abundances 

were relatively constant (Fig. B.3). This is also supported by the marginally significant p-

value for the time × depth interaction for size spectra intercepts which were fixed at the 

minimum body size class (Table 3).   
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4. Discussion 

This study was the first to analyse the impacts of groundwater flooding induced 

intensive recharge using an extensive analysis of both abiotic and biotic factors. We showed 

that nutrient concentrations increased in response to elevated groundwater levels, with more 

nutrients being available for groundwater organisms in consequence. Bacteria in the open 

water (i.e. bacteria not associated with sediment) became more abundant as groundwater 

levels and DOC concentrations decreased, indicating that they incorporated the additional 

energy. The measures of bacterial functional richness show that bacterial richness was high 

when DOC was high, demonstrating the link between nutrients and functional richness and 

bacterial activity. This finding was further supported by the respiration study that revealed a 

positive correlation between DOC concentrations and microbial metabolic activity in 

boreholes (see 4.1 Open water chemistry and biota). In the sediment, the change over time 

back to baseline levels was reflected in changes of the size distribution (measurements of 

individual groups were less conclusive) of the community towards steeper M-N slopes 

because, overall, small organisms (bacteria and protozoans) increased in abundance while the 

larger ones did not. This was however not the case in the deeper aquifer which was also much 

less affected by the flooding (see 4.2 Sediment biota).  

 

4.1 Open water chemistry and biota 

Groundwater that is enriched with nutrients (e.g. in catchments with intensive 

agriculture) has previously been shown to exhibit high bacterial biodiversity values (Stein et 

al., 2010), which is atypical for pristine groundwater of comparable systems (Griebler et al., 

2010). In accordance with these studies, we found that temporally variable DOC levels can 

produce similar differences in bacterial richness over time (however, in our case measured as 

functional richness not as operational taxonomic units used by these authors). Intriguingly, 
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the DOC pattern observed over time shows a ‘new pulse’ of nutrients after some weeks of 

sampling. We can only speculate about the reasons behind this pattern but two scenarios are 

possible: the new pulse could be the result of a new input from the surface or be the result of 

food web responses: the pattern resembles nutrient dynamics in chemostats, where bacteria 

can first utilise the nutrients, then crash and subsequently recover (e.g. Behrends et al., 2014).  

 

4.2 Sediment biota 

Intriguingly, with exception of the macrofauna in two of the boreholes, the sediment 

biota (bacteria, protists, microscopic metazoans and macrofauna) did not show any 

statistically significant response to the changes in nutrient concentrations or water table 

(although trends of increasing abundance of bacteria and protists in the shallow aquifer were 

obvious). The non-significance is largely due to two methodological issues: firstly, boreholes 

were used as replicates, which ‘worked’ for very robust patterns such as water level decline, 

DOC levels and size spectra, but for abundance patterns of individual groups each borehole 

represents its own unique system (e.g. in some boreholes groups such as meiofauna were 

almost absent despite the fact that the borehole connects to the same aquifer as a near-by 

borehole with meiofauna; see Fig. B.3). Secondly, GAMM is a useful method to show trends 

but it is not possible to fit linear correlations (such as fitting borehole depth as a predictor). 

 For all boreholes, species richness of macrofauna was similar to that reported 

elsewhere in the UK (Robertson et al 2009) but lower than reported in Europe (Griebler et al., 

2010). Protozoan species richness was comparable to other studies outside the UK (Loquay et 

al., 2009), possibly because protozoans can colonise ‘extreme’ habitats more easily than 

metazoans. Previous studies on 5 of the 8 boreholes found the same macrofauna species, and 

that, like this study, these species were more abundant than meiofaunal copepods (they 

represent the majority of the meiofauna) (Johns et al., 2015; Maurice et al., 2016). This 
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pattern seems to be unique for groundwater habitats, for example, in streams, and rivers, 

meiofauna are always more abundant than larger invertebrates (e.g. Stead et al. 2002) and 

indeed, we would expect higher abundances of small invertebrates compared to larger ones 

from metabolic theory (Brown et al., 2004). 

We observed systematic changes in the size spectrum over the 25 weeks monitoring 

period, with slopes of the size abundance relationship (the spectra) becoming steeper (more 

negative) in the ‘shallower’ boreholes. This pattern is consistent with the notion that the 

community dynamics at the bottom of shallower boreholes are more closely coupled with 

conditions in the open water compared to deep boreholes. Shallow boreholes received 

increased carbon resources and exhibited an increase in microbial biomass and metabolism 

over the sampling period. In other words, compared to the shallow aquifer, the deeper aquifer 

receives much less nutrients and water load when groundwater is flooded. These findings also 

highlight that size spectra analysis can provide key insights into the responses of ecosystems 

to environmental variability (Petchey and Belgrano, 2010) and understanding energy flow 

through groundwater food webs.  

The size spectra analysis also revealed that groundwater communities were strongly 

size-structured with the slope of the relationships (N ~ M
-1.1

) similar to the negatively 

isometric pattern often reported for aquatic food webs (Kerr and Dickie, 2001). For any given 

size spectrum, the slope depends on the community-wide mean predator–prey mass ratio 

(PPMR: the mean size of predators relative to prey), and the trophic transfer efficiency (TE: 

the proportion of prey production converted to predator production) (Kerr and Dickie, 2001). 

The model of Brown and Gillooly (2003) incorporates general allometric scaling principles to 

predict the scaling of abundance with body mass as: N = M
λ
 × M

log(TE) / + log(PPMR)
, where λ is 

the M-N scaling coefficient within trophic levels (typically -¾), the reciprocal of the mass-

dependence of metabolic rate for many multicellular taxa (Brown et al., 2004). The trophic 
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structure of groundwater food webs is largely unknown but assuming a TE range of between 

10-20% (Jennings and Mackinson, 2003) suggests that the PPMR ratio in these systems is 

somewhere between 90:1 and 600:1, similar to other benthic freshwater ecosystems (Perkins 

et al., in press, Woodward and Warren 2007). 

Abundances were generally high compared with other aquifer studies (Griebler et al., 

2010), which is explained by the fact that we sampled boreholes (Hahn and Matzke, 2005; 

Sorensen et al., 2013) and did not pump the aquifer water (see references in Griebler and 

Lueders, 2009 and Korbel et al., 2017). Collecting groundwater from boreholes is the most 

common method for groundwater sampling because they provide the only suitable sampling 

‘window’ into deeper aquifers. Previous studies have shown that boreholes have higher 

abundance but the same species composition compared to the rest of the aquifer (Hahn and 

Matzke, 2005, Sorensen et al., 2013). However, boreholes do still represent groundwater 

community patterns over time (our focus) and species composition in the aquifer. 

 

4.3 The wider context and future directions 

Ecological assessment of groundwater is a very recent discipline (see reviews by 

Danielopol et al., 2003; Gregory et al., 2014; Griebler et al., 2014; Steube et al., 2009). 

However, we now have methods, such as cytometry (Bayer et al., 2016), that help us to 

monitor stygobite populations and also to assess microscopically small organisms in 

groundwater (see literature for bacteria, protists and meiofauna reviewed in Griebler and 

Lueders (2009) and Novarino et al. (1997) for protists).  

It will be crucial to determine if groundwater biota have the potential to buffer inputs 

of nutrients through increased secondary production. Although their environment is stable, 

the relatively low temperatures might inhibit the incorporation of these additional nutrients 

into biomass. We believe a more rigorous analysis of the groundwater food web is needed to 
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show how the composition and activity of bacteria changes when nutrient availability 

changes and whether the bacterial response is coupled with increased secondary production 

of eukaryotes. Further, it is vital to include hydrological knowledge in these studies because 

they determine how stable the habitat is. Menció et al. (2014) found that steadier groundwater 

head levels and lower nitrate concentrations promote a more diverse and abundant stygofauna 

community. Historical hydrological data from UK chalk aquifers, and our study, showed that 

that the deep aquifer is less affected by flooding and it could therefore represent a very stable 

environment for groundwater organisms. However, shallower aquifers (down to 100 m) seem 

to respond rapidly to flooding and we do not know to what extent the groundwater 

community is perturbed in these important underground layers that hold clean fresh water. As 

extreme rainfall events are predicted to become more frequent in the Northern hemisphere, it 

is likely that groundwater quality will ultimately be affected.  
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Figure legends 

 

Fig. 1: 10 yrs time series of the groundwater table (measured as metres below the surface) for 

eight boreholes in the UK Chalk aquifer. The arrow shows the start of the flooding period 

(induced by heavy rains in Winter 2013) and the area shaded in grey indicates the sampling 

period (10 sampling occasions over 25 weeks). The water level on the y-axis is given as 

mAOD (Metres Above Ordnance Datum); a value of zero indicates that the waterlevel had 

reached the land surface. 

Fig. 2: Water levels (a), DOC dynamics (b), bacterial biomass (c) and bacterial functional 

richness (d) over a 25 weeks study period following the tail of groundwater flooding in a 

chalk aquifer (two locations [Berkshire and Dorset] and a total of 8 boreholes). The plots are 

the results of GLMM and the patterns over time are significant in all cases. Note that peaks 

and dips in DOC correspond to those observed for dissolved organic carbon and functional 

richness of bacteria.  

Fig. 3: Upper panel: Body mass and abundance scaling in groundwater communities. The 

average slope of the size spectrum, estimated from mixed-effects modelling, was - 1.12 (95% 

CI: -1.16 to -1.07) across boreholes and sampling occasions. Lower panel: Variation in size 

spectrum slopes in relation to sampling occasion and total borehole depth (here represented 

by shading of data points). The size spectrum slope steepened with each sampling occasion in 

the shallow boreholes (light grey data points).  
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Table 1 

Overview of the biota found in eight boreholes showing sampling effort, body mass, number 

of individuals measured and the total of functional groups/taxa recorded.  

Group Total no 

of 

samples 

scanned 

Min DWC in 

g 

Max 

DWC in 

g 

Total no of 

individuals 

measured and 

identified 

Total functional 

groups/taxa 

Open water bacteria 80 0.0000000001 0.000001 >4Mio 31 functional groups 

Sediment bacteria 77 0.0000000001 0.000001 >4Mio na 

Protists 69 0.0000000428 0.000052 >2000 67 

Meiofauna 77 0.0000321386 0.008484 >700 7 

Macrofauna 77 0.0000681359 6.395189 >3000 9 

Note: Across boreholes, this sampling resulted in 77 samples for open water bacteria (see 

S1), 69 sediment samples for protists, 77 samples for meiofauna and macrofauna (see S1); 

and 90 cotton strips were evaluated for fungal biomass (no ergosterol, i.e. fungal biomass, 

was detected). DWC= dry weight carbon. 
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Table 2  

Summary output from generalised additive mixed modelling (GAMM) of open water 

parameters through time (sampling week).   

Response Smoother term edf F p-value 

Waterlevel s(time, k = 6) 4.14 3.83 0.007 

DOC (log10) s(time, k = 6) 1.93 10.22 <.0001 

Bacteria biomass (log10) s(time, k = 6) 3.85 5.51 <.0001 

Functional diversity s(time, k = 6) 4.95 40.75 <.0001 

Note: The results provide support for nonlinear temporal trends in response to flooding. 

Significant terms are highlighted in bold, k refers to the number of knots in the smoother 

term. 
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Table 3  

Summary output from generalised least squares modelling (GLS) of size spectra parameters.  

    Size-spectrum slope Size-spectrum intercept     

Term DF F-value p-value F-value p-value 

Time 1,66 0.25 0.619 0.95 0.334 

Depth 1,66 0 0.979 0.35 0.557 

Time:Depth 1,66 4.98 0.029 2.89 0.094 

Note: Significant terms are highlighted in bold. 
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HIGHLIGHTS 

 Groundwater that had been flooded after an extreme rainfall event was sampled 

  The flooding had resulted in high DOC levels that were tracked by bacteria  

 Overall, small organisms increased in abundance while larger ones did not 

 This altered the size distribution of the community towards steeper M-N slopes  

 The deeper aquifer was less affected by the flooding  
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